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Abstract. Let K be a septic number field generated by a root 6 of an irreducible poly-
nomial F(z) = 2" +ax® +b € Z[x]). In this paper, we explicitly characterize the index
i(K) of K. More precisely, for all a and b, we show that i(K) € {1,2}. Our results answer
completely to Problem 22 of W. Narkiewicz’s book (2004) for these families of number fields.
In particular, we provide sufficient conditions for which K is not monogenic. We illustrate
our results by some computational examples.
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common index divisor; Newton polygon
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1. INTRODUCTION

Let K be a number field generated by 6, a root of a monic irreducible polynomial
F(x) € Z|z] of degree n, and Ay its ring of integers. It is well-known that Ag is
a free Z-module of rank n. We say that the ring Ax has a power integral basis if
it is generated by one element as a Z-module, that is Ax = Z[n] for some primitive
element 7 of Ax. In such a case, K is said to be monogenic. Otherwise, K is called
not monogenic. The familiar examples of monogenic number fields are quadratic and
cyclotomic fields.

Throughout this paper, for every nn € Ax generating K, ind(7) denotes the index
of Z[n] in Ak and i(K) denotes the index of K as defined by Dedekind:

(1.1) i(K) = ged{ind(n): n € Ak and K = Q(n)}.

So, i(K) = 1 for every monogenic number field K. However, if i{(K) > 1, then K is
not monogenic. A prime p is called a common index divisor of K if p divides i(K).
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Dedekind was the first one to show the existence of a common divisor of indices.
He exhibited an example of a cubic number field in which 2 is a common divisor
of indices. He showed that 2 divides i(K), where K = Q(#) and 6% — 02 — 20 — 8
(cf. [30], page 64). In [11], Engstrom gave explicit formulas which compute v, (i(K)),
the highest power of p dividing i(K), according to the type of splitting of p in Ak,
and employed these results to compute v, (i(K)) for all number fields of degrees less
or equal 7. Nart in [31] determined v, (i(K)) in totally ramified cases. The problem
of determination of v, (i(K)) is referred as Problem 22 of Narkiewicz (see [30]).

The problem of testing the monogenity and non-monogenity of number fields
and constructing power integral bases have been the subject of extensive research.
To determine whether a number field K is monogenic or not, one must solve
the corresponding index form equations, see, e.g., [7], [13], [14], [17], [20], [21],
[33], where the authors develop efficient algorithms for a great number of classes
of number fields.

In [20], [21], [23], [24], Gy6éry made a general breakthrough by proving in
full generality that for any I € 7 the index form equation I(zg,...,x,) = I
(in z9,x3,...,2, € Z) associated to an integral basis of K can have only finitely
many integral solutions and gives effective bounds for the solutions. The best
known bounds for the solutions can be found in [13]. He also reduced index form
equations to the system of unit equations in [25] and gave effective results regard-
ing the monogenity of relative extensions in [22] and [24]. For more details, we
suggest consulting the books [12], [13] by Evertse and Gy&ry which provide com-
prehensive studies regarding discriminant form and index form theory and their
practical applications, including relevant Diophantine equations and monogenity
of number fields.

In [17], Gaal and Schulte gave efficient algorithms for solving index form equations
in cubic number fields. In [16], Gadl, Peth6 and Pohst provided algorithms for solving
index form equations in a quartic number field. In [34], Peth6 and Ziegler gave an
efficient criterion to decide whether the maximal order of a biquadratic number field
has a unit power integral basis or not. For multiquadratic number fields, we refer
to [33] by Pethd and Pohst.

Combining the general approach of [21] and its refined version [25] with some other
technical results, Gaal and Gyéry [7] and Bilu et al. [15] described algorithms and
used them to solve index form equations in quintic, respectively, sextic number fields.

Nakahara’s research team based their method on the existence of relative power
integral bases of some special sub-fields. They studied the monogenity of several num-
ber fields: for example, under the assumption that m # £1 (mod 9), Ahmad, Naka-
hara and Husnine [2], and Ahmad, Nakahara and Hameed [1] showed that the pure
sextic number field Q(/m) with square-free m is monogenic when m = 2,3 (mod 4),
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but it is not monogenic when m = 1 (mod 4), respectively. For some results regard-
ing the monogenity of certain pure number fields see [5], [6] by Ben Yakkou et al.
For a survey on monogenity with a focus on efficient algorithms for several classes of
number fields, see the books [13] by Evertse and Gyéry and [14] by Gadl.

Recently, many authors have been interested in the study of indices, monogen-
ity and non-monogenity of the number field defined by roots of trinomials of type
2™ + ax™ 4+ b. Llorente and Nart (see [28]) proved that for a cubic number field
defined by 23 + ax + b, i(K) = 1 or 2 and gave a necessary and sufficient condition
for i(K) = 2. In [9], Davis and Spearman showed that the index of a quartic number
field defined by * 4 ax + b is contained in the set {1,2,3,6}. Ben Yakkou and Bou-
dine [4] studied the index of the octic number field defined by 2® + ax + b. In [26],
Jakhar, Khanduja and Sangwan studied the problem of the integral closedness of
Z[0]: they gave necessary and sufficient conditions for a prime p to be a divisor of
ind(f). However, by the definition (1.1) of i(K), the divisibility of ind(6) by p is
not sufficient to decide whether p is a common index divisor of K or not. There-
fore, their results do not characterize the prime divisors of indices of these number
fields. In [3], Ben Yakkou gave some sufficient conditions on coefficients of a trinomial
" 4+ ax™ + b for which K has an odd prime common index divisor which guarantees
the non-monogenity of the number field defined by such a trinomial. Also, in [27],
Jones and White identify infinite parametric families of monogenic trinomials with
a non square-free discriminant.

The aim of the present paper is to determine the index of any number field K
generated by a root § of an irreducible trinomial of type F(z) = 27 + az® + b € Z[z].
Note that all the available results cannot be applied to characterize the prime com-
mon index divisors and to answer the question of monogenity for these number
fields. So, we are motivated to study separately these families of number fields. To
reach our goal, we have based our method on prime ideal factorization via Newton
polygon techniques.

2. MAIN RESULTS

In what follows, let K be a septic number field generated by 6, a root of a monic
irreducible trinomial F'(z) = 27 + az® + b € Z[z], and Ak its ring of integers. For
every prime p and any nonzero p-adic integer m, v,(m) denotes the p-adic valuation
of m, the highest power of p dividing m, and m,, :=m/ p*»("™)  Scaling the coefficients

if necessary, we lose no generality in assuming

(2.1) vp(a) <2 or wvu(b) <T.
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For simplicity, if pAx = p$' ... py? is the factorization of pAx into a product of pow-
ers of distinct prime ideals in A i with residue degrees f(p;/p) = [Ax /pi : Z/pZ] = f;,
then we write pAx = [f{*,..., fy’]. Also, if e; = 1 for some i, then we shortly write f;
instead of f;'.

In this paper, we prove the following results.

Theorem 2.1. Let K = Q(6) be a number field with 8 being a root of a monic
irreducible polynomial F(z) = 27 + ax® + b € Z[x]. Then for any odd prime p, p is
not a common index divisor of K; p does not divide i(K).

From the above theorem, the only candidate prime to divide ¢(K) is 2. Thus,
either i(K) = 1 or i(K) = 2* for some positive integer k. The following result gives
the complete answer. Precisely, we prove that i(K) is either 1 or 2.

Theorem 2.2. Let K be a number field generated by a root 6 of an irreducible
trinomial F(z) = 2"+ ax%+b € Z[z]. Then Table 1 gives the form of the factorization
of the ideal 2Ak into a product of powers of distinct prime ideals of Ax and the
exact value of the index i(K) in every case. In particular, 2 is a common index
divisor of K if and only if one of the conditions C9, C10, C11, C17 holds.

Corollary 2.3. Let K = Q(f) be a number field with 6 being a root of a monic
irreducible polynomial F(x) = 27 + az® + b € Z[z]. Then
(1) #(K) = 2 if and only if one of the conditions C9, C10, C11, C17 holds. Other-
wise, i(K) = 1.
(2) If any one of the conditions C9, C10, C11, C17 holds, then K is not monogenic;
7 i has no power integral basis.

Remark 2.4. The condition i(K) = 1 is not sufficient for K to be monogenic.
A number field K can have index 1, but Ax has no power integral basis. Thanks to
the following example: K = Q(+/175) (see [30], page 56).

3. EXAMPLES

To illustrate our results, we propose some examples. Let K = Q(f) be a septic
number field with 6 a root of an irreducible polynomial F(z) = 27 + ax® + b € Z[x].
(1) Let F(z) = 2" + 8672 + 68. Since F(z) is a 17-Eisenstein polynomial, it is
irreducible over Q. By Case C9 of Table 1 of Theorem 2.2, i(K) = 2. So, K is

not monogenic.
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(2) Let F(z) = 27 4 459272° + 24. The polynomial F(z) is irreducible over Q as
it is a 3-Eisenstein polynomial. In view of Case C10 of Table 1 of Theorem 2.2,
i(K) = 2. Consequently, Ax has no power integral basis.

(3) Let F(z) = 27 + 332° + 66. As F(z) is an 11-Eisenstein polynomial, it is
irreducible over Q). According to Case C17 of Table 1, K is not monogenic and
i(K) = 2.

(4) Let F(x) = 2" 4+ p"2% + p, where p is an odd prime and r is a positive integer.
By Theorem 2.1 and Case C1 of Table 1, i(K) = 1.

Case Conditions Factorization of 24k i(K)
C1 a=1 (mod 2) and b= 1 (mod 2) [21,51] 1
C2 a=0 (mod 2) and b =1 (mod 2) [1,3,3] 1
C3 Tva(a) > 2v,(b) and v,(b) € {1,2,3,4,5,6} [17] 1
C4 va(a) = 1,v9(b) > 4 and 51 (b)) — 1 [12,17] 1
C5 vo(a) =1,v2(b) >4 and 5 | vo(b) — 1 [1,12,4] 1
C6 a=3 (mod 8),b =0 (mod 8) and 5 { v2(b) [1°,2] 1
Ccr a =3 (mod 8),b =0 (mod 8) and 5 | v5(b) [1,2,4] 1
C8 a =7 (mod 8),b=4 (mod 8) [2,15] 1
C9 a =3 (mod 8),b =4 (mod 8) [1,1,15) 2
C10 a=7T (mod 8),b =0 (mod 8) and 5 { v2(b) [1,1,15) 2
C11 a=7 (mod 8),b=0 (mod 8) and 5 | v5(b) [1,1,1,4] 2
C12 a =3 (mod 4) and b = 2 (mod 4) [12,17] 1
C13 a=1 (mod 4),b =0 (mod 4) and 5 { v2(b) [12,17] 1
Cl14 a=1 (mod 4),b =0 (mod 4) and 5 | v2(b) [1,12,4] 1
C15  (a,b) €{(1,10),(9,2),(1,6),(9,14)} (mod 16) [12,15] 1
C16 (a,b) € {(1,18),(17,2), (1,14), (17,30)} (mod 32) [2,1] 1
C17 (a,b) € {(1,2),(17,18),(1,30),(17,14)} (mod 32) [1,1,15] 2
C18 (a,b) € {(5,2),(5,14),(13,6),(13,10)} (mod 16) [12,17] 1

Table 1. The factorization of 2Ax and the value of i(K).

4. PRELIMINARY RESULTS

Let K be a number field generated by 6, a root of a monic irreducible trinomial
F(z) = 2" 4+ ax® + b € Z[z], and Ak its ring of integers. Let p be a prime and F,
denote the finite field with the p elements. The following result is one of the most
basic results on the index of a number field. It gives a necessary and sufficient
condition for a prime p to be a common index divisor of K. This lemma will play
an important role in the proof of our results (see [30], Theorems 4.33-4.34 and [10]).
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Lemma 4.1. Let p be a prime and K a number field. For every positive integer f,
let L,(f) denote the number of distinct prime ideals of Ax lying above p with residue
degree f and N,(f) denote the number of monic irreducible polynomials of Fp[z] of
degree f. Then p is a common index divisor of K if and only if L,(f) > Ny(f) for
some positive integer f.

To apply Lemma 4.1, we need to determine the number of distinct prime ideals
of Ak lying above p. We use Newton polygon techniques. So, let us shortly recall
some fundamental notions and results on this method on which the proof of our
results are based. For more details, we refer to [18], [19] by Guardia, Montes and
Nart, [29] by Montes and Nart and [32] by Ore.

Let p be a prime and v, denote the discrete valuation of Q,(z) defined on Z,[z] by

Vp (Z aixi) = min{v,(a;), 0 < i< m}.
=0

Let p(x) € Z[x] be a monic polynomial whose reduction modulo p is irreducible.
The polynomial F(z) € Z[z] admits a unique ¢-adic expansion

F(z) = ao(z) + ar(x)p(x) + ... + an(2)p(2)"

with deg(a;(z)) < deg(p(z)). For every 0 < ¢ < m, let u; = vp(a;(x)). The p-Newton
polygon of F(x) with respect to v, is the lower boundary convex envelope of the set
of points {(7,u;),0 < ¢ < n,a;(z) # 0} in the Euclidean plane, which we denote by
Ny(F). The polygon N, (F) is the union of different adjacent sides Si,S2,...,S5;
with increasing slopes A1, Az, ..., Ay. We write N, (F) = S1+S2+...+5,. The poly-
gon determined by the sides of negative slopes of N, (F) is called the ¢-principal New-
ton polygon of F'(x) with respect to v, (or p) and is denoted by N;(F). The length of
N (F)is I(NJ(F)) = vg(F(x)), the highest power of ¢(z) dividing F(z) modulo p.

Let F,, be the finite field Z[z]/(p, ¢(x)) ~ Fplz]/(¢(z)). We attach to any abscissa
0 <4 <I(NJ(F)) the following residual coefficient ¢; € Fy:

0 if (i, u;) lies strictly above N'(F),

€= ai(x)

e

Let S be one of the sides of NI (F). Then the length of S, denoted by I(S), is
the length of its projection to the horizontal axis and its height, denoted by h(S),
is the length of its projection to the vertical axis. Let A\ = —h(S)/I(S) = —h/e

be its slope, where e and h are two positive coprime integers. The degree of S is
d(S) = ged(h(S),1(S)) = 1(S)/e; it is equal to the number of segments into which

(mod(p, ¢(x))) if (i,u;) lies on N (F).
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the integral lattices divide S. More precisely, if (s, us) is the initial point of S, then
the points with integer coordinates lying in S are exactly

(s,us), (s +e,us —h),...,(s+ de,us — dh).

The positive integer e = [(S)/d(S) is called the ramification index of the side S and
denoted by e(S). We attach to S the residual polynomial

Ri(F)(y) = s + Corel + - oo+ Cor(a1)ey? "+ Coraey® € Fulyl.
Now, we give some related definitions to this algorithm.
Definition 4.2. Let F(z) € Z[z] be a monic irreducible polynomial. Let
F(z) = f[ @;i(z)% (mod p) be the factorization of F(z) into a product of pow-
ers of diszt_illlct monic irreducible polynomials in F,[z]. For every i = 1 ,t, let

N} (F)=Si+...+ Si,, and for every j = 1,...,7;, let Ry, (F)(y) = szg( )
be the factorization of Ry, (F)(y) in Fy,[y].

(1) For every i = 1,...,t, the y;-index of F(x), denoted by ind,, (F), is deg(;)
multiplied by the number of points with natural integer coordinates that lie
below or on the polygon N;,‘i (F), strictly above the horizontal axis and strictly
beyond the vertical axis.

(2) The polynomial F'(z) is said to be ;-regular with respect to v, if for every
Jj=1,...,r, Ry,;(F)(y) is separable, that is n;j; = 1.

(3) The polynomial F(x) is said to be p-regular if it is ¢;-regular for every 1 < i < ¢.

Now, we recall Ore’s Theorem which will be used in the proof of Theorems 2.1
and 2.2 (see [18], Theorems 1.13, 1.15 and 1.19, [29] and [32]).

Theorem 4.3 (Ore’s Theorem). Let K be a number field generated by 6, a root
of a monic irreducible polynomial F(x) € Z[z]. Under the above notations, we have

(1)

t

»(ind (6 Z o (

Moreover, the equality holds if F(z) is p—regular.
(2) If F(x) is p-regular, then

i Sij

pAK = H JIRNESS

i=1j=1s=1

where e;; is the ramification index of the side S;; and f;js = deg(p;) x deg(¢ij;s)
is the residue degree of p;;s over p.
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The following result is an immediate consequence of the above theorem.

Corollary 4.4. Under the above hypotheses, the following hold:

(1) If I; = 1 for somei = 1,...,t, then the factor p;(x) provides that a unique prime
ideal of Ak lies above p of residue degree equals deg(y;(z)) and of ramification
index equals 1.

(2) If for some i = 1,...,t, N} (F) has k distinct sides of degree 1 each, then the
factor p;(x) provides k distinct prime ideals of Ak lying above p with the same
residue degree equals deg(p;(z)) with ramification indices e(p;j1/p) = e(Sij),
j=1,... k.

The proof of the following example in the quartic case is based on the application
of Ore’s Theorem.

Example 4.5. Consider F(z) = z* + 23122% + 119 € Z[z]. Since F(z) is
a 17-Eisenstein polynomial, F'(z) is irreducible over Q. Let 6 be a root of F(z) and
K :=Q(0). We propose to determine i(K). It is known by Engstrom’s work (see [11])
that i(K) = 2% - 3" with u < 2 and v < 1. For p = 3, we have F(z) = 2% — 23 — 1
(mod 3). By Corollary 4.4, 3Ak is a prime ideal of Ax. Therefore, by Lemma 4.1,
31i(K), and so v = 0. For p = 2, we have F(z) = (v —1)* (mod 2). Let ¢; = 2 — 1.
The ¢;-adic expansion of F(x) is

F(x) = 2432 + 694001 () + 694201 () + 231601 (2)® + @1 (x)?.

Computing the 2-adic valuations of the coefficients in the above expansion, we see
that 15(2432) = 7, 15(6940) = 2, 15(6942) = 1 and 1»(2316) = 2. Thus, N}, (F) =
S11 + S12 + S13 has three distinct sides of degree 1, each with respective slopes
lin = =5, liz = —1 and l13 = —1. Precisely, N (F) is the lower convex hull
of the points (0,7),(1,2),(2,1),(3,2) and (4,0) (see Figure 1). Further, we have
ind(¢1) = 3. The corresponding residual polynomials are the same: Ry, (F)(y) =
y—1¢€Fy [yl ~Faly], k =1,2,3. So, they are separable as they have degree 1 each.
Thus, F(x) is ¢1-regular. So, it is 2-regular. Applying Theorem 4.3, we see that

vo(ind(6)) = ind(ypy) = 3,
and

2A = 13111}312113%31,

where p111, P121 and py31 are the three distinct prime ideals of Ay of residue degree
f(p1r1/2) = deg(Ry,, (F)) x deg(p1) =1x1 =1 for k = 1,2,3. By Engstrom’s table
concerning indices of number fields of degree less than 7 (see [11], page 234), we have
u = 1. We conclude that i(K) = 2, and so K is not monogenic.
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Figure 1. N;rl (F) with respect to vs.

Recall also the following useful result which is a special case of [8], Theorem 4.8.5
in the context of septic number fields.

Lemma 4.6. Let K = Q(0) and F(z) be as in Theorems 2.1 and 2.2. Let p be

a prime. If pAx = p$' ... pg° is the factorization of pAx into a product of powers of
g
distinct prime ideals in Ax with residue degrees f(p;/p) = fi, then > e;fi = 7.
i=1

5. PROOFS OF THE MAIN RESULTS

After recalling necessary preliminaries and results in the previous section, we are
now in the position to prove our main results. Let us begin by Theorem 2.1.

Proof of Theorem 2.1.  Since the degree of K is 7, by the result of Zylinski
(see [35]), if p divides i(K), then p < 7, see also [11] by Engstrom. Therefore, the
candidate primes to be common index divisors of K are 2,3 and 5. So, to prove this
theorem, it is sufficient to show that 3 1 i(K) and 5 1 i(K). On the other hand, by
[30], Proposition 2.13, for any n € 7k, we have the index formula

(5.1) vp(D(n)) = 2vp(ind(n)) + v(Dk ),

where D(n) is the discriminant of the minimal polynomial of n and D is the dis-
criminant of K. It follows by the definition (1.1) of ¢(K) that if p divides i(K),
then p divides A(F'). Recall also that

(5.2) A(F) = —b*(770? + 2% x 5°%d7).

253



Let us first show that 3 { ¢(K). By the relation (5.1) and formula (5.2), if
3| i(K), then

(avb) € {(170)a (_]-ao)v (1a 1)7 (1a _1)a (070)} (mOd 3)

We distinguish several sub-cases. Table 2 gives the form of the factorization of the
ideal 3Ax into a product of powers of distinct prime ideals of Ax in all possible
cases. Note also that by (2.1), if 3 divides both a and b, then v3(a) < 2 or v3(b) < 7.

Case Conditions Factorization of 3Ax
Al a=1 (mod 3),b=0 (mod 3) and 5 { v3(b) [15,2]

A2 a=1 (mod 3),b=0 (mod 3) and 5 | v3(b) [1,2,4]

A3 a=-1 (mod 3),b =0 (mod 3) and 5 1 v3(b) [1,1,15]

A4 a=-1 (mod 3),b=0 (mod 3) and 5 | v3(b) [1,1,1,4]

Ab a =1 (mod 3) and b = £1 (mod 3) [1,1,2,3],[1%,2,3] or [2,2, 3]
A6 Tvs(a) > 2v3(b) and v3(b) € {1,2,3,4,5,6} [17]

A7 v3(a) = 1,v3(b) > 4 and 5t wvs3(b) — 1 [12,17]

A8 v3(a) =1,v3(b) > 4 and 5 | v3(b) — 1 [1,12,4]

Table 2. The factorization of 3A .

We discuss each sub-case separately.

Sub-case A1: a =1 (mod 3), b =0 (mod 3) and 5 1 v3(b). In this case, F(z) =
©1(2)%pa(x) (mod 3), where 1 (x) = x and pa(x) = 22 + 1. Since 5 does not divide
v3(b), N/, (F) = S11 has asingle side of degree 1 joining the points (0, v3(b)) and (5,0)
with ramification index e;; = 5. Also, we have v,,(F(z)) = 1. By Corollary 4.4,

we see that 3Ax = pJy; - P211, where p11; and po1; are two prime ideals of Ax with
respective residue degrees f(p111/3) = 1 and f(p211/3) = 2. In view of Lemma 4.1,
31i(K).

Sub-case A2: a =1 (mod 3),b =0 (mod 3) and 5 | v3(b). Here, the factorization
of F(z) modulo 3 and the polygons N, (F) and N}, (F) are the same as in the above
case. Further, since v3(b) is divisible by 5, we have

W+ =y’ +y* —y+1) ifby=1 (mod 3),

Ry, F)(y) =b +ay5 =
( ¥ (y—Dy*+y3+y*+y+1) ifbg=—1 (mod 3).

Thus, F(x) is 3-regular. By Theorem 4.3, 3Ax = [1,2,4]. Therefore, by Lemma 4.1,
3ti(K).
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Sub-case A8: a = —1 (mod 3), b =0 (mod 3) and 5 1 v3(b). In this case, F(x) =
©1(2)5pa2(x)p3(z) (mod 3), where p1(z) = =, p2(z) = z — 1 and ¢3(z) = = + 1.
Also, N (F) = S11 and Ry,, (F)(y) are the same as in Case Al. Using Corollary 4.3,
3Ax =[1,1,15]. Hence, by Lemma 4.1, 3 {i(K).

Sub-case A4: a = —1 (mod 3), b =0 (mod 3) and 5 | v5(b). Here, the factoriza-
tion of F'(x) modulo 3 is the same as in the above case. Further, N (F') = S1; and
Ry, (F)(y) are the same as in Case A2. Therefore, by Corollary 4.4, 3Ax = [1,1,1,4].
Consequently, by Lemma 4.1, 3 1 i(K).

Sub-case A5: a = 1 (mod 3) and b = £1 (mod 3). If b = 1 (mod 3), then
F(z) = ¢1(z)?p2(x)p3(x) (mod 3), where ¢1(x) = z — 1, pa(x) = 22 — 2 — 1
and ¢3(z) = 2° — 2 — 1. By Corollary 4.4 (1), the factor (pa(x) provides a unique
prime ideal po1; of Ax of residue degree 2 and of ramification index 1. Also,
the factor ¢s(x) provides a unique prime ideal p31; of Ax of residue degree 3
and of ramification index 1. It follows that 3Ax = po11 - Ps11 - @, where a is
a proper ideal of Ax. By Lemma 4.6, the form of the factorization of a is ei-
ther [1,1],[1%] or [2]. Therefore, the form of the factorization of 3A is either
[1,1,2,3],[12,2,3] or [2,2,3]. Hence, by Lemma 4.1, 3 { i(K). If b = —1 (mod 3),
then F(z) = (z + 1)*(2®> + x — 1)(2® — 2z + 1) (mod 3). Similarly to the case b = 1
(mod 3), we see that 3 1 i(K).

Note that by (2.1), if 3 divides both a and b, then v3(a) < 2 or v3(b) < 7. So,
the conditions A6-A8 cover all possible cases when a and b are both divisible by 3.
On the other hand, F(z) = ¢1(x)" (mod 3), where @1 () = 2. Thus, N}, (F) is the
lower convex hull of the points (0, v3(b)), (5,v3(a)) and (7,0).

Sub-case A6: Tvs(a) > 2v3(b) and vs(b) € {1,2,3,4,5,6}. In this case,
N;rl (F) = Si1 has a single side of degree 1 and of ramification index 7. By
Corollary 4.4, 3Ax = [17]. By Lemma 4.1, 3{i(K).

Sub-case A7: v3(a) = 1, v3(b) > 4 and 5 { v3(b) — 1. Here, N (F) = Si1 + Si2
has two distinct sides of degree 1, each joining the points (0, v3(b)), (5,1) and (7,0).
Their respective ramification indices are e;; = 5 and ejo = 2. Therefore, by Corol-
lary 4.4 (2), 3Ax = [1%,1°]. Thus, 31i(K).

Sub-case A8: v3(a) = 1, v3(b) > 4 and 5 | v3(b) — 1. In this case, N} (F) =
S11 4 S12 has two distinct sides joining the points (0, v3(b)), (5,1) and (7,0). Further,
we have d(S12) =5, e12 = 1 and Ry,, (F')(y) is the same as in Case A2. So, F(z) is
3-regular. Using Theorem 4.3, we get 3Ax = [1,12,4]. So, by Lemma 4.1, 31 i(K).

We conclude that in every case, 3 is not a common index divisor of K.

Now, we prove that 5 does not divide i(K). By (5.1) and (5.2), if 5 divides i(K),
then 5 divides b. We distinguish seven cases which cover all the possibilities. Table 3
gives the form of the factorization of 5Ax in Ag.

255



Case Conditions Factorization of 5Ak

B1 Tvs(a) > 2v5(b) and vs(b) € {1,2,3,4,5,6} 17

B2 vs(a) = 1,v5(b) > 4 and 5t wvs(b) — 1 [12,1°]

B3 vs(a) = 1,v5(b) > 4 and 5 | v5(b) — 1 [12,1°] or [1,1%,12]
B4 a=42 (mod5),b=0 (mod 5) and 5 { v5(b) [1°,2]

B5 a=242 (mod5),b=0 (mod 5) and 5 | v5(b) [2,15] or [1,14,2]
B6 a=+1 (mod5),b=0 (mod 5) and 5 { v5(b) [1,1,15]

B7 a=41 (mod5),b=0 (mod 5) and 5| v5(b) [1,1,1°] or [1,1,1,1%]

Table 3. The factorization of 5A k.

Cases B1-B2: These cases are, respectively, similar to Cases A6, A7 of Table 2.

Case B3: vs(a) = 1, vs(b) > 4 and 5 | v5(b) — 1. In this case F(x) = ¢1(z)7
(mod 5), where ¢1(2) = x. Here, N, (F)) = S11 + Si2 has two distinct sides joining
the points (0,v5(b)), (5,1) and (7,0). Further, we have d(S11) =5 and Ry, (F)(y) =
bs + asy® = as(y + bs/as)® which is not separable in Fy, [y]. Set v5(b) = 5k + 1 for
some positive integer k. In order to apply Ore’s Theorem (Theorem 4.3), we replace
the lifting ¢1(z) = z of ¢1(z) = T € Fsz] by ¥1(2) = 2 — 5F¢ with ¢ = —bsaz*
(mod 5) which allows to the polynomial F(z) to be t;-regular. For any prime p,
it is important to note that Theorem 4.3 does not depend on the monic irreducible
liftings of the monic irreducible factors of F'(z) modulo p. The 1);-adic expansion of
F(z) is

(5.3)  F(x) =5™c +5%ac® + b+ 51 (7528712 + a) (2)
+ 53k+1 3(21 5 le 4 2a) (x )2 + p2k+1 2(7 52k 4 2a)w1(x)3
+ 55T 57 @) (2)* + (21 4 570 + ) (2)°
+ 75y (2)° + Yy ().

Let Ag = 57Fc" + 5%ac® + b, A; = 5*H1cH(7 . 528-1¢2 1 q), Ay = 53F+1e3 x
(21 - 5%6~1c 4 2a), Az = 52K FT1c3(7 - 5262 4 2a), Ay = 5K F1e(7 - 5%Kc? + a), A5 =
21 - 5%k +a, Ag = 7-5%c and p; = vs(A;) for i = 1,...,6. Note that us = 1,
because vs(a) = 1. We distinguish two cases according to k¥ > 2 or k = 1.

Case 1: If k > 2, then ug = v5(5°* (528~ 1c™ +asc® + bs)) > 5k +2, uy = 4k + 2,
po =3k+2, u3 =2k +2 and pug = k+ 2. Then we have the following two sub-cases:

Sub-case 1.1: If vs(asc® + bs) = 1, then pug = 5k + 2. Thus, by (5.3), NJl (F) =
S11 + S12 has two distinct sides of degree 1, each joining the points (0, 5k + 2), (5,1)
and (7,0) with e;; = 5 and ejp = 2. Therefore, by Corollary 4.4, 5Ax = [1°,12].

Sub-case 1.2: If vs(asc® +bs) > 2, then pg > 5k+3. So, NJr (F) = S11+ 512+ 513
has three distinct sides of degree 1, each joining the points (0 to), (1,4k + 2),(5,1)
and (7,0) with e;; = 1,e12 = 4 and ej3 = 2. Consequently, 5Ax = [1,1%,12].
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Case 2: If k = 1 (that is v5(b) = 6), then pg = 6 + v5(5¢” + asc® + bs) > 7.
Moreover, we have u; = v5(55¢(7c? 4+ as)) > 6, puz > 5, uz > 4 and pug > 3. We
proceed as in case when k > 2 and obtain that 54, = [12,1%] or [1,1%,1?] according
to vs(5¢” + asc® +bs) =1 or > 2.

Case B4: a = 42 (mod 5), b = 0 (mod 5) and 5 { v5(b). Here, F(z) =
©1(7)°p2(x) (mod 5), where ¢1(x) = x and @2(x) = 22 + a. By Corollary 4.4 (1),
2(z) provides that a unique prime ideal of Ax lies above 5 of residue de-
gree 2 with the ramification index 1, say pa11. Since 5 t v5(b), N;rl (F) = Sn
has a single side of degree 1 joining the points (0,v5(b)) and (5,0). By Corol-
lary 4.4(2), ¢i(x) provides that a unique prime ideal of Ax lies above 5 of
residue degree 1 with ramification index 5, say pii1. Therefore, 5Ax = [1°,2].
Hence, 51 i(K).

Case B5: a = £2 (mod 5), b =0 (mod 5) and 5 | v5(b). Set v5(b) = 5k for some
positive integer k. Let A, p, € 7 such that 5 divides aA} ,_ + bs. To treat this case,
we use ¢1(z) = z — 58 A, ;. as in Case B3. Write Ag = 57’“/1;1)5 + 55k(aAZ’b5 + bs).
According to (5.3), we have py =4k + 1, uo =3k + 1, us =2k + 1 and py =k + 1.
We distinguish two sub-cases.

Sub-case 1.1: If 1/5(04142’% +b5) =1, then po = 5k + 1. Thus, by (5.3), N[[l (F) =
S11 has a single side of degree 1 joining the points (0,5k+ 1) and (5,0). Its ramifica-
tion index equals 5. By Corollary 4.4 (2), the factor ¢ (z) (or ¢1(z)) provides that
a unique prime ideal of Ay lies above 5 of residue degree 1 with the ramification
index 5. Therefore, 54, = [2,15]. Hence, 5 {i(K).

Sub-case 1.2: 1f vs(a A}, +bs) > 2, then pg > 5k 4 2. Thus, by (5.3), NJI (F) =
S11 + S11 has two sides of degree 1, each joining the points (0, 1), (1,4k + 1) and
(5,0). Their respective ramification indices are e1; = 1 and e12 = 4. By Theorem 4.3,
the factor i1 () (or ¢1(x)) provides two distinct prime ideals of Ax lying above 5
of residue degree 1 each. Therefore, 5Ax = [1,1%,2]. So, 51i(K).

Cases B6-B7: We proceed analogously as in Cases B4, B5.

Since the factorization of 5A does not satisfy the inequality Ls(f) > N5(f) for
any positive integer f, we conclude by Lemma 4.1 that 51 ¢(K). This completes the
proof of the theorem. O

From Theorem 2.1, no prime p > 3 can be a common index divisor of K. Therefore,
i(K) = 2v20K) " Now, let us prove Theorem 2.2. In every case, we give the form
of the factorization of 2Ak and by using Egstrom’s results (see [11]) we deduce the
exact value of i(K).

Proof of Theorem 2.2. Case C1: a =1 (mod 2) and b = 1 (mod 2). In this
case, F(r) = (22 + . + 1)(2° + 2* + 2> + 2 + 1) (mod 2). By Corollary 4.4 (1),
2Ak = [2,5]. In view of Lemma 4.1, 2{4(K). So, i(K) = 1.
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Case C2: a =0 (mod 2) and b= 1 (mod 2). Here, F(z) = (z + 1)(2®> + 2 + 1) x
(23 +22+1) (mod 2). By Corollary 4.4 (1), 2Ax = [1, 3, 3]. Therefore, v5(i(K)) = 0.
Hence, i(K) = 1.

In Cases C3, C4, C5, 2 divides both a and b. These cases are similar to Cases A6,
A7, A8, respectively, when we consider p = 3. Therefore we omit their proofs. In
these cases, we have i(K) = 1.

From Case C6, 2 divides b, but does not divide a. It follows that F(z) =
©1(7)%p2(x)? (mod 2), where o1 (x) = x and @(z) = 2 — 1. For ¢;(z), the polyno-
mial F(z) is pi-regular. Moreover, by using Theorem 4.3, we have the following:

(1) If 5 does not divide vo(b), then ¢;(x) provides that a unique prime ideal lies
above 2Ak of residue degree 1 with the ramification index 5. So, 2Ax = p3;; -a,
where f(p111/2) = 1 and a is a nonzero ideal of Ag.

(2) If 5 does divide v2(b), then ¢4 () provides two distinct prime ideals lying above
2 A with the ramification index 1 each. One of them has a residue degree 1 and
the other has a residue degree 4. Thus, 2Ax = p111-P121-a, where f(p111/2) =1,
f(p112/2) = 4 and a is a nonzero ideal of Ak.

Thus, the number of prime ideals of Ax that divide 2Ax which are provided by
¢1(z) are determined with their residue degrees. On the other hand, the ideal a is
provided by the factor z(z). To factorize it, we analyze N} (F), the @o-principal
Newton polygon of F(z). The ¢s-adic expansion of F'(x) is

(5.4) F(x)=1+a+b+ (7T+5a)pa(z) + (21 + 10a)p2(2)* + ... + p2(x)".

Let v = vo(1+a+b) and p = vo(7+5a). It follows by (5.4) that N}, (F) is the lower
convex hull of the points (0,v), (1, 1) and (2,0). Note also that the finite residual
field F,, is isomorphic to [Fs.

Cases C6-C8: In all these cases, we have v = 2 and p = 1. Thus, N;g (F) =81
has a single side of degree 2 joining the points (0, 2), (1,1) and 2,0. Further, we have
er1 = 1 and Ry, (F)(y) = 1+ y + y? which is separable in Fy,[y]. Therefore, by
Theorem 4.3, the form of the factorization of a is [2]. Thus, we conclude the form of
the factorization of 2Ak in these cases is as given in Table 1.

Cases C9-C11: Tn all these cases, v > 2 and p = 1. Thus, N} (F) = S11 + Si2
has two sides of degree 1, each joining the points (0,v),(1,1) and (2,0). Their
ramification indices equal 1. Their attached residual polynomial are separable as they
are of degree 1. By Theorem 4.3, the form of factorization of a is [1,1]. Therefore,
we conclude the form of factorization of 2Ak in these cases is as given in Table 1.
Since Ly(1) = 3 > 2 = Ny(1), by Lemma 4.1, 2 | i(K). In Case Cl1, we have
2Ak = [1,1,1,4], then according to above mentioned Engstrom’s table, we see that
v5(i(K)) = 1. On the other hand, in Cases C9 and C10, we have 2Ax = [1,1,15].
In view of [11], Corollary on p. 230, v2(i(K)) = 1. Consequently, i(K) = 2.
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Cases C12-C14: In all these cases, v = 1. Thus, N;; (F) = S11 has a single
side of degree 1 with the ramification index 2. By Corollary 4.4 (2), the form of the
factorization of a is [1?]. Therefore, 245 = [12,1%] or 24k = [1,1% 4]. Hence, by
Lemma 4.1, 2 1 i(K).

From Case C15, we have v5(1 4+ a) = v,(b) = 1. It follows that min{v, u} > 2.
Then we cannot control their values. To apply Ore’s Theorem (Theorem 4.3), we

replace the lifting ¢a(z) = @ — 1 of pa(x) by 92(x) = z — s for an adequate odd
rational integer s which allows the polynomial F'(z) to be to-regular. The 1s-adic
expansion of F'(z) is

(5.5) F(x) =5"+as’+b+ (755 +5as")ha(x) 4+ (215° + 1005 ) o () + . . . +1ha(x)7.

Let w = va(s” + as® +b) and § = 15(7s® + 5as*). Thus, by (5.5), NJQ (F) is the
lower convex hull of the points (0,w), (1,6) and (2,0). In the next cases, we give s
explicitly and the form of the factorization of a in Ax. Remark in these cases that
the factor ¢ (x) provides a unique prime ideal of residue degree 1 with ramification

index 5, because v2(b) = 1.
Case C15: (a,b) € {(1,10),(9,2),(1,6),(9,14)} (mod 16). When

(a,8) € {(1,10), (9,2)} (mod 16),
we choose any s such that s = 3,7,11, or 15 (mod 16), and if
(a,8) € {(1,6), (9, 14)} (mod 16),

consider any s satisfying s = 1,5,9, or 13 (mod 16). Then, we get w = 3 and 6 = 2.
It follows by (5.5) that NJ; (F) = S11 has a single side of degree 1 joining the points
(0,3) and (2,0). Its ramification index equals 2. By Corollary 4.4 (2), the form of
the factorization of a is [12]. Therefore, 24k = [12,1°]. So, 2{i(K).

Case C16: (a,b) € {(1,18),(17,2),(1,14),(17,30)} (mod 32). For

(a,6) € {(1,18), (17,2)} (mod 16),
we choose s = 3,7,11,15,19,23,27,31 (mod 32), and for
(a,6) € {(1,14), (17,30)} (mod 32),

we choose any s = 1,5,9,13,17,21,25,29 (mod 32). Then, we have w = 4 and § = 2.
It follows by (5.5) that N;; (F) = S11 has a single side of degree 2 joining the points
(0,4),(1,2) and (2,0). Its attached residual polynomial is Ry, (F)(y) = y*> +y + 1
which is separable in Fy,[y]. So, F'(z) is ¢o-regular. By Theorem 4.3, the form of the
factorization of a is [2]. Therefore, 2Ax = [2,1°]. Hence, by Lemma 4.1, 2} i(K).
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Case C17: (a,b) € {(1,2),(17,18),(1,30),(17,14)} (mod 32). When
(a,0) € {(1,2),(17,18)} (mod 32),

let s =3,7,11,15,19,23,27,31 (mod 32), and for(a, b) € {(1,30), (17,14)} (mod 32),
let s=1,5,9,13,17,21,25,29 (mod 32). Under these considerations, we have w > 5
and § = 2. Thus, le; (F) = S11+S12 has two sides of degree 1, each joining the points
(0,w), (1,2) and (2,0). Their ramification indices equal 1. Using Theorem 4.3, the
form of the factorization of a is [1,1]. So, 2Ax = [1,1,15]. Therefore, by using [11],
Corollary p. 230, we have v,(i(K)) = 1. So, i(K) = 2.

Case C18: (a,b) € {(5,2),(5,14),(13,6),(13,10)} (mod 16). For

(a,b) € {(5,2),(13,10)} (mod 16),

we choose any s = 1,5,9,13 (mod 16), and for (a,b) € {(5,14),(13,6)} (mod 16),
we consider any s = 3,7,11,15 (mod 16). Then, we get w = 3 and § > 3. It follows
that NJ; (F) = 511 has a single side of degree 1 joining the points (0,3) and (2,0).
As in Case C15, 2Ax = [12,15]. Consequently, 2 { i(K), and so i(K) = 1. This
completes the proof of the theorem. O
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