
EQUADIFF 11

Peter Böhm
Diffpack technical summary

In: Marek Fila and Angela Handlovičová and Karol Mikula and Milan Medveď and Pavol Quittner and Daniel Ševčovič
(eds.): Proceedings of Equadiff 11, International Conference on Differential Equations. Czecho-Slovak series,
Bratislava, July 25-29, 2005, [Part 2] Minisymposia and contributed talks. Comenius University Press, Bratislava,
2007. Presented in electronic form on the Internet. pp. 39--47.

Persistent URL: http://dml.cz/dmlcz/700460

Terms of use:
© Comenius University, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital
signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/700460
http://project.dml.cz


Proceedings of Equadiff-11
2005, pp. 1–9

ISBN 978-80-227-2624-5

DIFFPACK TECHNICAL SUMMARY

PETER BÖHM∗

Diffpack, developed and marketed by inuTech, is an object-oriented problem-solving
environment for the numerical solution of partial differential equations (PDEs).

Diffpack is used worldwide for research and development in the industry and the
academic sectors. Among Diffpack customers are industrial and academic leaders such as
Bosch, Cambridge, Canon, CEA, Cornell, DaimlerChrysler, Furukawa, Intel, Mitsubishi,
Natexis Banque, NASA, Nestlé, Shell, Siemens, Stanford, Statoil, Petrobras, Veritas, and
XEROX, just to mention a few.

The customer activities span from simple prototype applications to projects involving
several man-years of simulator development.

Wide Application Scope. By its design, Diffpack provides a very high degree of
modeling flexibility, while still maintaining the computational efficiency needed for the
most demanding simulation problems in science and engineering. Due to its modular
and object-oriented design, Diffpack also grants high efficiency with respect to human
resources. These are key features of all members of the Diffpack product line.

Unlike most products for PDEs, Diffpack is not a ready-to-use application, it is
rather a development framework, designed to allow easy modification and combination
of all numerical building blocks making up a potentially new application. It has strong
focus on the flexible construction, modeling power and computational efficiency of the
numerical kernel, rather than the specific nomenclature and graphical user interfaces
targeting a particular engineering area.

As a result, Diffpack has no inherent restrictions on the types of PDEs that can be
solved. Diffpack may very well be used to solve traditional engineering PDE problems;
however, it is typical for current customers that they use Diffpack to solve problems
that can be characterized as “non-standard” and outside the mainstream engineering
areas. Such problems often occur in pure research contexts or in the context of problems
involving a variety of mutually dependent physical effects.

This modeling power can be efficiently employed to complement the functionality of
advanced industry-standard FEM software systems like ANSYS, ABAQUS, NASTRAN,
etc. ...

Diffpack’s ability to construct new solvers may also be employed to create highly cus-
tomized trimmed-down solvers for standard problems, closely adapted to application and
user specific needs and with a minimum overhead of unused functionality and unnecessary
complexity.

Electrocardial Simulations with Diffpack. As an example of a very complicated
problem solved by Diffpack we consider a model of the electrical activity in the human
heart (courtesy of Simula Research Laboratory AS). The mathematical model consists of
3 coupled partial differential equations (PDE) - One is modelling the propagation of the
electrical signal in the heart chambers, the second one in the heart tissue, and the third
models the transport from the heart surface to throughout the body. In addition to the

∗inuTech GmbH, Fürther Strasse 212, 90429 Nrnberg, Germany (peter.boehm@inutech.de)

39



40 P. Böhm

Electrical Signal in the human heart

PDEs there is a set of 12 coupled ODEs modelling the chemical reactions defined locally
for each node.

The problem was solved by finite elements using Diffpack standard FEM tools, multi-
grid methods and adaptive gridding (wave front). The ODEs were solved in parallel. Sub-
problem simulators were built and tested separately and joint by administration class. For
an accurate 3D solution a grid of approx. 40.000.000 nodes was used, resulting in a dis-
cretized system of more than 900 million unknowns. On a Linux cluster of 64 processors,
the solution took around 15 days (1000 sec. per time step).

Modeling of Multiphase Flow in Porous Media with Diffpack. As a second
example of a very complicated problem solved by Diffpack we consider a multiphase
flow in porous media (courtesy of Colenco Power Engineering, Switzerland). Coupled
hydro-mechanical problems appear in many engineering problems such as subsidence,
landslides, and propagation of gas in underground facilities. Moreover, also materials
like, e.g. filters, sintered metals, or metal foams can be considered as multiphase porous
media. Hence, coupled hydro-mechanical phenomena play an important role in a wide
field of applications ranging from soil mechanics and oil extraction to automobile and
aircraft industry.

The continuum mechanical model takes into account the mass and momentum con-
servation laws as well as the relevant constitutive equations for porous media. Based on
the finite element functionality of Diffpack a program was developed which allows for the
solution of such complex, highly non-linear and numerically challenging multi-phase flow
problems. The numerical tools provided by Diffpack permit the rapid and fast develop-
ment of a program with a wide range of applications. Examples where it was successfully
applied are, e.g., the drainage of a sand column, the movements at a mountainside due
to the increase of the water table or the gas pressure in an underground silo.

Functionality. Technically speaking, Diffpack is organized as a collection of C++
libraries with classes, functions and utility programs. The numerical functionality is
embedded in an environment of software engineering tools supporting the management
of Diffpack development projects and affiliates the needs of solving partial differential
equations by the help of the finite element method (FEM), the finite difference method
(FDM) and the finite volume method (FVM).

The Diffpack libraries, including the kernel and add-on toolboxes, contain a substan-



Equadiff-11. Diffpack Technical Summary 41

Movements at a mountainside due to the increase of the water table (courtesy
of Colenco Power Engineering)

tial collection of data structures and numerical algorithms. The functionality include
vectors, matrices, general multi-index arrays, strings, enhanced I/O, menu system for
input data handling, simulation result database system, systems for automatic report
generation, execution statistics, GUIs, preprocessors, interfaces to third party pre- and
postprocessing tools, representation of linear systems (in particular large sparse systems),
a large number of state-of-the-art iterative methods for sparse linear systems, solvers for
non-linear systems, finite element and finite difference meshes, scalar and vector fields
over meshes, a collection of finite elements, various finite element algorithms and associ-
ated data structures, numerical integration schemes, high level finite difference support,
stencils (difference molecules), probability distributions, random number generators, real
and complex arithmetic, solution methods for stochastic ordinary differential equations,
support for random fields, adaptive meshes, error estimation, multigrid methods, gener-
alized (mixed) finite element methods, parallel computing tools and a large collection of
source code examples for problems in a variety of application areas.

The list of functionality is comprehensive. However, the major advantage for the
user is the freedom with which different parts of this functionality can be combined.
In the design of Diffpack, great care has been taken to make all objects and functions
highly interoperable. For the user this means increased ability to construct and maintain
applications and numerical algorithms.

The Diffpack product line is organized as a kernel product, referred to as the Diffpack
Kernel, and a set of toolboxes providing specialized functionality. The kernel and the
toolboxes are purchased as separate products.

Available toolboxes are the following:
• Diffpack Adaptivity Toolbox – Dynamic refinement of structured and unstruc-

tured meshes in 1, 2 and 3 dimensions.
• Diffpack Multilevel Toolbox – A complete and flexible lab for constructing fast

multigrid linear solvers.
• Diffpack Datafilter Toolbox – A tool for import of industry standard FEM meshes

into Diffpack.
• Diffpack Parallel Toolbox I – Automated parallelization of any PDE based se-

quential Diffpack application.



42 P. Böhm

These four add-on toolboxes offer access to advanced functionality for any application
with minimal development efforts. Typically, only a handful of additional code lines are
necessary to bring them into operation.

Target Users. Although usage of Diffpack requires programming in C++, only
minor C++ knowledge is required to get started. However, experience with programming
in general is necessary.

The Diffpack learning process is supported by a comprehensive volume published by
Springer-Verlag ([1]). This book introduces Diffpack programming via the style of typi-
cal FORTRAN or C codes, and then gradually introduces the object-oriented techniques
characterizing more advanced Diffpack applications. The book contains over 50 applica-
tion examples, which are all part of the product as delivered to customers. These examples
form also a valuable resource as application templates for the user’s own development.

The user is required to have a minimum of background knowledge in the mathematics
of PDEs. The target user will typically have insight into the physics and mathematics
of his problem area, and a need to have his mathematical and numerical ideas carefully
reflected in his application program.

For these users, Diffpack provides the necessary level of control and flexibility at a
minimum of development efforts. Typically, the user will concentrate almost entirely on
the essential and critical numerics of his problem. Tasks related to general numerics and
program management will automatically be handled by built-in Diffpack constructions.
As a result, the application code will be compact and focused on the mathematical model
to be solved. Still, even the simplest Diffpack application can easily offer a wide range of
analysis and reporting mechanisms, which can support the understanding of the mathe-
matical model and tailor the entities of the numerical algorithms for optimal application
performance.

From Basic Models to Advanced Coupled Problems. The Diffpack software
architecture follows closely the mathematical concepts involved in the PDE solution pro-
cess. For instance, when solving a PDE by a finite element method (FEM), it is from a
mathematical point of view natural to rephrase the PDE in terms of its weak formulation.
Such weak formulations involve the evaluation of (possibly complicated) integrals over the
computational domain. It turns out that the general FEM algorithm is essentially a loop
over all elements in the grid, where for each element the local contribution to the dis-
cretized problem is computed by numerical integration. The integration method itself
usually takes the form of an inner loop over a collection of integration points, where the
integrand needs to be evaluated for each point picked.

Observing that the PDE enters the calculation only in terms of the point samples
of the integrand, this mathematical/numerical view of the solution process is mirrored
in the Diffpack software. As an application programmer, the user supplies the neces-
sary expressions to evaluate the integrand of the particular PDE for a given integration
point. The rest of the solution process is automatically handled by the Diffpack library
components, all the way from element definitions via numerical integration methods and
matrix assembly, to the solution of the resulting algebraic problems. In addition, the user
might have to supply the necessary input data concerning boundary conditions and initial
conditions. As a result, by coding 2-3 functions, together small enough to fit in one or
two sheets of paper, the user will have a full-scale simulator providing run-time access to
a wide selection of numerical solution methods.

Simulators implemented in agreement with Diffpack’s coding standard can easily be
reused in different settings. The software philosophy encourages the implementation of
separate, generic solvers for the types of PDEs encountered in an application field. Such



Equadiff-11. Diffpack Technical Summary 43

solvers can thereafter be specialized or refined by use of object-oriented principles like
class inheritance. This is also the key to successful construction of compound simulators
solving systems of coupled PDEs, possibly subject to complicated constitutive relations.
Instead of starting an elaborate development from scratch, the user may pull existing
Diffpack solvers from his software toolchest and make these objects work together. This
software strategy has significant pay-off in terms of reduced and structured development
efforts, combined with increased reliability and robustness as each solver involved gets
used within a wide range of different problem configurations.

Using Diffpack’s highly optimized concepts for representation of spatial points, sim-
ulators can also be set up to run in 1D, 2D and 3D, all from the same source code. Also,
Diffpack’s mechanisms for complex arithmetic ensure that complex and real problems can
be solved with the same implementation techniques.

Run Time Control. One important feature of most Diffpack applications is the
so-called menu system. This is a hierarchical data management system used at run time
to define initial values of all entities used in a Diffpack program. Such entities may be
simple numerical parameters, but may as well be more abstract quantities such as matrix
formats, algebraic solvers, convergence criteria, numerical integration schemes, element
types, etc. Thus, the menu system gives any application the ability to select, at run time,
all program entities, from simple constants to the numerical algorithms that will be used.

The configuration is usually defined in input files (*.i files), and may in addition be
redefined via graphical or command line selection dialogs. When Diffpack is used as sub-
libraries in context of applications with established user communication, the configuration
can be loaded directly from such an input stream (without input files or selection dialogs).

The menu system allows multiple choices to each program entity. Multiple choices
will result in one run per configuration, and is often used to set up consistent numerical
experiments, e.g. in a batch process. As an example, the user could define a loop over
different preconditioners and iterative solvers, in order to find the optimal set-up for a
certain type of linear system.

From Prototype to Production Code. The development of computationally in-
tensive applications in Diffpack is often performed in two main steps:

1. Development of a prototype with focus on correctness of model and numerical
methods.

2. Converting the prototype to an optimized version suitable for running in a pro-
duction context.

The first step will normally use the most general tools in Diffpack for e.g. matrix
assembly, numerical integration, mesh formats, etc., without explicit utilization of any
specific structural properties of the particular problem at hand. The focus is thus on the
overall solution process and the verification of simulator design and numerics.

In the second step, bottlenecks in the computations are localized and structural prop-
erties of the problem are used to optimize the critical functionality. The localization may
efficiently be performed by standard code profiling tools, and Diffpack functions providing
CPU critical operations may be replaced by the user’s own specialized implementation
using knowledge of the particular problem at hand.

Extending and Interfacing Diffpack. Functionality developed by the user can
be seamlessly integrated with Diffpack, in the sense that user defined entities can be
given the same level of interoperability as native Diffpack entities. As an example, the
user may construct his own finite element types and select these at run time via the menu
system and Diffpack’s GUIs together with the native Diffpack elements. Technically, such



44 P. Böhm

integration is facilitated by special Diffpack functions registering the user-defined entities
into Diffpack’s entity tables.

Most user-defined functionality can be integrated with Diffpack as library components
at the level of interoperability described above. The user may thus consistently extend
Diffpack into a tool tailored to his particular areas of interest.

User defined library components might be programmed from scratch. Naturally, for
many users it is of particular interest to extend Diffpack with well-tested legacy code,
e.g. written in C or FORTRAN. Such functionality may easily be encapsulated in classes
with communication interfaces following the Diffpack standard. This approach allows a
seamless integration with Diffpack using the registration mechanisms explained above.
With minimal efforts, the user may therefore make valuable functionality, which may
have taken man-years to develop, directly available as part of Diffpack’s plug’n play
environment.

The Diffpack/ANSYS Integration. Diffpack’s modeling power can be used to
extend the functionality of advanced industry-standard software systems. We can identify
three different ways how to integrate Diffpack solvers into e.g. ANSYS:

• Loose coupling where ANSYS is mainly used as a pre- and postprocessor with a
stand-alone solver based on Diffpack.

• Partial coupling where ANSYS is used as a pre- and postprocessor and for solving
a subset of a multi-physics problem, whereas Diffpack solves the remaining subset
of the multi-physics problem.

• Tight coupling where finite element matrices generated by ANSYS directly get
incorporated into a linear equation system handled by Diffpack. Diffpack may
add additional terms to the system, e.g. from control theory.

In the following we give two examples of a loose Diffpack/ANSYS integration which
basically works as follows:

• Problem set-up with ANSYS preprocessor
• ANSYS-GUI used to communicate input values
• Diffpack solver started from GUI as separate process
• Postprocessing in ANSYS

For both examples, the additional Diffpack solver consists of a few hundred lines of
C++ code, of which about 20% makes up the numerical core. The Diffpack solver fully
replaces the ANSYS solver.



Equadiff-11. Diffpack Technical Summary 45

Although the developer of the solver will need to know Diffpack programming, the
user of the application will hardly notice Diffpack. He will stay inside the ANSYS work
environment all the time, and just briefly encounter Diffpack in connection to the call of
the external Diffpack solver.

Example I: Two-Phase Flow with Hot Spots. A chemical reactor can be con-
structed as a vertical cylinder where solutes are fed in at the top and refinery products
trickle out at the bottom. In oil refinery, the chemical reactions can form unwanted
hot-spots, which can lead to severely high pressures and shut-down of the reactor.

In this example we are interested in studying the effects of such hot spots on the
flow and pressure of two solutes in a cylindrical reactor. Mathematically, the problem
is represented by a set of three coupled partial differential equations representing the
saturation of one of the solutes, the pressure and the temperature inside the reactor. The
Diffpack simulator consists correspondingly of three independent FEM-simulators that
are coupled via an administrator class.

The figures show two snap shots from the ANSYS postprocessor at given time steps during a simulation.

The vector field of velocities are plotted on top of the heat field.

Initially the reactor is filled with oil. A heavier solute enters at the top and displaces the oil by pushing

it downwards. There is a rather sharp front between the two phases.

Three hot spots light up in the oil phase at slightly different times and stay lit for a short time period.

When lit, they heat up the oil locally to form a hot oil bubble.

Due to decreased density, the oil bubble starts to propagate upwards while it diffuses and cools down.

As a particle in the bubble is cooling, the upward movement slows down until the particle starts moving

downwards again.

Depending on timing, heat and size of the hot spot, the oil bubble can break through the front between

the phases and continue to propagate into the other phase.

In the current situation, the chemical reactions are omitted from the model, and the
hot spots are represented as source terms. A more realistic model would include the
chemistry in the coupled set of equations and compute the heat field as a result of the
chemical reactions. Such a model would be implemented according to the software design
principles mentioned above.

Example II: Acoustics with Open Boundaries. A physical interpretation of our
second example is to compute the propagation of sound waves emitted from a loudspeaker
placed in open space.

The Diffpack FEM-simulator developed for this problem basically solves the wave
equation, and was developed independent of the spatial dimension. In 3D, the solver uses



46 P. Böhm

a representation of the loudspeaker as a rectangular box with the front wall removed. A
single point source is located at the back wall and represents the sound source.

The image shows a snap-shot from the ANSYS postprocessor with the solution in 2D
obtained on a mesh with about 100,000 elements.

The propagation of sound waves in open space is handled by embedding the box in a spherical domain

with boundary far away relative to the size of the box.

At this boundary, the Sommerfeldt’s radiation condition is applied, with the waves hitting the boundary

in the normal direction. The latter is an approximation that becomes increasingly correct with growing

size of the sphere.

The simulator was developed independent of spatial dimension and was tested pri-
marily on 1D problems. When turning to 2D and 3D, few corrections were needed to
achieve correct results. This principle for software testing is typical when developing
Diffpack simulators.

An interesting extension of the current solver is to replace the point source with
a vibrating plate. This will lead to a coupled acoustic-structure interaction problem.
This variant can be developed by coupling the present acoustic simulator to a separately
developed elasticity simulator by using the principles discussed in Example I.

Flexibility and Efficiency. The plug’n play characteristics of Diffpack application
development are facilitated by a software design heavily based on object-oriented pro-
gramming. Such constructions can increase human ability and efficiency significantly,
but may in cases of improper use lead to a general decrease of computational efficiency.

In Diffpack, object-oriented mechanisms are used only for tasks with minimal influ-
ence on computational efficiency. In particular, low-level, computationally intensive op-
erations are always performed in a FORTRAN or C type style, while the object-oriented
principles are mainly used for higher level administrative tasks. Although object-oriented,
this means that most Diffpack applications will spend almost all CPU time in functions
containing very basic loops over array structures, as is the case in well written numerical
FORTRAN codes. This ensures high computational performance of Diffpack applications.

Comparisons ([2]) to tailored FORTRAN benchmark codes show insignificant differ-
ences in computational efficiency between Diffpack applications and finely tuned FOR-
TRAN solvers.

GUIs, Databases, Pre- and Postprocessing. Diffpack defines an internal format
(SimRes) for storage of mesh and field structures. This format is used for storage of



Equadiff-11. Diffpack Technical Summary 47

stand-alone entities (e.g. a simple grid file) as well as complete simulation scenarios (e.g.
a SimRes database containing several mutually dependent grid and field objects).

For postprocessing, Diffpack provides a suite of filters to convert SimRes data to for-
mats used by third party visualization products, as e.g. Matlab, Gnuplot, IRIS Explorer,
AVS and VTK. For preprocessing, filters are provided for mesh formats generated by
Abaqus, Ansys and Nastran via the Diffpack Datafilter Toolbox. All these filters can
operate either as file-to-file converters or they may be linked to an application for direct
data exchange. Some of the postprocessors may also be started directly from a Diffpack
application.

In addition to filters to third party preprocessors, Diffpack provides internal prepro-
cessors supporting lattice grids, transfinite mappings and super-element techniques as
well as interfaces to the public domain grid generators GeomPack and Triangle.

On Unix, any application will operate with graphical menu selections provided it is
compiled with the appropriate options. On Windows, any application can be equipped
with a GUI providing application control, result browsing, curve plotting and state-of-
the-art visualization (VTK).

Quality Assurance. Diffpack is available for about 10 different platforms (hard-
ware/compiler configurations) and is maintained as one single source code across all these
architectures. The broad selection of compilers ensure that only portable and safe C++
constructions are used, and makes it easy to include new platforms in the portfolio when
necessary. It is therefore easy to move an application from one platform to another,
normally without need for any changes in the application source code.

Correctness and stability of the Diffpack functionality is regularly verified on a suite
of several hundred verification applications on all supported platforms. The verification
tools are also available to the users for easy QA of their own development.

Diffpack motivates the user to apply a safe and consistent programming style, and
offers a variety of tools to enhance efficiency of the development process, including auto-
matic memory handling and powerful debugging tools.

The user’s applications can easily follow the upgrade path of Diffpack, due to auto-
matic code transformation tools upgrading his application source code from an older to
a newer version of Diffpack.

Documentation Tools. Diffpack provides powerful mechanisms for documentation
of numerical experiments. Full project reports containing e.g. problem description, tabu-
lated numerical results, images, videos and, e.g., source code of the application itself, can
be generated in ASCII, LaTeX or HTML formats. The reporting mechanisms interface
to the menu system, and can be used to create reports of multiple runs with overview
summaries and links to details for individual runs.

REFERENCES

[1] H. P. Langtangen, Computational Partial Differential Equations, Numerical Methods and Diffpack
Programming, Texts in Computational Science and Engineering, Vol. 1, Springer-Verlag, 2003.

[2] H. P. Langtangen and A. Tveito (Eds.), Advanced Topics in Computational Partial Differential
Equations, Numerical Methods and Diffpack Programming, Lecture Notes in Computational Science
and Engineering, Vol. 33, Springer-Verlag, 2003, ISBN 3-540-01438-1 / XIX, 659 p.


		webmaster@dml.cz
	2012-09-13T07:04:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




