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POURTH WINTER SCHOOL (1976)

A COMMON GENERALIZATION OF KELLEY’S THEOREM (CONCERNING
MEASURES ON A BOOLEAN AIGEBRA) AND OF VON NEUHAM'S
MINIMAX THEOREM

by
Marek WILHEIM

Let (X,+) be a commutative semigroup with 0, let @:
: X —» [0,00] be subadditive (w(x + y) € w(x) + w(y))
and monotone (w(x) € w(x + y)), and let A denote the fami-
1y of all additive functionals §:X — [0, ]
(E (x+y)= €(x)+§ (y))..Por every subset YC X we defi-
ne the numte r

K
(!)-mr{ m(.E ¥i): yl,...,ybeli, where

y; are not necessarily dz.st:.nct, with the convention that
inf # =00 .

Theore‘ﬁ. We- have
K (Y) = sup_ilir.g §(3):Ae § @ ? , the supremum being
attained. o

Corollary 1. ()¢ (if), .
(i) there exists § € Awith §< @ amd §(y)>0 for all
YeY , :
(ii) there are Y, cX w1th Yec U Y, and K, (Y, )>0 for all

lm.
=1 2,.-- ’ :
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Corollary 2, Let (X,+, ~) be a semilinear space, and
let @ be, moreover, positively homogeneous (1.,e, & (xx) =

=& (x) for xeX, « € R"). Then

K (X) = inf {w(y): yeconv Y§=
=eup-[in§ g(y)z LSE‘ @ 3 4 the supremum being
yé
attained.

Here L denotes the family of all § € A that are positively
homogeneous (semilinear),
Corollary 3 (J.L. Kelley). Let Jo be a Boolean algeb-

ra, and for every non-empty subset P e R define the number

I®) = int § lﬂ.g_).}' vhere § runs over all
; n(§)

finite collectioms of elements of P (not necessarily dis-

tiﬁct), n(g) is the number of elements of § , amd i(§) is

the maximal number of elements of § with non-empty intersec-

ﬁiqn. Then N ‘

I(H) = sup {gx;i:’s m(B)} , the supremum, taken over all fini-

tely additive measures m: & —» [0,1], being attained.

There exists a stricily positive (m(A)>O for A%O0) finite-

1y additive measure m on J& iff there are B, c R with

AN {o}eag'!b and I($,)> 0 for all n = 1,2,...
Corollary 4 (J.von Neumann). Let S and T be arbitrary

non-empty finite sets. Then for every function h: SXT —>

—> (~00 , P ] we have
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inf = f(t)n(s,t): £: T—> [0,11, =, £(t) = 1} =
* {::g tel ° * tel 14

=

sup{aix% BES g(s)n(e,t): g: s —>»[0,1], 8Zesg(s) =13,

the supremum and infimum being attained.,



