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FIFTH WINTER SCHOOL (1977)

RIJKSUNIVERSITAIR CENTRUM ANTWERPEN

A PARTITION OF R IN
TWO HOMOGENEQUS AND HOMEOMORPHIC PARTS

Jan MENU

1. INTRODUCTION.

In this paper we give a sketch of the construction of the par-

tition.

Consider the maps P(x) = 3%% +2k.3m; n,k,m € Z, and denote'ﬁy
P = {Pnln € N} the set of these. In paragraph 2, it is proved
that if A € R is stable for P, and 1 € A, then A is necessarily
homogeneous. We then consider the sets X(A), the orbits of a by
P. In paragraph % it is proved that if a function f with cer-
tain properties exists, the required partition can be constructed.
In paragraph 5 a sketch is given of the construction of such a

function, omitting the technical parts.

I am indebted to Prof. Maurice to have suggested the problem

and for valuable discussions.

2. PROPOSITION. Let A € R be stable for the maps Pn’ 1 € A, then

A is homogeneous.

PROOF. Let x € A, it is sufficient to construct a homeomorphism

h' : A~ A, such that h(x) = 1
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a) apply a translation hy : A=A, x=x ¢ 2k.3™ such that h(x0)€]o,2[
B) 1) if hy(x) € 15,3, define h, = h,
2) if ho(x) < %, ti-en there exists just one n, € Z such that

n n,-1
2.3 1 <nyx) <2.3 1

define hy(y) = [ ho(y) if hy(y) ¢ 10,21
n1¢1

Ny
3 “hy(y) if 0 < hyly) < 2.3

< 2 n . n N
hoy) +(3-2.3 Y if 2.3 T any) <5

-n,-1 n
4 e U
31 Ttgty)-p + 22,3 Y if 2 ng(y) <2

n ~
= hy(x) € 15,51
3) if ho(x) > ;, construct h1 in an analogous way.

c) Suppose h  is constructed, h (x) € 11-3"1,14370

1) if h_(x) € 11-37""1, 14377

define hn+1 = hn

2) if h_(x) € 11-370,1-370"1

€ Z such that
Nn4+1-n+l

then there exists just one N

1-3"1 4 2,377 a1 ¢ h (x) € 1-37" + 2.3

b)) = [h (y) if h (y) ¢ 11-377,14377

“Pns1”

1 -
1-3""4 3 (h_(y)-(1-3""))

- n_..,-n
if 1-37"< n_(y) €1-3""+2.3 °M

n -n
h (y)+2.37771 o g g%t

n -n
if 1.3 2.3 ™1 <n (y) < 14372

n +1 n -n
3™ T (n (p)-(143777 1)) 4 14370 - 2,3 2

if 14371 < n_(y) < 14370

-~

= hp,,(y) € 11-3"71 443701
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. -n=-1 - .
3) if hn(x) € ]1+3 »1+3""[, construct hn+1 in an analogous way.

d) define h(y) = 11m h (y).

It is easy to see that h is a homeomorphism of A and h(x) = 1.

3. The classes X(a), a € R.

1. Define X(a) = {3™a+2k.3"|m,n,k € Z}. Every X(a) is countable, and

the set {X(a)]a € R} is a partition of R.
2. a+1€X(a) = a+1=23"+ 23" (n,k,m €2)

- a(3™-1) = 1-2x.3"

1-2k. 3"
R ]

- a5 =

- a € X(le;i) for some p,1 € N and 0 < 21+1 < 2.3P .
3¥-1

In this case X(a+1) N X(a) # ¢, and X(a+1) = X(a). Denote by

(Kn)n these classes.

3. Let a € X(zl*l) = Kq where 1,n €N, 0 < 21+1 < 2. 3" and such that
3teq
VYk',n' €EN; n' <n:

2k +1 ¢ x(21+1)

then there are unique X,p,m with 0 € m < n, such that

=

2141
where Kq = X(T-) .

B
N
-
+
-
]
oo
S AA
mawo
NI’\A

Define D(g,k) = {x|x=3".=— + —
3

L. R1 =R\ X(0).



4. THEOREM. Suppose there is a continuous function f : R1 =~ Ry sucl

that :

1) £ = 1R1
2) V¥x : £(x) ¢ X(x+1)
ﬁ 3) ¥x : X(f(x)) = £(X(x)) o

4) if g(x) = f(x) + 1 then :
¥x ¢ X(1), vn €N : x ¢ x(g?™1(x))
5) £(1) € X(1)

then there is a partition of R in two homeomorphic parts.
Remark. g(X(x)) = X(g(x)), Vx € Ri'

PROOF of the theorem.

1. yx € Ri\ X(1); define

A, = u{X(g?®(x))|n € 7}

X

B, = ulx(g?™1(x))|n € Z}.

X

"

Suppose an(x) € X(g2m+1(x)), then x € g-zntx(gzm’l(x))) =x(82m-2n+

which contradicts (4), thus Ax NB, =¢.

2. Choose x, ¢ X(1) vV X(0). Define Ay = A, By =B,
B

1 1
A1 n 1 6.

3. Suppose AB and BB are defined for every ordinal 8 < a, Ae n B8 = 9.

Then a) if a is a limit-ordinal, define

e
L

= U{ABIB < a}

—
w
153 Q
[

= U{BBIB “ a)

b) if a is not a limit-ordinal,
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i) A8 (V] BB U X(0) Vv X(1) = R, for some B < a define

Ay = u{ABts < a}
By = U{BBlB < a}
ii)a,_, Vv By-q YV X(0) V X(1) = Cq-1 * R. Choose x_ €R \ Ca-1°
Define A, = ALl YA,
a © Ba-l _U Bxa
for every a such that Ay, N B, = ¢ and g(Aa) = B,. . There exists

a
an ordinal oy such that A U B U X(1) U X(0) = R.
%0 %

via, la < ag} YV x(1)

B U{Balu < ag} v X(0).

4, Define {A

Then : [ANB=¢
llA UB =R
g : A~ B is a homeomorphism.
4.2. This proves that R = A U B, where
ANB=9¢

A =3B

A and B homogeneous.

5. Sketch of the construction of f.

5.1. a) We only consider intervals [a,b] with a,b € X(0), and
b-a = 2.3k for some k € Z.
A net N on such an interval is a finite set of points
a=a;<a, <...<a 4 <a, = b, such that Y i € n-1, there

i . - - m
exists § me€EZ: aj41 a;-L 2.37 ¢
b) Let N be a net on [0,2], x € [0,2]. Denote :
Vy(x) = U{V|V € N,x € V}.

¢) Let [a,b] be an interval, N a net on [a,bl. A function
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'
1) y 1 € n-1 : h)
]ai’ai+1

some ]aj,aj+1[, j € n-1

[ is a translation onto

2) h is the identity on ]ao,all, ]an_l,an[ and on

the interval containing E;E

2 _
L S Ry

L k) yx € Ri ¢ h(x) + 2 = h(x+2)

5.2. At the nth step is constructed the following :

1) A finite set B ¢ U{X;|m €N}, such that B _, € B and

u{Bme € N} = u{xmlm € N}.

k
2) Yk <nand x,y €B NK a Px,y € {Pmlm € N}, such that
k . k
Px,y(¥> = y, and if Pn{Px,ny’y € B, N K, k € n}, then

Pn_1 c Pn and Pn is a transitive representation group.

k
3) ¥ x € Bn_ n Kk, k € n-1, a Vx n € V(x), such that

1 ,n=-1
k k _ ok . . _ X n
x’y(Vx,n_l) = Vy'n_1 and if k' € n, 1 < n-1, Vx,n-l
k k k' k .
= (o] -
n vy,l# - Vx’n-lcvy'l. Denote V u{vx,ﬂ_1|xexan_1 Kok <n-1

4) A net N _, that refines N__, and contains the endpoints of the

k
vx,n-l? k < n-l’ x € Bn_1 n Kks and such that
k -
g U I I
v v
X,n-1 ysn-1

5) A function f_ _, such that
a) fn-i’ = 1, where
[0,21 0 (RN F o,V _4))
Foop = fhg 0 fh.3 ©-..0 £f,.

b) fn-2 is a N,-elementary function on every rn—2<v§,n-1)
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c) ¥V x,y : PX of o Fn_z(x') = £ oF

k .
n-1 o_Px‘y(x'),

n=-2
k

1]

x' € Vx,n-l E

6) Moreover, there is taken care of the following :

a) x € X

2m-1 = Lim F 00 € Kyp

b) the condition 4) is satisfied in the n'P step outside of a

set of length < 3™n,

-

Define f = lim F,» then clearly f has the required properties, and
n

this completes the proof.



