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Fifth Winter School of Abstract Analysis, St&fanovh GSSR 1977,
Organized by the Mathematical Institute of Charles University, Prague.

ON CHOQUET'S THEORY

Michael Neumann

We start with a refined version of a convergence principle due
to Stephen Simons which admits interesting applications in Choquet's
theory concerning arbitrary cones of upper semicontinuous functions
~on a compact Hausdorff space. Furthermore, in a certain sense our
convergence theorem may be incorporated into this context. In view
of various consequences it seems remarkable to point out that the
theory presented here is not restricted to the Choquet boundary case,
it works whenever certain boundary conditions are satiesfied. The
following survey contains no proofs. Further information as wel; as
references may be taken from my paper "Varianten zum Konvergenzsatz
von Simons und Anwendungen in der Choquettheorie", Arch.Math. 1977.

Let Q denote the set of all sequences 0=(0n)n with components
ongo such that 01+02+c3+...=1, and let P consist of all those o€Q
which fulfil 0,=0 for almost all n=1,2,... . In the following X de-
notes a compact Hausdorff topological space. First we consider a se-
quence f €USC(X) of upper semicontinuous functions f :X+[-»,=[ which
is uniformly bounded above: fn—c<w for all n=1,2,... . In this situa-
tion countable convex combinations are well defined and upper semi-
continuous, for each 0€Q define £ €USC(X) by £° (x):= 210 f (x)€[-=,c]

=

1. Theorem. Let YcX be a maximum-boundary for {£%:06Q}. Then

inf max £° = sup limsup f (y) and 1limsup A, (f ) £ sup limsup f (y)
oEP YEY noee n- YEY n-e

for each Radon probability measure A€Prob(X).

Next consider a convex cone TcUSC(X) containing the real con-
stants. For A,u€Prob(X) we write A<4u iff A*(f)éu*(f) for all fe€T.
In this very general context there are two notions of maximality with
respect to < : A€Prob(X) is called maximal iff ALy implies udX, and
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strictly maximal iff My even implies )M=u. Of course these notions
coincide for example in the case of maximum-stable TcC(X) which se-
parates the points'of X, in particular in the classical situation of
Choquet's theory. Anyway, by Zorn's lemma every u€Prob(X) is domina-
ted by a maximal A€Prob(X). On the other hand, the Hahn-Banach theorem
leads to a useful description which works only for strictly maximal
measures: For A€EProb(X) define ﬁ(g):=inf{-xt(f):f€T,g§-f} for all g€
UsC(X), then A turns out to be strictly maximal iff A*=ﬁ on USC(X).
Further let us introduce the Choquet boundary Ch(X,T):={a€x:65(u -
suppuclal} where [al:={x€X:f(x)=f(a) for all f€T}. Finally let us
carefully enlarge the given cone:

o(T) :={£7: £ €T, fnéc«o for all n=1,2,... ,0€Q}
I(T):={inf £ : f €T for n=1,2,... ,f_pointwise +}
n n n _ n

Obviously we obtain convex cones such that IRcT<Q(T)cI(T). Now trivial
combination of our convergence principle and the definition of 4 yield:

2. Lemma. Let YcX be a maximum-boundary for Q(T). And consider
In €USC(X) such that 9, c>--°° for all n=1,2,... . Then for each A€Prob (X
we have inf liminf 9, (y) liminf ﬁ(gn).
yeY noe n-so
Applying this lemma to suitable characteristic functions one
easily obtains the following generalization of the well known Choguet-
-Bishop-de Leeuw theorem.

3. Theorem. For a strictly maximal A€Prob(X) and an Fc-subset YcX
we have A (¥)=1, if Y is a maximum-boundary for QO(T), in particular if
Ch(X,T)cY.

4. Special Case. Let T separate the points of X and consider an
Fy-subset Y=X. Then Ch(X,T)cY iff Y is a maximum-boundary for Q(T).

This corollary extends for instance the theorem concerning the
existence of the §ilov boundary. As counterexamples even in the classi
cal situation of Choquet's theory show our result cannot be improved ’
very much. However, with some more effort we obtain the following ex-
tremely useful characterization of those Fb-sets which are maximum-
-boundaries for Q(T).
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5. Theorem. For an Fc-subset YcX the following properties are
equivalent:
i) [aln¥+@ for all a€Ch(X,T).
ii) Y is a maximum-boundary for Q(T).

iii) Y is a supremum-boundary for I(T). -~
iv) For arbitrary anT, £ —c<°° we have inf max f£f° £ sup limsup f (y).
OEP YEY nees

v) For arbitrary f €T, fnéc« and all A€Prob(X) we have

limsup A, (f ) § sup limsup f (y).
n-se YEY noe

Since in general situations the existence of suitable strictly
maximal measures is rather dubious the following extension of theorem
3 is of interest.

6. Theorem. Consider an Fd—subset YcX which is a maximnm-boﬁndaty
for Q(T). Then for every u€Prob(X) therc is a A€Prob(X) such that u<)
and A (Y)=1.

We conclude with an extended version of the Riesz representation
theorem recently found by Benno Fuchssteiner. Our method of proving
this theorem as well as the preceding one is based on our results 3
and 5 via a suitable state space embedding. The main idea is not very
difficult and may find applications elsewhere.

7. Example. Cénsider an arbitrary nonvoid set S and a convex
cone T of upper bounded functions f:S-+[-»,~[ such that T contains the
real constants. The subsequent properties are equivalent:

i) T is a Dini cone: For all pointwise decreasing sequences (fn)n

in T we have inf sup fn(sl = sup inf f (s).
neN se€s SES neEN

ii) Each state on T admits an integral representation: For every
additive and positive-homogeneous functional A:T-[-=,o[ such
that A(f) s sup £ for all f€T there exists a probability mea-
sure T on the o~algebra generated on S by T such that A(f)= ]fdr
for all feT.



