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SIXTH WINTER SCHOOL (1978) 

ON ULAM'S PROBLEM QN FAMILIES OF MSASUR2S 
hy 

E. GRZEGOREK 

Throughout, /Sj denotes the card ina l i ty of the s e t S, 
\ 9 (S) the power s e t of S, [ s ] V • • £ x < i S : | x | « Y } , and V»L 
denotes Godel's axiom of oons truotab i l i t y . Small greak l e t ­
t e r s denote ord ina l s , with 7C }yU always dencte ins i n f i n i t e 
card ina l s and A ,V any ( f i n i t e or- i n f i n i t e ) card ina l s . 

• The fo l lowing oorol lary fo l lows from our Theorem 3 . 
COROLLARY. Let F he a family of S - f i e l d s of subsets 

of the rea l l i n e S, suoh that [ s ] 1 C A and A / ^ ( S ) for 
every A 6 F. Then . 

a) | F | < CO implies U F /- f} (S) ; 
b) I f 2°= u^ then | F | « 6 U implies UF f ? ( S ) j 
o) I f V - L then | F | ^ CO., impl ies UF t 3 \ ' S ) . 

The Corollary can be strenghtened even under weaker s e t 
t h e o r e t i o a l assumption (see Theorem 3 ) . In the case of an 
a d d i t i o n a l assumption that on each A € F i t i s poss ib le to 
define a n o n - t r i v i a l measure (or even that A s a t i s f i e s only 
cer ta in chain c o n d i t i o n ) , the Corollary has been known. In 
that c a s e , a) i s due to Ulam (see £1] ) , b) i s a theorem of 
Alaoglu - Erdbs (see [1 ] and a l s o [4l and [3 ] )* and c ) i s 
a theorem of Prikry (see [ 4 ] , for genera l i za t ions see [3] f 

for strenghtenings and further genera l i za t ions see [61. In 
case on eaoh A 6 F i t i s poss ib le to define a n o n - t r i v i a l 
two-valued measure, o) i s a theorem of Jonsen (see L°D-

The s trongest and the most general r e s u l t s connected with 
a problem of Ulam on f a m i l i e s of measures (see problem $1 
of [2] and a l s o [8j ) have been recent ly obtained by Taylor 
in [ 6 j . The main subjeot of t h i s note i s a general izat ion of 
two theorems of Taylor in [6J . ' * 

I f Q C ^ ( S ) then we def ine I(Q) « { x <: Q: 'J(X) C o j . 
Q w i l l be c a l l e d ^ - c o m p l e t e i f f for ev^xy X C Q suoh 
that J X| </+ we have U x 6 Q. Remark that i f Q i s / * -

•oomplete then I(Q) i s a /^ -comple te i d e a l on S. Q w i l l 
be c a l l e d n o n - t r i v i a l i f f [ s ] 1 CL Q and Q / / ? ( S ) . 

A family F C 9C?(S}} w i l l be o a l l e d y - sa turate* 
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w . r . t j , where I i s on i d e a l on S such that I c: Tl^IvA) :A e P } > 
i f f for every c o l l e c t i o n £ X ^ : cL<v } d 9 ( S ) - UF there 
e x i s t s ^ ; P } € t v D 2 ' such that X^ O X^ £ I . 

A family F C ? ( ? i S ) ) w i l l he ca l l ed y - saturated i f f 
F i s V - s a t u r a t e d w . r . i . I =- D { I V A ) : *-€ F } . 

The fo l lowing two d e f i n i t i o n s are centra l for the cons ide ­
r a t i o n s of t h i s n o t e . 

I f Q C J ( 5 ( % ) ) then the symbol 
« < X : A ,yu. > -S--> v " 

denotes the fqllov t ing a s s e r t i o n . 

I f F C Q, J F | ^ A and 1(A) i s f+ -complete for every 
A € F then F i s not y - saturated , 

I f Q C T ? ( ' ? ( H ) ) and I i s an idea l on >t (we do not 
exclude the case I » {fb} ) then the symbol 

" <X:A>/Ac> - 2 - * < v , I > '» 
denotes the fo l lowing a s s e r t i o n . 

I f F C Q , j F l ^ A , I C f ) { l ( A ) : A a. ?} and I iB) I s 
/** - oomplete for every B 6 F then F i s not v - s a t u r a ­
ted w . r . t . I . 

In case Q i s a s e t of a l l n o n - t r i v i a l i d e a l s on H the 
notat ion <>t : A , > * > -2--> V was introduced by Taylor an 
[6^• I f Q i s a s e t of a l l n o n - t r i v i a l i d e a l s on H ther. 
ins tead of < 7t : A f//+ > - £ - * V and <3* : A y u > - ^ v < v , I > 
we w i l l wr i te < ^ 2 A f //u> —-^ V and <>t : A , ^ > — > < v , I > , 
r e s p e c t i v e l y ( i . e . we suppress the superscr ipt Q in t h i s 
c a s e ) . 

For a f ixed cardinal U we define 
R » { A C ? ( ? C ) : A ifl n o n - t r i v i a l and V (aeA)V(t*AKa/Yb*A and a-b € A)J-

Vte have the fo l lowing theorem. 
THEOREM 1. Assume A«£V > CO • Then we have 
a) I f I i s a (A+CO) - oomplete i d e a l on ~K then 

Cyt : A , / ^ > - S - > < V , I > i f f < > t : A,yw>> —-> < v , I > . 
a') I f A £A* then 

< <H : A yu,> - S ^ V i f f <^t 2 A y ~ > —> V • 

From Theorem 1 we have in par t i cu lar the fo l lowing r e s u l t : 

.< 04 , : CO,, 00, > - » CO./ i f f < " i : wn> C 0 > - i » « , . 
Th i s (and a l s o our Thoorem 3) should be compared with the 
comments of the authors of [ 2 ] on the problem 81 of TJlam 
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(see also [8l ). 

Vtith the help of Theorem 1 we will generalize the f o!3 o-

•wing results of Taylor (Theorem 2.2 and. Theorem 4.4. of ^6]). 

We fomulate them in a little more general form., which easily 

follows from the original one. 

THEOREM 2 (TAYLOR) 

a) Assume y >X+(X> ,/+> X+U> \<ZK and I i s a(xV*j-
complete ideal on *)£. Then 

<* ; *, /*>—* < v , i > i f f <%:2;yu,>—> <vyi > 
h) <^;w1 ,w1>-» co2 iff < ^ / i ; ^ > - ^ < ^ 1 > C ^ ] < ^ > 
Reoall that the above theorem of Taylor is a strenghtering 

and a generalization of results of Ulam, Alaoglu - Erdos (see 

£1]), Jensen (see [o]), Prikry (see [4]) and of the present 

author (see [3]). By Theorem 1 and Theorem 2 we have the fol­

lowing generalization of Theorem 2. 

THEOREM 3. a) Assume I is a(A+a>)- oomplete ideal on 7i 
and y^i^t^CO) ,/A, .>,)?+uo ,K<K .Then 

^•yA(v,l/if-(%:U)—5> < : v ; i > . 
+)W,:v)„up&> co2 i"<^2:/,^>^<60a)i:a^]

<^2). 
Remark that if we replace R by R Q C R , where RQ is 

a collection of families of subset of ycf satisfying certain 

natural chain conditions, then Theorem 3 'becomes a known re­

sult which easily follows directly from Theorem 2 (see Coro­

llary 4.13 of [6], compare also [3] and [4] ). 

To see for whioh>*,Xy >*? V Theorem 3 works, recall the 

following well known facts.^J.^-^^and <£ 2*.' 2 ,?t*> -* 00 
holds for eYQxy 7< (see [ 7]).<**-i yu)-*/*holds for every ?* 

which is less than the first weakly innaccessible cardinal 

and every /+g'H (easily follows from the first previous 

relations).<7t:l^ o^^CO holds for evex^ H whioh is less 

than the first strongly innaocessible oardinal (see [73). By 

results of Tar ski and Solovay the relations holds if yc is 

even larger. It is also well known that the axiom of constru-

ctability (V - L) implies <0O^l} ^j> -* <^ ° 3 L ; C^]^
C°1> 

(see [5]). 

The elementary proof of Theorem 1 will be submitted else­

where. ' ' 
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