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PROBLEMS CONCERNING WEAK ASPLUND SPACES
R. R. PHELPS

X

A Banach space E is a weak Asplund (WA) space provided

every continuous convex function on E is Gateaux differentiable
at each point of some dense Gg subset of E. The central problem
is to give a complete description of the class of spaces with this
property. It is convenient to single out two related classes of

spaces: Say that E 1is a Gateaux differentiability space (GIS)

or has the Gateaux differentiability property (GDP) if each cont-

inuous convex function on E 1is Gateaux differentiable on a dense
set (not necessarily a GB)' We also say that E has the support

function differentiability property (sfDP) if every support function

on E is Gateaux differentiable on a dense set. [Call p a sup-
port function if there exists a bounded nonempty subset A of E*
such that p(x) = sup{<x*,x>: x*€ A}, x€E; this is clearly
convex, continuous and positive homogeneousl] Yhere are obvious
inclusions between these three classes of spaces. Ore reason for
introducing the GDP is that we have been unable to ;esolve the foll-
owing question.

Problem 1. Is the set of points of Gateaux differentiability of a
continuous convex function necessarily a Gg set? A Borel set?
Universally measurable? What if it is assumed to be dense?

The reason for introducing the sfDP is that it can be charact-
erized in a manner completely analogous to the known characterization
of Asplund spaces. Recall that x*€ K & E* 1is a weak®_ exposed
point of K if there exists x # C in E such that

<x*,x>>(y*,x)> whenever y*€K, y* ;é,x‘.
Proposition 1. The Banach space E has the sfDP if and only if

every weak® compact convex subset of E* is the weak®* closed convex

hull of its weak* exposed points.
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Problem 2. Does the sfDP imply the GDP?

" One way of resolving this questlon would use the follow1ng result.

Proposition 2. Let R denote the real line. If. E xR has the
sfDP, then E has the GDP. (Analogously, if every support function
on E xR 1is Gateaux differentiable on a dense G8 set, then E is
a weak Asplund space.)

“Problem 3. If E has the sfDP, must E x R have the same property?

.

Problem 4. Are any of the above three differentiability properties
preserved under finite products?

Proposition 5. Each of the following assertions is equivalent to
the sfDP: (1) Every nonempty weak® compact convex subset of E*
has at least one weak* exposed poiﬁt.

(2) Every support functional on E has at least one
point of Gateaux differentiability.

The following result yields an interesting necessary condition
for the sfDP.
Proposition 4, (Stegall, Larman) If every nonempty weak® compact
convex subset K of E* has at least one extreme point which is
a G point of K in the weak* topology (a weak* exposed point has
thls property), then every bounded sequence in E* has a weak®
convergent subsequence.
Problem 5. Is the conclusion to Proposition 4 a sufficent condition
for E to have the sfDP?

The best sufficient condition to date is that due to Edgar

" Asplund [Acta Math. 19683:

Propeosition 5. If E 1is a subspace of a weakly compactly gener—
ated (WCG) space, them E 1is a WA space.

(This uses Asplund's theorem and the fact that a subspace of a space
whose dual norm is strictly convex has the same property.)

Problem 6. If E is a Lindeldf space in its weak topology, is it
a WA space?
(Recall that a subspace of a WCG space is weakly Lindeléf.)

Stegal [The RNP in conjugate Banach spaces, II, Trans. Amer.
Math. Soc. (to appear)] has a simple proof that WCG spaces are WA
spaces, using the Davis-Figiel-Johnson-Pelczydski factorization
theorem for weakly compact operators, and the following result.
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Proposition 6. If E 4is an Asplund space and if there exists a>
continuous linear map T:E - F having dense range, then F is a
weak Asplund space. '

It is easy to prove the following analogue.

Proposition 7. If T:E - F 1is bounded, linear and has dense
range and if E has the GDP [sfDP]), then F has the GDP (sfDP].

Recall Asplund's result:
Proposition 8. If T maps E 1linearly and continuously onto F,
and if E 1is a WA gpace, then so is F. '

A concrete question we have been unable to resolve is the
following:

Problem 7. For which compact Hausdorff spaces X 1is the continuous
function space C(X) a WA space? When will C(X) have the GDP or
the sfDP?

A necessary condition is that every nonempty closed subset of X
have a dense set of relative Gy points. (This implies that X is
sequentially compact.)

The following is a long-standing problem.
Problem 8. 1Is the existence of an equivalent norm on E which is
Gateaux differentiable (at nonzero points) either necessary or
sufficient for E to be a WA space?

The study of these spaces suffers from a lack of examples.
The two which we list here are not very surprising.

Examples (1) If I is an infinite set, then there is a continu-
ous seminorm on [/ () which is nowhere Gateaux differentiable.
(On 4, use p(x) = lim sup Ixnl.)

s (2) If " is uncountable, then the norm in ja(F) is
nowhere Gateaux differentiable.

In regards to the first example, note that every wesk® lower semi-
continuous convex continuous function on IQ(P) is Fréchet differ—-
entiable on a demse G;, since la(ﬂ) has the RNP. [Collier,
Pacific J. Math. e4 (1976)1].
The following "simple” question is still open.

Problem 9. Does a subspace of a WA space or a GDS have the same
property?

An affirmative answer to the next question would be surprising.
Problem 10. If E* is a WA space or a GDS, must E have the
same property?



