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PROBLEMS CONCERNING WEAK ASPLUND SPACES 

R> R. PHELPS 

A Banach space E is a weak Asplund (WA) space provided 

every continuous convex function on E is Gateaux differentiable 

at each point of some dense G8 subset of E. The central problem 

is to give a complete description of the class of spaces with this 

property. It is convenient to single out two related classes of 

spaces: Say that E is a Gateaux differentiability space (GDS) 

or has the Gateaux differentiability property (GDP) if each cont­

inuous convex function on E is Gateaux differentiable on a dense 

set (not necessarily a G& ). We also say that E has the support 

function differentiability property (sfDP) if every support function 

on E is Gateaux differentiable on a dense set. [Call p a sup­

port function if there exists a bounded nonempty subset A of E* 

such that p(x) = sup{<x*,x>: x* e A\, x6E; this is clearly 

convex, continuous and positive homogeneous.] there are obvious 

inclusions between these three classes of spaces. One reason for 

introducing the GDP is that we have been unable to resolve the foll­

owing question. 

Problem 1. Is the set of points of Gateaux differentiability of a 

continuous convex function necessarily a Gs set? A Borel set? 

Universally measurable? What if it is assumed to be dense? 

The, reason for introducing the sfDP is that it can be charact­

erized in a manner completely analogous to the known characterization 

of Asplund spaces. Recall that x* € K Q E* is a weak* exposed 

point of K if there exists x / 0 in E such that 

<x*,x>Xy*,x> whenever y*£K, y* ^ x*. 

Proposition 1. The Banach space E has the sfDP if and only if 

every weak* compact convex subset of E* is the weak* closed convex 

hull of its weak* exposed points. 
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Problem 2. Does the sfDP imply the GDP? 

One way of resolving this question would use the following result. 

Proposition 2. Let R denote the real line. If . E x R has the 

sfDP, then E has the GDP. (Analogously, if every support function 

on £ x.R is Gateaux differentiable on a dense Gj set, then E is 

a weak Asplund space.) 

Problem 3- If E has the sfDP, must E x R have the same property? 

Problem 4. Are any of the above three differentiability properties 

preserved under finite products? 

Proposition 5. Each of the following assertions is equivalent to 

the sfDP: (1) Every nonempty weak* compact convex subset of E* 

has at least one weak* exposed point. 

(2) Every support functional on E has at least one 

point of Gateaux differentiability. 

The following result yields an interesting necessary condition 

for the sfDP. 

Proposition 4. (Stegall, Larman) If every nonempty weak* compact 

convex subset K of E* has at least one extreme point which is 

a Gh point of K in the weak* topology (a weak* exposed point has 

this property), then every bounded sequence in E* has a weak* 

convergent subsequence. 

Problem 5- --S the conclusion to Proposition 4 a sufficent condition 

for E to have the sfDP? 

The best sufficient condition to date is that due to Edgar 

Asplund tActa Math. 1968]: 

Proposition 5. If E is a subspace of a weakly compactly gener­

ated (WCG) space, then E is a WA space. 

(This uses Asplund1s theorem and the fact that a subspace of a space 

whose dual norm is strictly convex has the same property.) 

Problem 6. If E is a Lindelof space in its weak topology, is it 

a WA space? 

(Recall that a subspace of a WCG space is weakly Lindelof.) 

Stegal tThe RKP in conjugate Banach spaces, II, Trans. Amer. 

Math. Soc. (to appear)] has a simple proof that WCG spaces are WA 

spaces,% using the Davis-Figiel-Johnson-Pe2czynski factorization 

theorem for weakly compact operators, and the following result. 
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Proposition 6. If E is an Asplund space and if there exists a 

continuous linear map T:E - F having dense range, then F is a 

weak Asplund space. 

It is easy to prove the following analogue. 

Proposition 7. If T:E -> F is bounded, linear and has dense 

range and if E has the GDP fsfDP], then F has the GDP CsfDP]. 

Recall Asplund
1
s result: 

Proposition 8. If T maps E linearly and continuously onto F, 

and if E is a WA apace, then so is F. 

A concrete question we have been unable to resolve is the 

following: 

Problem 7. For which compact Hausdorff spaces X is the continuous 

function space C(X) a WA space? When will C(X) have the GDP or 

the sfDP? 

A necessary condition is that every nonempty closed subset of X 

have a dense set of relative G
s
 points. (This implies that X is 

sequentially compact.) 

The following is a long-standing problem. ^ 

Problem 8. Is the existence of an equivalent norm on E which is 

Gateaux differentiable (at nonzero points) either necessary or 

sufficient for E to be a WA space? 

The study of these spaces suffers from a lack of examples. 

The two which we list here are not very surprising. 

Examples (1) If P is an infinite set, then there is a continu­

ous seminorm on f^Jf^i which is nowhere Gateaux differentiable. 

(On Jw , use p(x) « lim sup lx
n
l.) 

#
 (2) If P is uncountable, then the norm in j^Cf) is 

nowhere Gateaux differentiable. 

In regards to the first example, note that every weak* lower semi-

continuous convex continuous function on j/j^P} is Frechet differ­

entiable on a dense G
5
 , since J^D has the RHP. [Collier, 

Pacific J. Math. 6-1- (1976)]. 

The following "simple" question is still open. 

Problem 9. Does a subspace of a WA space or a GDS have the same 

property? 

An affirmative answer to the next question would be surprising. 

Problem 10. If E* is a WA space ox a GDS, must E have the 

same property? 


