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SEVENTH WINTER SCHOOL (1979) .
MODEL THEORETIC APPROACH TO TOPOLOGICAL FUNCTORS, II.

by
Jif{ Rosicky .
This paper is a sequel of [6]. Most of results here presented

will appear in the forthcoming author’s paper [7] .
Under a concrete category (A,U) we will mean a category A

equipped with a fsithful functor U: A — Set satisfying the following

two conditions:
(1) If AcA , X is a set and £f: UA— X a bijection, then there is

BeA and an isomorphism g: A— B such that Ug = £
(2) If AceA @and f: A— A is an isomorphism such that Uf is the
identity, then f is the identity.
Under a functor F: (A ,U)— 8 ,V) between concrete categories we
will mean a functor F: A — 8 such that V.F = U.

A type iAs given by a class of function symbols and a class of re-
lation symbols. Their arities are arbitrary ceardinals. The infinitary
first-order langusge L, . (T) of type ¥ includes a proper class V of
varigbles and besideé the usual logicsl symbols it admits infinitary
conjunctions, disjunctions and quantifiers. A class of sentences of
Lyw(7) is called a theory of type J . We denote by (A,,Uy) or
(AT,UT) the concrete category of sll 5 -structures or T-models recp.
These categoriés need not be legitimate, i.e. they need not form a
class. A theory having a representative set of n-ary atomic formulass
for each cardinal n will be csalled normal.If T is normsl, then (AT,UT)
is a legitimate category and even it is strongly fibre-small in the
sense of (1.

Ir (A ,U) is a concrete category snd n s cardinal, then u? will
denote the functor Set(n,U-). Subfunctors of U™ will be called n-ary

relation symbols interpretable in ()‘c ,U) and natural transformations




70

i"—vu n-ary function symbols interpretable in (A ,U). It is motiva-

ted by the fact that any relation or function symbol of type 5 deter-
mines a subfunctor of U? or a natural transformation U?— U resp.

Let ¢ U be the collection of all relation and function symbols inter-
pretable in (A ,U). We emphasize that § y need not be a type because it
need not be a class.

Let & ¢ ¢ be a type. There is a functor G.: (A,U) — (A, ,U.)
such that if A ¢ A , then the & -structure Go.(4) has the underlying
set UA, the n-ary relation on UA corresponding to R e Reln(c‘- ) equals
to R(A) and the n-sry function f: (UA)R—> UA corresponding to
fe Fntn(w) is the component f, of the natursl transformation f. Let
T be the theory of type &~ consisting of all sentences which hold in
8ll o~-structures G.(A) for Ac«A . Clearly we get the functor
G (A,U)— (AT“,U ‘3.

We may restrict ourselves in the formation of T. to some speci-
fied kind of sentences. This yields a general method of getting sui-
table completions or hulls of (A ,U). E.g. (with size conditions asigde),
if &~ consists of all function symbols from § U and T ¢ T. of all
atomic sentences, then T is the Linton’.s equational theory of U and
G: (A,U)— (AT_,UT) is the equationsl completion of (A ,U) (see [5]).

If AcA , then R,(X) = {Uf / £ A—> X} defines a subfunctor R,
of UUA. Let Ty £ %y be the type consisting of R, where A carries over
mutually non-isomorphic objects A « A such that UA is a cardinal. Then

G is a full embedding and it is important thsat whenever (A,U) is

T
V .
strongly fibre-small, then T,.U is normal and (A ,U) isomorphic to

(Ag, Up e
v v

Further, if T consist of gll universal Horn sentences without
equality (their specification follows) from Ty, » then (AT,UT) is the
Mac Neille completion of (A ,U) (in the sense of Herrlich [3]). It
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proves the conjecture from [6].

Theorem: A concrete category (4 ,U) is (absolutely) topological iff
it is isomorphic to the category of models of a relatio:'lal normal uni-

versal Horn theory T without equality of some type T .

Relational means that 7 contains relation symbols only and uni-
versal Horn theory without equality consists of sentences bearing this
name, i.e., arising from formulas N Ri(xi) — R(x), where Ry & Rél (7

’ i

iel
i ana X €& Vn, by universsel quantification of all

Re Reln(a'), Xy € Vn
their variasbles.
Similarly, using 5 and a suitable kind of sentences one can
treat (epi-monosource)-topological categories (in the sense of [4))
or semi-topological categories (in the sense of L8]). In either case
we get a completion playing the role of Mac Neilles one in the event
of topological categories.
A relational theory T of type T will be called reflexive if for
sny relation symbol R of ¥ Tk (Vx)R(Xx,X,eceX,+..) holds where x € V.
It is transitive if for any cardinal n and any R ¢ Reln(ﬂ')

Th (VX)L(i/e\n R(xi,l’xi,Z"”xi,,j"") A ,j/e\n R(xl,j’xz,j’"'xi,.)"“’))

SN R(xl,l’x2,2""xi,i"“)] holds where x = (xi,j) « VAR Motivae-
ting is the case of a binary relstion symbol R. .

Proposition: Let T be a relationsl, normal, reflexive and transitive
universal Horn theory without equality. Then (AT,UT) is a cac~tesian

closed topological category.

The author conjectures that this proposition csn be converted.
Namely, one is tempted to seek for a type & = S'U such that (A,,_,U,.)
is (in general non-legitimate) cartesian closed topologicsl hull of
(A,U) and its legitimacy corresponds to strict fibre-smalness of
(A,U) in the sense of Addmek and Koubek [2] (i.e. model theoretically
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recover their theorem).
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