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8th WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

ON MINIMAL POINTS WITH RESPECT TO A SET IN BANACH SPACES 

by 

G. GODINI 

Let Y be a linear sub space of the (real) normed linear 

space X and A->1. V/e assign to each set IsTtf-Y a set L . c X 

in the following way: x€My x if there exists no yc Y, y / x, 

such that: 

»y-m If ̂ Xlrx-mff for each m€l£. 

When Y = X and A.= 1 then wl x is the set of minimal points 

with respect to M studied by B. Beauzamy and B. Maurey in £ll 

and denoted there by min M. When Y c X and X = 1 then 

was introduced and studied in £ 2 ] . 

For each M CLY and l-fiV-Sy*' we have "^ y = MY X ^ Y 9 

Mx"x C Ifly V and My X c K-t 7 » the inclusions above (as well 

as My Y c MY X ) De~-n& strictly in general, as examples show. 

B. Beauzamy and B. Maurey £ll proved the following result: 

Let X be a reflexive, strictly convex and smooth Banach space 

and Y a closed linear subspace of X. If min Y = Y (in our 

notation Yi x = Y ) then there exists a (unique) norm one 

linear projection of X onto Y • They also remarked that the 

existence of._a norm one linear projection of X onto Y implies 

min Y = Y "."In [2Ti we gave also a necessary and sufficient 

condition for the existence of a norm one linear projection 

of X onto Y , weakening the conditions on X (requiering only 

the smoothness of X ) but strengthening the condition min Y = Y, 
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When there are no restrictions on X we have the following 

result. Let ^(X9Y9 X) he the set of all mappings P*;X—TY 

with the following properties: 

(1) P2(x) =P(x) (xeX) 

(2) 'P(rfx) = -<?(x) (x€X9 K€K) 

(3)" P(x+y) = ~(x)&(y) . (x€X9 y*Y) 

(4) liTujitrfXnxn (xex) 

Theorem 1. Let Y be a closed linear subspace of the norme 

linear space X and X * 1 • We have ^(X9Y9X ) ^ 0 if and 

only if YY x = Y . 

Let us denote 3„ = { x€ X I ||x|| = 1J ., sm Sy the set 

of all x€S x such that there exists a unique x* € S™* with 

x*(x) = 19 and J (X9Y9 X) the set of all linear projections'* 

P of X onto Y with II P II £ A . 

Theorem 2.([[2]). Let X be a normed linear space and Y a 

closed linear subspace of X. A necessary, and if SY c so S«. 

also sufficient condition for ^(X9Y,1) ̂  0 is that Y* x = Y. 

If SY ̂  sm Sx then 5^(X,Y,l) contains at most one element. 

'A/hen A £.2 we can exhibit subspaces Y c X with ^(X,Y,\) 

/ $ . Indeed, for Y c X and x cX let PY(x) be the set of all 

best approximations of x out of Y , i.e., PY(x) • {
 y

0 « Y V 

If x-yQf| = dist(x9Y)j . Y is called a proximinal subspace of X 

if Py(x) / # for each x€ X and a Sebysev subspace of X if 

PY(x) contains exactly one element for each xCX. We shall 

denote the elements of Py(-<) by fty(x) • When Y is a proximinal 

subspace of X we can choose a selection *iCy(x) €Fy{x) satisfy­

ing the conditions (l)-(3),and since H ^ x ) * £ 2 Ifxff for 
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each x*X f it follows that «-P(XfYf A ) / # for each A ) 2 -

and so Yv x -= Y for each X > 2 • Using this remark and a 

now classical result" of J« Lindenstrauss and L. Tzafriri £3] 

it follows that for X & 2 we have not a result similar with 

Theorem 2. 

Some immediate consequences of the above results are: 

Corollary 1. If Sy c> sm Sx then ̂ (XfYfl) = ^(XfYfl) 

and y(XfYfl) contains at most one element. 

Corollary 2. Let Y he a proximinal sub space of the normed 

linear space X such that Sy^am S^ and If TfyCx)fl :£ If xII 

for each 'Hy(x)€?Y(x) and each X6X. Then Y is a Cebysev sub-

space of X and W„ is linear. Moreover j (XfYfl) e£9T J • 

7/e conclude this note with the following particular case. 

Let E be a normed linear space and we regard E as a subspace 

of its second dual E"* , If X • E** and Y = E f then for each 

M C E we denote KIN 1.1 = M* E*m • F. Sullivan £4l called a 

Banach space E to be very smooth if S„ c sm S£«« • Examples 

of very smooth nonreflexive spaces as- well as some properties 

of very smooth spaces are given in [[43 • The last part of 

Theorem 2 is a generalization of the following result of [4] • 

If E is a very smooth Banach space then X(.6**9E,1) contains 

at most one element. An immediate consequence of Theorem 2 is? 

Corollary 3»([2})* If E is a very smooth Banach space, 

then ^(E^E,!) / 0 if and only if KIN E = E. 

The proofs of our results which are not contained in [23 

will be given elsewhere in a more general setting. 
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