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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

DENSITY THEOREMS FOR MEASURABLE TRANSFORMATIONS
Ryszard Grzalewicz

1. Introduction

Let m denote Lebesgue measure on Borel 6 -algebra
of the unit intervel [0,1] . A function « :[0,1]-)[0,1]
which is Borel-measurable and nonsingular (i.e. m(A)=0
=> m't'1(A)=0~) is called a transformation. We identify
transformations which differ only on a set of measure
zero, A transformation U is called invertible if
T -1  exiets end is also a trensformation . T is
celled measure-preserving if mT"(A) =m(A) for all
Borel A . The group of all invertible transformations
ig denoted by G . 3By Gm we denote the group of all
invertible meacure- preserving transformations .

Every invertible transformation T induces a positive
invertible isometry ’I‘ép) of LP(my , 14pleR,

defined by
) (1= /P @) £ (7))

where f€lP(m) ,w, =eémT™' /dm . If %€ G, , then

x

Q’t=1 .

By a classical result ( see e.g. Ionescu Tulcea f2] ,

footnote ~3) » for every 14 p<®0we can identify G with



S?

the group ¢) o w11 nesitive invertible isometries of L”(m)
(i.e. with the ret of all Eenech lattice autonorphlsms of
Lp(m)) « Therpiore we can define a tupology in G &s the
strong operator tonology inherited from L(Lp(cﬁ). For all
1€ p£=0 these topologles coincide (Choksi,Kakutani [1] .
Theorem 8 ). loreover, 1P - strong and weuak ope:sator
topologies in Gm coincide, eince the strong and weak
topologies on the unitery group in L(thmi)axe the came and
all 1P - wesk operator top.logies coincide on thqcompact
get of doubly stochastic operators. It is not hard to rmee
;hat the family of sets of the form

{rusa: m(a)o sg\i))ae for i=1, ... ,n and um.;-wslli‘f:'s
where €%, §€G and Ays +oe A, 18 & partition of [O.ﬂ into

subintervals is é neighborhood base for the atrohg operator

topolozy in G .

In this pepler we prove that the group Gm and G are

topologically finitely generated [Theorem 1 and 2 ).
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2. lnvertible memsure-preserving transformations.
\ie will use following prorer'y of pérmutations
Lewmal. Let n be a natural number. The group of all

perumutations of {1, eee ,ZnS 18 genereted by the following
two elements

1 2 XK} 2!! - 1 2 se e n"'1 n n+1 oee 2n
a=( 33 ) p( 5 comthal i)

Proof. Since .every permutation can be decomposed into
transpusitions , it suffies to show that o end f_l, generate
every trensposition . Moreover, because of the natu-re of
and 4 it is enough to prove that some transposition, e.g.

- ( 1,2, ¢oey NyN+1, ... ,2n
5 1,2, eeey2n,0+1, oee , n)

can be expressed as a composition of o eand f, « In fact

it is not hard to see that 8=o(n-1f5dn/5 .

For ae[O.‘I] we write c{a(t)= t+a (mod 1) .
Noreover, we define
wy=§ t+a  mad 1/2 for 04t<41/2
ﬂa “lt for 1/24t¢1 .
Obviously ‘*a ’ﬂa € G, .
Theorem 1, Let a end b be irrational numbers . Then the
group genereted by da and {bb is dense in G .
Froof. It is easy to see that for every real number c,the
c

transfornations 4 and (5. belonz to the

closure }em in Gm of the
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group generated by d and/}b .
Now given ne)y, we rpartition {0,1] into 2n
subintervals of equal 1lenzth . It is sufficient to
show that "&fm contains every piecewise 1linear
trensformation § which permutee these subintervals .
From Lemma 1 we can express % as a certelin conposition

of transformations d ¢ and /36 for o©=1/2n .

3. Invertible transformations .

Let -11. ces In' and J.‘. esee » J.. be partitions

n
of the interval [2),1] into subintervals, The notation
\8 : 11—5 J1 s eoe In——> Jn will mean that (f is
the piecewise lirear transformation that maps Ii
linearly (with positive slope) onto J, for all ig¢n.

Now for ae€ [0,1] and b>0 we define @ a,b
[0, e/ 1] —[0, ab/(b+1], (a/ (b+1) ,a]-=> (eb/Wb+D), &] ,
(a,1] > (a.1] . Note that the first interval is
stretched and the second 1s shrunk by the factor of b .

Let %E denote the éroup generated by G, and Vv

_ fol le] o K .

where \ = ({,,, , © &, < 1/4 ,3 172 ¢
Lo,1712)>[0,1/6) , [1/12,1/8) > 1/6,1/4) ,
(174,172) = 11/74,172) , [172, s116)—2[172, 11/16) ,
(5716 , 3/4) >[1116 , 3/4) ,ras1] - 3[3/41]
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Lemua 2, Let ae[o,ﬂ ™hen u; RN 5

belong to '3‘(.’ .

Proof. We may assure that a £1/12 (qince cmc ?(_.
several conjusates of \g cen be composed topether ,
if necessary) o Let %ecm be defined by % 3
[0, 1/6) — [1/12+ 2a),[2e+ 1/4 , 1/6,2a+1/4)—>[0,za+1/12 ),
(2a+ 1/4, 1/2) —>[2e+ 1/4 , 1/2),[1/2,11/16) —[9/16,3/4) ,
[1/16, 3/4)->[1/2, 9/16) , [3/4, 1] -[374, 1) .
The trancformation (q =\\I?$\'{ transforws 11near-:'lntervala
1,= (1/12 -8, 1/12) and 12=(1/4 ,1/4 + 2a) onto
(174 + 2ar 1/4) ana (176, &+ 1/6), respectively . It
is easy to check +that for all intervals I with
In(I4v 12\' = ¢ we have m(Q(I)) =m\1). This implies the
existence of two transi‘ormationa %1,§ L'G such

that (9 8,2 = %\g% . Therefore we obtain (g a,2 e .

By analoguous arsuments , \98 3C '}C

Lemma 3. I \§ Q@a,c“‘R for a1l a€{0,1]

and some b,c>0 , then | a.bce-}e for all aé€ [0.1] .

Proof. Let §> 0 be such that  S(b+1) (e+1) < 172,

we Ut me Q000 Ay e e © happ
[U,S]-é[o. gb-\ ’ &X, X(b+1) -> (Sb. S(‘b+1)_-\

(5 172] = (o) 172] o (1720 Fov 172] > (172,8be0172),



ef
(3b+ 1/2 , bles1)+ 1/2)—>(3be + 1/2 , bles)+ 1/2]

(3btean+ 172 , 1] —>{Sblesn) + 1/2 ,1] . \e have .

Let now §ec, be cermed by  § :[0,50)—>[1/2, §b + 1/2),
LS b, SweD)~>[0,3) , S+ , 1/72)>[S0r1), 1/2) ,

(172, §bc + 1/2)>[Fv + 1/2, Tbles1) + 1/2) ,

[3bc + 172 Fber)>[3,5(0+1))

[Sble+1) + 172 , 1] —3fSble+1) + 1/2 , 1) . The trensforma-
tion (g.vo(go? transforms  I,=(0,5] ana 1,=(§b+1/2 Sbter? +
1/2] onto (1/2,8bc+1/2] end (3b, 3(b+1)] respectively , wud
for intervals I with IA(I1Q12)= $ " we have nfyfopn)-unli).

n
Hence (g a,bc"'sq\)t for sone ©, 'l'GGm end we obtain (ga,b%]l"

Corollary. The closure of % contains all (g a,b
for 0€éa€1 end bH>O0.

Proof. The trensformation (g a.b belongs to ‘}t. if and only
1
if Cga’ 1/b belongs to% since G, « Therefore using
Lemma 2 and Lemma 3 we obtain that (9 G"M for b=2K / 3
a,b

with k.meN’. Because the set {2“/ 30 k,meN} is dense
in m,; the proof is complete. -

The 1‘ollov.'1né Proposition is implicitly contained in [3] f

we ouwit the proof .

Froposition, Let D be a dense subset of [0,1] o Then
the family of 81l inveritible transforiations 7 of the form
Q. 11—§J1, ces 9 In-_>Jn » Where (Ik)and (Jk') are partitions
or {0,1] into sudbintervals with endpoints in Dw 10,1‘5 .

is denve in G .
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Theorem 2. Llet e,b be iT‘"Efiong
1 numbers « Then the

;roup generated by o, » n
© - ﬁb aaqliﬂdenseir. G .

Yroof., In view of Theorem 1 any
’ l'roposition , 1t

is sufficient to show that for ’
8 eve‘.y partitions o=ao< a,‘(

=1 end 0=b < b ¢,
< <an+1 & 0< 1< Se <bn+1=1 with ai'bi

2k M for 124 .
of tke form /3 ign there exists a transfox-

P tekes
wation in & which tekes [ainai“) linearly onto [bi'bin)

for i=1. ese o

By the lest corollary,
b, £1/4 .

We may asguqe that a, €1/4 end

low %1=‘§a1+b1 » by /e,  maps[0,a,) onto [0,n,) .
The function @ :[0,b,)-3{0,1,) [, §1(82))~9[b1,b2) .
(€100, §lep)+ymn, ) od PN CRMIRS TN
[€1¢ed+0by 4 J>[€ a3 4byby L 1] cleardy eatisties
@ ’G‘fx.y'c for some 6,7¢5, ena x,ye R, and o tge'bf..
Therefore §2=Cg§1 & Y end 14 15 easy to see that €,

takes [ai.ai+1) onto [bi,b1+1) tor 1=0,1 . Continuing

this process by induction , we can construct a transformation
r
gnc'jf such that %n takes (a,8,,,) onto [b,,b, )

for 1=°’1. cee 4 .
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