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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS ( 1 9 8 1 ) 

DENSITY THEOREMS FOR MEASURABLE TRANSFORMATIONS 

Ryszard G r z a s l e w i c z 

1. Introduction 

Let m denote Lebesgue measure on Borel o -algebra 

of the unit interval [ 0 , l ] . A function •t : [ o , l ] - > [ o t l ] 

which i s Borel-measurable and nonsingular ( i . e . mfA)=0 

«=»> mt (A)«0- ) i s ca l led a transformation. We identify 

transformations which d i f fer only on a set of measure 

zero. A transformation T i s ca l led invert ib le i f 

^ ex i s t s and i s a lso a transformation • T ifi 

called measure-preserving i f n t " (A)=I.J(A) for a l l 

Borel A • The group of a l l invert ible transformations 

i s denoted by G . By G we denote the group of a l l 

invertible measure- preserving transformations • 

£very invertible transformation T induces a pos i t ive 

invertible isoroetry T&) of Lp(ml , 1 ^ p ^ ° ° f 

defined by 

^V)Ct)=< /p(t) f(T~1(t)) . 

where f£Lp(m) , vo -sdrnT""1 / dm . If 1 6 Gm , then 

*0a«1 • 

By a c lass ica l resul t ( see e .g . Ionescu Tulcea [ 2 ] f 

footnote 3 ) • for every 1^p<<->0we can identify G with 
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the group U^*' o." f-11 positive invertible i wornrtrit-M of L*'(ir.) 

(i.e. with the ret of all Bpnach Inttice autoinorphiama of 

L^(m) ) • Therefore we cnr. define a topology in G &a the 

strong operator topology inherited from L(L̂ (irf)) • For all 

1<£ p<oO these topologies coincide (ChoksitKakutani £lj t 

Theorem 8 ) . Moreover, L*' - strong and weak opejator 

topologies in G coincide, since the strong and *eak 

topologies on the unitary group in L(L im)) are the came and 

all L^ - weak operator topologies coincide on thtjeompact 

set of doubly stochastic operators. It is not hard to see 

that the family of sets of the form 

{*«G: m W A j A g ^ i e for i=-1, . . . ,n and fl (A^- Wgll^ £ \ 

where £>0, $€G and A-j, ... fAn is a partition of to,l] into 

subintervals is a neighborhood base for the strong operator 

topology in G • 

In this pepier we prove that the $roup G and G are 

topologically finitely generated (Theorem 1 and 2 ) . 
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2. Invertible ne«.sure-preserving transformations. 

Me will U9e following proper*y of permutations 

Leimal. Let n be a natural number. The group of all 

permutations of |1f ... ,2n J is generated by the following 

two elements 

j J 1 i 2 , ... ,2n \ A - M » 2 , ...,n-1,n,n+1, ... f2n \ 
* V 2,3, .... 1 / f '^"V 2f3, .... n ,1,n+1f ... f2n / 

Proof. Since every permutation can be decomposed into 

transpositions f it suffies to show that o(. end ft generate 

every transposition • Moreover, because of the nature of </ 

and />> it is enough to prove that some transposition, e.g. 

y m ( 1f2f ...f n,n+1f ... f2n \ 
0 \ 1f2f ... f2n,n+1, ... f n/ 

can be expressed as a composition of d and A • In fact 

it is not hard to see that $= c£n~^fi> d>n fo . 

For B£[oflJ we write cL(t)= t+a (mod 1) • 

Moreover, wt define 

A ,+i Jt+a mad 1/2 for 0 < t < l / 2 
Paltl"t.t for 1/2£t£1 . 

Obviously * a f^fi e Gm . 

Theorem 1. Let a end b be irrational numbers . Then the 

group generated by dfi and £>. is dense in G . 

Proof. It is easy to see that for every real number cfthe 

transformations d and fk belong to the 
c i c 

closure 3 £ m ia C m of the 
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group generated by oi'^ and A ^ • 

Now given ne/V •
 w e
 partition [0

t
l] into 2n 

aubintervals of equal length • It is sufficient to 

show that
 r
<a

m
 contains every piecewise linear 

transformation % which permutes these aubintervals . 

From Lemma 1 we can express ? as a certain composition 

of transformations c[
 c
 and /3

C
 for 0=1/2n . 

3. Invertible transformations • 

Let -I-, ... , I
n
 and J,-, •••

 9
 J be partitions 

of the interval [o,1j into subintervals. The notation 

V0 : I* —» J- , ... , I
n
—> J

n
 will mean that Cf is 

the piecewise linear transformation that maps I. 

linearly (with positive slope) onto J^ for all i^ n. 

Now for a6 [0,l] and b>0 we define ^f
 a
 ^

 : 

[O, a/(b+1)J-^[p, ab/Cb+1)]
t
 (a/ (b+f) ,a]-* (ab/lb+1) , a] , 

(a-.lj-r» C
a
»

1
l •

 N o t e t h a t t h e
 -

first
 interval is 

stretched and the second is shrunk by the factor of b . 

Let ou denote the group generated by G and ^ 

* • * • * - < « , / • ,2 ° * , / 2 ° ̂ 1 / 4 , 3 ° ^ 1 / 2 • 

|>,1/12)-*[0,1/6) , [1/12,1/4) ̂ [1/6,1/4) , 

[1/4,1/2) ̂ .[1/4,1/2) , [l/2, */l6)-*[l/2, 11/16) , 

[y/16 , 3/4) -^>[11/16 , 3/4) ,[3/4,l] -?[3/4,lJ . 
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Lemma 2.' Let e€[p t l ] . Then ^ H 2 , ^ ' B f j 

belong to av . 

Proof. V/e may assume that a ^ 1 / 1 2 (since G
n i

c ^ t » 

several conjugates of v£ can be composed together t 

i f necessary J . Let 3 ^ G
m *>e defined by V : 

[ 0 , 1 /6 ) -> [1/12+ 2a) f[2a+ 1/4 . 1/6 t2a+1/4) -^[o . i .B+1/12 ) . 

[2a+ 1/4, 1/2)—>[2a+ 1/4 , 1 /2) , [ l / 2 , 1 1 / l 6 ) ~ * [ 9 / l 6 , 3 / 4 ) , 

[11/16, 3 / 4 ) - * [ l / 2 , 9/16) , [ 3 / 4 , 1] - > [ 3 / 4 . 1 ^ . 

The traneforraation CO =VV J S^ transforms l inear interva ls 

1 ^ [l/12 - a, 1/12) and I 2 = ( l / 4 » 1 / 4 + 2e) o n t o 

f 1/4 , 2a+ 1/4) and ( j / 6 , a+ 1/6^, respect ively . I t 

i s easy to check that for a l l intervals I with 

I o ^ I - v I 2 ) = {> we have m (<S(r>) =mVl ) . This implies the 

existence of two transformations ^ • ^ 2 < r G m B U C h 

that CD 2 -^«^$Y2 • Therefore we obtain ^ Q | 2 ^ -

By analoguous arguments , ^ § a ^ <H* • 

Lemma 3. If V£ b . ^ BfC*=- Tt for a l l ae*Lo,l] 

and come b t c > 0 , then ^ b c £ "3£ for a l l a 6 [ o , 1 ^ . 

Proof. Let 5> 0 be cuch that S(bt1)(c+1) ^ 1/2 . 

1 . Put 0 3 - ^MfhC A 1 / 2 ° ^ b c + 1 ,0° *„* i 

[u.S]-»[o, Sb\ , (J, X[b+i)l-> Jb, StWi>\ . 

( U M . 1 /2 ] -^(8b + l ) , 1 / 2 ] . (1/2. Sb+ 1/2"]->(l/2,S,*bc+1/^, 



(5b + 1/2 f b(c+1)+ l/2]-^(Sbc + 1/2 f b(c-» 1) + 1/2J f 

(Sbtc+lW 1/2 f 1] —=>(Sb(c+1) + 1/2 fl] . \,e have 

Let now(|eGm be defined by § s £o f 8 b ) - * [l/2f Sb + 1/2)f 

[Sb,Ub +l))^[0,S) ,[?(b+1) , 1/2)-»[S(b+1), 1/2) , 

[1/2 , S*bc + 1/2)^[5b + 1/2, Jb(c+1) + 1/2) f 

[Sbc + 1/2 f^b(c+l))r>[S,S(b+1)) % 

[Sb(c+1) + 1/2 f 1] —>>[£b(c+l) + 1/2 f 13 • The transforma­

tion (0a«ho£oM transforms 1^(0,5] and I2=(Sb+1/2 ,£b(c+lJ + 

1/23 onto (l/2f5bc+l/23 end (Sbf S(tHl)J respectively f ai.d 

for intervals I with 1 ^ ( 1 ^ 1 ^ = 4 ' we have nifyo^lJ^ri.O). 

Hence, to ^ c * 5 o Y
 :for S0ILe ^» ̂ G m and w e 0 D t a i n ^ a be " 

Corollary. The closure of dX contains all (0 b 

for 0-£ a< 1 and b> 0 • 

Proof. The transformation to belongs to oC if and oniy 

if (P -yb belongs toot since G • Therefore usini; 

Lemma 2 and Lemma 3 we obtain that (̂> ^ol for b=2k / 3"-

with k fm£^8. Because the set ^ 2 k/ ̂ m . kfm£lN]i is dense 

in 1K4. the proof is complete. 

The following Proposition is implicitly contained in £3J ; 

we omit the proof • 

Proposition. Let D be a dense subset of [of1*J • Then 

the family of all invertible transformations % of the form 

*ti I1—^J1# ... f I n—>J n f 'vhere (Ik)and (Jk) are partitions 

of t°t1] i*-to subintervals with endpoints in D v J 0 f1^ t 

is denye in G . 
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Theorem 2. Let afb be irretion. 
.numbers . Then the 

tiroup generated by cU . ft b Rn* . 
N y -a dense in G . 

Proof, In view of Theorem 1 a n . 
* Proposition f it 

is sufficient to show that for evev 
*y partitions 0=a < a,< 

o 1 
< . . . < a^ -=1 and 0=b < b 4 | < . 

n + 1 ° ^ *• <b n + 1 =1 with a i . b i 

of the form 2 k / 3
m for K i < n 

• there e x i s t s a transfor­

mation in cl which takes fa , l B \ -
L i i+1) l inearly onto [ b i f b l + 1 ) 

for i=1 , . . . ffC • 
By the las t corol lary, we may ^ ^ t h a t a ^ / 4 ^ 

bn 4 1/4 . 

liOW 

The function 

11'^a-j+b-, f b., / a1 maps [ o . a . , ) o n t o [ o f b 1 ) . 

^•to.b^to.^) . ^ . ^ ^ M ^ . b ^ . 
[ | 1 ( a 2 ) t % f c 2 > + V b 1 M V f l ^ V V ) . 

[ £ l * 8 2 * + V b 1 • 1 3 ~ * I | l ( a 2 ^ + V b 1 • 1J c learly s a t i s f i e s 

<? "S^x./* f o r 80me ^ W m and x ' v € fy. and 80 C§e^t. 
Therefore X2**? Jl S ^ e n d ** i s e a s y t o s e e that 3 2 

takes [ a i » a i + 1 ) onto [ b i , b i 1 ) for i=0 f1 • Continuing 

th i s process by induction f we can construct a transformation 

^ n € < ^ aucb that ^ n takes [a^&i+i) o n t o Fb i»b i+1 ) 

for i = 0 , 1 , . . . ,n • 
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