Ryszard Grzaślewicz Density theorems for measurable transformations

In: Zdeněk Frolík (ed.): Abstracta. 9th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1981. pp. 56–63.

Persistent URL: http://dml.cz/dmlcz/701225

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $\it DML-CZ: The Czech Digital Mathematics Library http://dml.cz$

NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

DENSITY THEOREMS FOR MEASURABLE TRANSFORMATIONS

Ryszard Grzaślewicz

1. Introduction

Let m denote Lebesgue measure on Borel 6-algebra of the unit interval [0,1]. A function $\mathcal{T}:[0,1] \to [0,1]$ which is Borel-measurable and nonsingular (i.e. m(A)=0 $\Longrightarrow m\mathcal{T}^{-1}(A)=0$) is called a transformation. We identify transformations which differ only on a set of measure zero. A transformation \mathcal{T} is called invertible if \mathcal{T}^{-1} exists and is also a transformation. \mathcal{T} is called measure-preserving if $m\mathcal{T}^{-1}(A)=m(A)$ for all Borel A. The group of all invertible transformations is denoted by G. By G_m we denote the group of all invertible measure- preserving transformations.

Every invertible transformation Υ induces a positive invertible isometry $T_{\Upsilon}^{(p)}$ of $L^p(m)$, $1 \le p < \infty$, defined by

$$T_{\tau}^{(p)}(f)(t) = \omega_{\tau}^{1/p}(t) f(\tau^{-1}(t))$$
.

where f $\in L^p(m)$, $\omega_{\pmb{\gamma}} = \dim {\pmb{\gamma}}^{-1}$ / dm . If ${\pmb{\gamma}} \in {\mathbb{G}}_m$, then $\omega_{\pmb{\gamma}} = 1$.

By a classical result (see e.g. Ionescu Tulcea [2], footnote 3), for every $1 \le p < \infty$ we can identify G with

the group G(1) of all positive invertible isometries of L¹(m) (i.e. with the set of all Banach lattice automorphisms of L¹(m)). Therefore we can define a topology in G as the strong operator topology inherited from L(L¹(m)). For all 1 p <0 these topologies coincide (Choksi, Kakutani [1], Theorem 8). Moreover, L¹ - strong and weak operator topologies in G_m coincide, since the strong and weak topologies on the unitary group in L(L²(m)) are the same and all L¹ - weak operator topologies coincide on the compact set of doubly stochastic operators. It is not hard to see that the family of sets of the form

{reg: $m(r(A_1) \triangle E(A_1)) \triangle E$ for i=1, ..., n and $\|\omega_r - \omega_E\|_1 \le E$ }
where E>0, $E\in G$ and A_1 , ..., A_n is a partition of [0,1] into subintervals is a neighborhood base for the strong operator topology in G.

In this papier we prowe that the group G_{m} and G are topologically finitely generated (Theorem 1 and 2).

2. Invertible measure-preserving transformations.

We will use following property of permutations

Lemma. Let n be a natural number. The group of all permutations of {1, ..., 2n} is generated by the following two elements

$$d = \begin{pmatrix} 1, 2, \dots, 2n \\ 2, 3, \dots, 1 \end{pmatrix}, \beta = \begin{pmatrix} 1, 2, \dots, n-1, n, n+1, \dots, 2n \\ 2, 3, \dots, n, 1, n+1, \dots, 2n \end{pmatrix}$$

Proof. Since every permutation can be decomposed into transpositions, it suffies to show that & end & generate every transposition. Moreover, because of the nature of & and & it is enough to prove that some transposition, e.g.

$$\chi = \begin{pmatrix} 1,2, & \dots, & n,n+1, & \dots & ,2n \\ 1,2, & \dots, & 2n,n+1, & \dots & , & n \end{pmatrix}$$

can be expressed as a composition of d and β . In fact it is not hard to see that $\chi = \alpha^{n-1}\beta \alpha^n\beta$.

For $a \in [0,1]$ we write $d_a(t) = t+a \pmod{1}$.

Moreover, we define

$$\beta_a(t) = \begin{cases} t+a & \text{mad } 1/2 & \text{for } 0 \le t \le 1/2 \\ t & \text{for } 1/2 \le t \le 1 \end{cases}$$

Obviously da, Ba & Cm.

Theorem 1. Let a end b be irrational numbers . Then the group generated by A_n and β_h is dense in G_m .

Froof. It is easy to see that for every real number c, the transformations d_c and β_c belong to the closure \mathcal{H}_m in G_m of the

group generated by α_a and β_b .

Now given $n \in \mathbb{N}$, we partition [0,1] into 2n subintervals of equal length. It is sufficient to show that \mathcal{H}_m contains every piecewise linear transformation \S which permutes these subintervals. From Lemma 1 we can express \S as a certain composition of transformations \mathcal{A}_c and \mathcal{A}_c for c=1/2n.

3. Invertible transformations .

Let I_1, \ldots, I_n and J_1, \ldots, J_n be partitions of the interval [0,1] into subintervals. The notation $\mathcal{G}: I_1 \longrightarrow J_1, \ldots, I_n \longrightarrow J_n$ will mean that \mathcal{G} is the piecewise linear transformation that maps I_1 linearly (with positive slope) onto J_1 for all $i \leq n$.

Now for $a \in [0,1]$ and b>0 we define $\mathcal{C}_{a,b}$: $[0, a/(b+1)] \xrightarrow{} [0, ab/(b+1)], (a/(b+1), a] \xrightarrow{} (ab/(b+1), a],$ $(a,1] \xrightarrow{} (a,1]. \text{ Note that the first interval is}$ stretched and the second is shrunk by the factor of b.

Let If denote the group generated by G_m and \forall where $\psi = \binom{9}{1/4}$, $\binom{9}{2}$, $\binom{9}{4}$, \binom

Lemma 2. Let $a \in [0,1]$. Then $\mathcal{G}_{a,2}$. $\mathcal{G}_{a,3}$ belong to \mathcal{H} .

Proof. We may assume that a $\leq 1/12$ (since $G_{in} \subset \mathcal{H}$. several conjugates of Q can be composed together, if necessary). Let $\xi \in G_{m}$ be defined by ξ : $[0, 1/6] \rightarrow [1/12+ 2a), [2a+ 1/4 , 1/6, 2a+1/4) \rightarrow [0, 2a+1/12),$ $[2a+ 1/4, 1/2) \longrightarrow [2a+ 1/4, 1/2), [1/2, 11/16) \longrightarrow [9/16, 3/4)$ $[11/16, 3/4) \rightarrow [1/2, 9/16), [3/4, 1] \rightarrow [3/4, 1]$ $I_{1} = (1/12 - a, 1/12)$ and $I_{2} = (1/4, 1/4 + 2a)$ onto (1/4, 2a+1/4) and (1/6, a+1/6), respectively. It is easy to check that for all intervals I with $I \cap (I_1 \cup I_2) = \emptyset$ we have m(q(I)) = m(I). This implies the existence of two transformations & , & c Gm such that $\varphi_{a,2} = \xi_1 \varphi_2^{\epsilon}$. Therefore we obtain $\varphi_{a,2} \in \mathcal{H}$. By analoguous arguments , $\mathcal{Y}_{a,3} \in \mathcal{H}$.

Lemma 3. If $y_{\epsilon,b}$, $y_{a,c} \in \mathcal{H}$ for all $a \in [0,1]$ and some b,c>0, then $y_{a,bc} \in \mathcal{H}$ for all $a \in [0,1]$.

Proof. Let $\delta > 0$ be such that $\delta(b+1)(c+1) \leq 1/2$.

We put $m = 0 \choose b+1, b 0 d_{1/2} 0 Q b_{c+1}, c 0 d_{1/2} 0 \vdots 0, \delta] \rightarrow [0, \delta b]$, $(\delta, \delta(b+1)] \rightarrow (\delta b, \delta(b+1)]$, $(\delta(b+1), 1/2] \rightarrow (\delta(b+1), 1/2] \rightarrow (\delta(b+1), 1/2] \rightarrow (\delta(b+1), 1/2)$, $(\delta(b+1), 1/2) \rightarrow (\delta(b+1), 1/2)$, $(\delta(b+1), 1$

Corollary. The closure of \mathcal{H} contains all $\mathfrak{G}_{a,b}$ for $0 \in a \leq 1$ and b > 0.

Proof. The transformation $\mathcal{G}_{a,b}$ belongs to \mathcal{H} if and only if $\mathcal{G}_{a,1/b}$ belongs to \mathcal{H} since \mathcal{G}_m . Therefore using Lemma 2 and Lemma 3 we obtain that $\mathcal{G}_{a,b}\mathcal{H}$ for $b=2^k/3^m$ with $k,m\in\mathbb{N}$. Because the set $\{2^k/3^m:k,m\in\mathbb{N}\}$ is dense in \mathbb{R}_+ the proof is complete.

The following Proposition is implicitly contained in [3]:
we omit the proof.

Proposition. Let D be a dense subset of [0,1]. Then the family of all invertible transformations $\mathcal T$ of the form $\mathcal T$: $I_1 \longrightarrow J_1, \ldots, I_n \longrightarrow J_n$, where (I_k) and (J_k) are partitions of [0,1] into subintervals with endpoints in $D \cup \{0,1\}$, is dense in G.

Theorem 2. Let a,b be irretional numbers. Then the group generated by λ_z , β_b and ψ is dense in G.

Proof. In view of Theorem 1 and Proposition , it is sufficient to show that for every partitions $0=a_0 < a_1 < \ldots < a_{n+1}=1$ and $0=b_0 < b_1 < \ldots < b_{n+1}=1$ with a_1,b_1 of the form $2^k/3^m$ for $1 \le i \le n$ there exists a transformation in 2^k which takes $a_i \cdot a_{i+1}$ linearly onto $a_i \cdot b_{i+1}$ for $a_i \cdot a_{i+1}$.

By the last corollary, we may assume that $a_n \le 1/4$ and $b_n \le 1/4$.

how $\xi_1 = y_{a_1+b_1}$, b_1 / a_1 maps $[0,a_1)$ onto $[0,b_1)$.

The function $y:[0,b_1) \rightarrow [0,b_1]$, $[b_1, \xi_1(a_2)) \rightarrow [b_1,b_2)$, $[\xi_1(a_2), \xi_1(a_2) + b_2 - b_1] \rightarrow [b_2, \xi_1(a_2) + b_2 - b_1]$, $[\xi_1(a_2) + b_2 - b_1] \rightarrow [\xi_1(a_2) + b_2 - b_1]$, clearly satisfies $y = y_{x,y}$ for some $f, y \in J_m$ and $x,y \in R_+$ and so $y \in J_m$.

Therefore $\xi_2 = y_1 \in J_m$ and it is easy to see that ξ_2 takes $[a_1, a_{i+1})$ onto $[b_1, b_{i+1})$ for i = 0, 1. Continuing this process by induction, we can construct a transformation $\xi_1 \in J_m$ such that ξ_2 takes $[a_1, a_{i+1})$ onto $[b_1, b_{i+1})$ for i = 0, 1.

keferences

- [1] J.R. Choksi and S. Kakutani, Residuality of ergodic measurable transformations and of ergodic transformations which preserve an infinite measure, Indiana Univ.

 Math. J. 28 (1979), 453-469
- [2] A. Ionescu Tulcea, Ergodic properties of isometries
 in L^p spaces, 1 < p < ∞, Bull. Amer. Lath. Soc. 70
 (1964) 366-371
- [3] A. Ionescu Tulcea, On the category of certain classes of transformations in ergodic theory, Trans. Amer.

 Math. Soc. 114 (1965), 261-279
- [4] A. Iwanik, Aproximation theorems for stochastic operators, to appear in Indiana Univ. Math. J.