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RAPID ULTRAFILTER NEED NOT BE Q-POINT 

L.Bukovský and E.Copláková 

Clasifying points din (6<0 mathematicians have introduced se­

veral types of ultrafilters on the set cJ of natural numbers* Some 

of them are interesting also from other.point of view. In this note 

we shall consider two important types of ultrafilters: rapid and 

Q-point. Both notions are applicable to filters too. 

The existence of rapid ultrafilters and Q-points is undeoid-

able in the set theory. The continuum hypothesis implies the exis­

tence of Q-points. Every Q-point is a rapid filter [*!}• There 

exists a model of ZFC in which there is no rapid ultrafilter [5] • 

Of course, there exists an ultrafilter which is not rapid \j2• 

This is proved by observing that every rapid filter (JL has the 

following property (c): if \al Q is a sequence of positive reals 

converging to zero then there exists a set A & U-* such that 

2-+ a <+oo , 
nG, A n 

This property is characteristic for rapid filters. 

Proposition. If a filter UL> possesses the property (c) then 1L is 

rapid. 

Probably this proposition is known. We did not find it in li­

terature, therefore we present a simple proof of it. 

The main goal of this note is the following 

Theorem A. Let M be a transitive model of ZFC. Then there exists 

a generic extension N of M such that 

a) oardinals of N are those of M; 

b) (2*°)M - ( 2 ^ ) N , 

o) in N there exists a rapid filter u such that IT is not a 

Q-point. 

Moreover we can assume that (T is a P-point (and ultrafilter), 

By slight modifications of the forcing construction used to 

prove the theorem A we shall obtain a proof of 

Theorem B. Assume that there exists a dominating family T £ c*-) 
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of cardinality X # If MA^ holds true for every K - * X then there 

exists a rapid filter If suoh that IT is not a Q-point. Moreover 

we can assume that u is an ultrafilter. 

§1. Preliminaries. If A is an infinite set of integers then A is 

the counting funotion of A, i.e. A is the unique strictly increas­

ing function from oJ onto A. A family of functions T*^COOJ J[S do­

minating iff for every f €» ̂ oo there exists a funotion g e i and 

a k*co such that g(n) *̂  f(n) for every n ^ k. A filter U on OJ 

is rapid iff the family ^Aj A * 1Lv is dominatdLng. Evidently, any 

extension of a rapid filter is rapid. A filter It is a Q-point iff 

for any partition CL =i A rnfcojv of co ,A being finite, there 

exists a set A € 1L suoh that | A a A I -£ 1 for every neou 0 The set 

A is called a seleotor for the partition Q. # 

For the rest of the paper we fix a partition (R. = \R j n ^ u - J 

of co suoh that lR I = n. E.g. we set R = ̂  n(n-1 ) , . . . , ^ n(n-1 ) + 

+ n-1 I . A set A c co will be called growing iff for every n eco 

there exists a k ^ o J such that |AaIL |^ n. We denote 

if s ̂ ACOJ ; SnVk^ - A[ *. n} . 
Evidently, O is a filter on co . If A is a seleotor for QL then 

CO - A £ -J . A set A 9 co is growing if and only if co - A 4s J • More­

over if a filter u oontains o as a subset then U is not a 

Q-point and each element of 1/ is a growing set. 

Lemma 1. Let A ^ u be growing, f fc oj . Then there exists a grow­

ing set B ̂  A suoh that B>f. 

PROOF. Let b e A, b >f(o)„ If b fb,,... ,b- , k = 1 +...+ (n-1 ) o o o i is. 
are already constructed, we ohoice an integer 1 such that |AQR-I:> n 

and min A r\R > f (k+n). Now, ohoice b. .,. # . t^.^
6 A a Ri • 

Evidently the set B = ̂ bv*k € G j} i s growing and B > f . 
q.e.d. 

We shall use the foroing construction as it is explained in 

£3] • Thus if M is a transitive model of ZFC, P,S is a partially 

ordered set in M and G is an M-generio filter on P then M\G] is 

the corresponding model of ZFC - the generic extension of M. The 

complete Boolean algebra containing P as a dense subset is denoted 

by RO(P), The model M[GQ IS obtained as the range of the G-inter-

pretation ip defined on the Boolean-valued model M^ * '. If it is 

clear which generic filter G is intended, we simply denote the 

interpretation by i. For a formula tp and Boolean functions 

f ,...,f e M 1 1 0 ^ , the Boolean value |) vj> (f % ,. •. ,fn) || is also de­

fined in [3] (see pp. 152-16°). If Q is a notion of foroing in MCG], 
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we denote by P* Q the iterated forcing (see[3], PP. 232-237). 
For a given filter It on co , J.Ciohon [£} has constructed a 

foroing P(V) as follows. The set P(V) consists of ordered triples 
<P>Qr>f > 9 where for some integer n , the following holds true: 

1) p«*2, a e E X T ^ , f *aoo . 
2) if X€ <X , i£ X and f(x) -* i < n , then p(i) = 0 . 

The order 4 on P(U") is defined in the following way: 
<p,a,f > £<p',CL',f'>3 P2p', O . . 5 0 : , f2f' . 

One can easily show that P(1J*) satisfies the oountable chain condi­
tion. 

Now, let us suppose that M is a transitive model of ZFC,lf^ M 
is a filter. If G is an M-generic filter on P(#) we denote 

X(U-) -=\nscO.(3<Pfa,f>6G)p(n) == l} . 
In [2] it is shown that for each XfeV, X(V) - X is finite. More­
over, we obtain 
.Lemma 2. If every element of IT is a growing set then X(l/") is also 
growing. 
PROOF. L-et us denote 

t n = £<P,0,f>*P(tf)|(3k)| {itSR^.pU) = 1$| ̂  nf. 
It suffices to show that O is a dense subset of P(lf). 

n %'. 

Thus, assume <p,CL,f> € P(tf'). Then the set Y = C)(X,GU±s 
growing. Let k be suoh that J Y n R. J ̂  n and dom(p)n.R- = 0 . 
We denote p'= p o ^ n . ^ * ^1$). Then <p',0L,f > ̂  <p,CL,f> and 

<p',a,f>^ tn . 
q.e.d. 

The Martin axiom MA and MA^ is formulated e.g. in [k] . 

§2, Proof of the theorem A. For to obtain the model N we shall 
iterate the P(U*)-forcing continuum many times. During the iteration 
we will construct a rapid filter that contains no selector for the 
partition GL . 

For the iteration \we need a well-known trick of enumerating 
all possible functions from co into 10 inside the resulting model 
N. Similar case of this trick is described with all details e.g. 
in [fij. 

Let P be a partially ordered set satisfying the countable 
chain oondition, |P|^ ? *• Then there exists a function Hp defined 
on 2^° suoh that the range of Hp is the set of all Boolean func­
tions hSM^ 0^) for which Jh e ̂ cajj s 1 . The value Hp( | ) will 

be denoted H(P, § ). ' *. *• 
Let F be a fixed map of 2 * onto 2 * 2 • -Let K,L be maps 
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of 2*° onto 2̂ ° suoh that F( | ) = <K(£ ),L(j )>. We can assume that 

K(|) * | for every | €~ 2^° . 

Now, by the transfinite induction we shall oonstruot sequences 

i*v\e 2^} , { ^ ^ 6 2 * ], \o.,^ ?•} ,\BV ^e ^ J such 
that 3 

3) P.- satisfies the countable ohain condition, \-?«\< 2 ° 1 
-f) P % c p^ f o P \<1 . 

5) G^ is an M-generio filter on Pc ,• 

6) G. £ G ^ f o r ^ < ̂  $ . 

7) MLG^fc-*" ̂  is a filter, tf^ V5 » j 

8) M[Gl]t= "T^alTj « for ^ < $ f 

9) M [ G ^ H "B. - X is finite for each X £ U^£$ 1<f j " | 

10) M[G^ 1 |» B,- >i G (H(PK(,N,L(|)) . 

The construction is simple. Ve set P = P^), G is any M-gene-

rio filter on P . The set X(iP ) is growing in M [ G ^ by the lemma 2. 

By the lemma 1 there exists a growing set B <s X(if) such that 

B*o > i(H(PK/0v,L(0)). Let Hf denote the filter generated by B Q 

and ir - everything inside the model M[G ^. 

Similarly, if Pr, "\t ,B^ are already defined, we denote 

P 1 s Po * P( Tc ). .Let G * be any M-generio filter on P . ex­

tending Gp , By the lemma 1 there exists a growing set B ^ £r x( 111 ) 

such that 5" 4 >i(H(PTf /c 4 \f L(| + 1) ). Let U 1 be the filter gene-
*+1 vD M 5 + 1/ * f+1

 r 

rated by B- 1 and CJ , constructed inside the model M |G .J. 

For X limit we denote P x = U£pt.;|<-X^ttP( U | 1£ j | < ̂ j ) 9 

G\'^>o ^x. a r e o-©-̂---1100^ analogously. 

Directly from the construction one can see that k) - 10) are 

fulfilled. The condition 3) is fulfilled by the well-known lemma 

about C.C.C.-iteration (see [3], P. 235 or [6j). 

Now,we set P = U£P<rj ̂  * 2^° \ , G = U ^G. j <$ e 2^° ] and ll"« 

= Uy'lTc! ̂  €• 2 ° V . Since P satisfies the countable chain condi­

tion, one can easily see that U is a rapid filter. Sinoe each 

element of U is a growing set, 1/ is not a Q-point. 

If we change the construction in suoh a way, that on every 

step lie is an ultrafilter containing Br and extending bP , then 

the resulting filter U is an ultrafilter and aotually a P-point. 

§3* Proof of the theorem B. Let us remind that <JJ> is a basis of 

the filter 1J* iff fib S If and for every A e IT there exists a B G & 

suoh that B 9 A . 

Lemma 3» Assume MA^ holds true. Let IT be a filter suoh that 
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a) eaoh element of u is a growing set| 
b) u has a basis of cardinality at most K-* . 

Then there exists a growing set A suoh that A - X is finite for 

each X * W . 
PROOF. Let db 9 Tl be a b a s i s , \&\ < K- . I f Xfe(b we denote 

tx = l<p,a,f>* p(tt),xea-J. 
Evidently C x is a dense subset of P(lJ'). By MA ̂  there exists a 

filter G on P(U) such that G is \^xi
X€r ®\ ^ \ ^ n f

n *" °°i -generic 

(the sets C were defined in the proof of the lemma 2). The set 

A = X(lT) is the desired growing set. 

q. e.d. 

Now, the proof of the theorem B is straightforward* Let 

V = i f̂  | S Q 3-.J be a dominating family. By the lemma 1, there 

exists a growing set B such that IT > f . Let us suppose that B-
o .. o o c 

is defined for \ ^ \ • Let c/c be the filter generated by yQ\i\,<-%\* 
Then by the lemma 3 axid the lemma 1, there exists a growing set 

Br suoh that B^ > fc and Be - B- is finite for \< £ -. The filter 
V generated by lBei<|<"*'J * s rapid. Since each element of U is 
a growing set, u is not a Q-point, 

§*f. Proof of the proposition. Assume that cX*» is a non-rapid filter. 

Then there exists a function f € **-> suoh that for each g > f we have 

range (g) ̂  ***• • W© oan assume that f is strictly increasing. We set 

ao = at = ... = af^0j = 1 , 

af(0) + 1 = ••• = af(l) = 1 / ^ » 

*ŕ(n) + 1 = ••• = af( n+l) =
 І / Í Ш

 ' 

If A ̂ f then for eaoh k there exists an n ^ k such that A(n)< f(n). 

Then 

^ a A ( i ) ^ ^ n + 1 ) - a A ( n ) ^ ^ n + 1 > a f ( n ) = | = = ^ • 

-, oo 

Therefore ^ a n = S _ a A ( n ) = *°° • H e n o e ' l f - J ? A a n ^ ° ° 
then A > f and A a range(A) ^.10. 

The authors are grateful to P.Vojt&s* for use fu l l discussions 

on the topics of the note. 
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