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RAPID ULTRAFILTER NEED NOT BE Q-POINT

L.Bukovsky and E,Coplidkova

Clasifying points in (5“3 mathematicians have introduced se-
veral types of ultrafilters on the set W of natural numbers. Some
of them are interesting also from other point of view, In this note
we shall consider two important types of ultrafilters: rapid and
Q-point, Both notions are applicable to filters too,

The existence of rapid ultrafilters and Q-points is undecid-
able in the set theory., The continuum hypothesis implies the exis-
tence of Q-~points, Every Q-point is a rapid filter [1]. There
exists a model of ZFC in which there is no rapid ultrafilter [5] .
Of course, there exists an ultrafilter which is not rapid [1].
This is proved by observing that every rapid filter ?,L has the
following property (C): irf %_an ;:0 is a sequence of positive reals
converging to zero then there exists a set Ae U, such that
neA <t

This property is characteristio for rapid filters,
Proposition, If a filter u, possesses the property (C) then U is
rapid.

Probably this proposition is known. We did not find it in 1li-
terature, therefore we present a simple proof of it.

The main goal of this note is the following
Theorem A, Let M be a transitive model of ZFC, Then there exists
a generic extension N of M such that »

a) cardinals of N are those of M;

b) (2% = (2N,

o) in N there exists a rapid filter U  such that U is not a
Q~point.

Moreover we can assume that U‘ is a P~point (a.nd ultrafilter).

By slight modifications of the forcing construction used to
prove the theorem A we shall obtain a proof of
w
Theorem B, Assume that there exists a dominating family ?—‘i w
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of ocardinality X . If MA, holds true for every <X then there
exists a rapid filter T such that VU is not a Q-point, Moreover
we can assume that v is an ultrafilter,

§1. Preliminaries. If A is an infinite set of integers then A is
the counting funoction of A, i.e. A is the unique strictly increas-
ing function from GJ) onto A, A family of funotions ¥ W is do-
minating 1ff for every fe“o there exists a function g e? and
a kew such that g(n) > f(n) for every n » k., A filter U on w
is rapid iff the family }{4; A« U] is dominating. Evidently, any
extension of a rapid filter is rapid, A filter W is a Q-point iff
for any partition & = iAn;n ewl of w ,A being finite, there
exists a set A& WU such that lAnAnl S 1 for every neé «w , The set
A is called a selector for the partition O. . .

For the rest of the paper we fix a part:l.tion(p\ = 5LR in ew}
of w such that \Rn\ = n, E.g. we set R = Sl% n(h-1),...,-£— n(n-1)+
#n-1}. A set A cw will be called growing iff for every n e€w
there exists a k&) such that |AaR_|> n. We denote

3’ = SLAQu) H Bnd\Rk - A\ < n} .
Evidently,? is a filter on w , If A is a selector for ®R. then
W - Aé:?. A set ACSwW 1is growing if and only if w- A#bo . More-
over if a filter 1)’ contains ¥ as a subset then VU is not a
Q=-point and each element of ‘U’ is a growing set,
Lemma 1, Let AQw be growing, f «“w , Then there exists a grow-
ing set B € A such that B> f,
PROOF, Let b & A, b >£(0). If b b yeee,byy k =1 4004 (n-1)
are already oconstructed, we choice an integer 1 such that lAanla- n
and min AR, > f(k+n). Now, choice by qreeesPy € A“Bl .

Evidently the set B = {bk;k ew} 1s growing and B> £ .

qe.e.d.

We shall use the foroing comstruction as it is explained in
[_3]. Thus if M is a transitive model of ZFC, P,s is a partially
ordered set in M and G is an M-generic filter on P then M[G] is
the corresponding model of ZFC - the generic extension of M, The
complete Boolean algebra containing P as a dense subset is denoted
by RO(P). The model M[G] 1s obtained as the range of the G-inter-
pretation iG defined on the Boolean-valued model MRO(P). If it is
clear which generic filter G is intended, we simply denote the
interpretation by i. For a formula \P and Boolean functions
£ireeerf, € MRO(P), the Boolean value H‘{)(f1,...,fn)u is also de-
fined in [3] (see pp. 152-169). If Q is a notion of foroing in M(c),
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we denote by P¥ Q the iterated forcing (see [3], pp. 232-237).

For a given filter U on w , J.Cichon [2] has constructed a
foroing P(V) as follows. The set P(V) consists of ordered triples
<p,a,f> ; where for some integer n , the following holds true:

1) pe Z,Q.e[_'U'] ,feo“a.: .

2) if Xe L, 1¢X and £f(X)< i< n , then p(i) = 0 .

The order & on P(U) is defined in the following way:
<p,&,r> 5<P"O:rf'>5 p=2 P'y Q';Q:’ fa217 .
One can easily show that P(\') satisfies the countable chain condi-
tion,
Now, let us suppose that M is a tramnsitive model of ZFC,V' e M
is a filter. If G is an M-generic filter on P(V) we denote
X(V) = §new ;(I<p,d,fyea)p(n) = 1} .
In (2] it is shown that for each X&Y', X(1) - X is finite, More-

over, we obtain
Lemma 2, If every element of V is a growing set then X(V) is also

growing,
PROOF, Let us denote
= {¢p,a,r>er(V); Qx| {1enk,p(1) = 13\ > n}.
It suffices to show that 8 is a dense subset of P(1).
Thus, assume <p,Qq,f> e P(V). Then the set Y = NOL eV is
growing., Let k be such that ,Y n Bkl 2 n and d.om(p)f'\Rk =g,
We denote p’= P (YaR $£1}). Then ¢p",0,£) < < p,0,£> and

&’ ,a,£> € en .
q.e.d,

The Martin axiom MA and MA, is formulated e.g. in [4].

§2, Proof of the theorem A, For to obtain the model N we shall
iterate the P(U)-forcing continuum many times, During the iteration
we will construct a rap:hd filter that oontains no selector for the
partition ® ,

For the iteration we need a well-known trick of emumerating
all possible funotions from wW into w inside the resulting model
N, Similar ocase of this trick is desoribed with all details e.g.
in [6] .

Let P be a partially ordered set satisfying the countable
oha.in oondition, |P[< 3* . Then there exists a function H, defined
on 20 such that the range of HP is the set of all Boolean funoc-
tions h & MRO(P) for which lne " . The value EP(§ ) will
be denoted H(p,g ). -

Let F pe a fixed map of 2 onto 2

2’% . Let K,L be maps
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‘of 2% onto 2&" such that F( g) =<K(§),L(§ )>. We can assume that
K(})<§ for every § & 2%,

Now, by the transfinite induotion we shall construct sequences
P e 2% % ,{”d'g,gez'*" % %Ggige 21 ,S_BE; §e 221 suon
that

3) P, satisflies the countable chain condition, \P§\5 P F

L) P(S Py for $<%

5) Gi‘, is an M-generic filter on Py ;
6) GEGC_- G, for g<%; .
7) M glh"vé is a filter, Sg= Vg "o,
8) MG, 1= "V e W * for % <§ ;

€ =%

9) M[Gg 1= _"_B - X is finite for each eriﬂi; "L‘E} "o
10) M[Gﬁ 1= B§>1G§ (H(PK(E),L(E)) .

The construction is simple, We set P_ = P(¥), G, is any M-gene-
ric filter on P_ . The set X(¥ ) is growing in M[GO] by the lemma 2,
By the lemma 1 there exists a growing set B & X(¥P) such that
Fo > i(H(PK(o),L(O)). Let ’U’o denote the filter generated by B
and ¥ - everything inside the model M[Go-).

Similarly, if P¢, v ,Be are already defined, we denote
P%“ = PS * p( U% ). Let G 41 be any M-gemeric filter on P +1 %=
tending G¢ . By the lemma 1 there exists a growing set B ,& x( 7}; )
such that B__, >i(H(PK(§+1),L(§+1)). Lot lf'gﬂ be the filter gene-
rated by B, , and J, construoted inside the model M[G. 1.

For X 1imit we denote P, = U§P§;§<>_3 % P( U%’lé;§<3~} ).
Gy Boyy 'U._,‘ are defined analogously.

Direotly from the construction one can see that 4) - 10) are
fulfilled. The condition 3) is fulfilled by the well-known lemma
about C.C,C,-iteration (see[3], pP. 235 or [6]).

Now,we set P = U&PE;EEZQG&’ G=U§G§; %ezm}and ,U‘.—.:

= U%'U'g, % =3 2&"} . Since P satisfies the countable chain condi-
tion, one can easily see that 'v' is a rapid filter, Since each
element of ’U’ is a growing set, v‘ is not a Q-point,

If we change the comnstruction in such a way, that on every
step ’Ué is an ultrafilter oontaininé B and extendingbo , then
the resulting filter 'v‘is an ultrafilter and actually a P-point.

§3. Proof of the theorem B. Let us remind that ® is a basis of
the filter U iff ®SV and for every A €U there exists a Be®
such that Bg A .,

Lomma 3. Assume MA, holds true., Let 1]’ be a filter such that
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a) each element of Vis a growing set;
b) V has a basis of cardinality at most w .
Then there exists a growing set A such that A - X is finite for
each X & U’.
PROOF, Let ® ¢ U be a basis, |®|<w ., 1 xe® we denote
Cx = §_<p,o.,f>e P(V¥);x e a} .
Evidently EX is a dense subset of P(V)., By MA  there exists a
filter G on P(V) such that G is {t’x;xe@ag V) %'E,n;ne w} -generio
(the sets En were defined in the proof of the lemma 2), The set
A = X(¥) is the desired growing set.
q.e.d,
Now, the proof of the theorem B is straightforward, Let
T=3 SO 2} ve a dominating femily. By the lemma 1, there
exlsts a growlng set Bo such that Bo>f° . Let us suppose that B"u
is defined for 4 <§ . Let ’I/g be the filter generated by §By;3<§f.
Then by the lemma 3 and the lemma 1, there exists a growing set
Bg such that By > f¢ and Bg - B, is finite for $<§-. The filter
¥ generated by iB§;§<3& is rapid. Since each element of U is
a growing set, U'is not a Q-point,

84, Proof of the proposition, Assume that u« is a non-rapid filter.
Then there exists a function f € “’w such that for each g>f we have
range (g) $ W . We can assume that f is striotly inoreasing., We set
a°=a1 = oo =af(o)=1{,—_
r(0)er T c0e T Bp(q) = 112,

B(n)at = cr0 = Bp(aer) = VI,

If A £ then for each k there exists an n=k such that A(n)< £(n).
Then

i%b ax(i)2 (n+1 ).ax(n)a (D.+1 )af(n) = nn:11 =\r1_1-+—1 .

Therefore az(n) =+oo , ﬁénoe, if P a_ <t oo

neAan=n= ngeA n

then A>f and A = range(A)¢ W,
The authors are grateful to P,Vojtdd for usefull disocussions
on the topios of the note.
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