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MARTINGALE THEOREMS IN THE ERGODIC THEORY 

Radko Mesiar 

It was felt for a long time that martingales and ergodic 

theory, beeing essentially theories of integration in infinitely 

many variables, should be obtainable from a single structure. 

In fact there are many similarities in form as in proofs of the 

main theorems in both cases, e, g. maximal theorems, limit con­

vergence theorems, c. f. see e. g. £2, p. 342] , £5, p. 135] . 

Several authors have tried to solve this problem, c. f. see £4]J, 

[7] , [8] , [9] , [10] . However, the hope to find such a single 

structure has not yet been completely realized. 

In this paper we look at this problem from a different 

point of wiew. If the hypotesis of existence of a single struc­

ture for both martingales and ergodic theories is true, another 

analogies of martingale and conditional expectation theorems 

should exist in ergodic theory. In this way we obtain some con­

jectures in ergodic theory. Some of them have been proved, the 

others, as I know, are not proved yet. But no conjecture was 

proved to be false. 

Throughout this paper let fil, <-L , P ) be a probability 

triple, $1^.^,8. monotone sequence of sub-6"-algebras, T a measure 

preserving transformation on (.TL, <L , P ) . 

Theorem 1. f c. f. see [2] ) Let 0 £ X.log+|X fc^for X £ &, . 

Then sup(E ( X/3^ )} € &A • 
n 

Conjecture 1. Let OC X.log+|X |e&, for Xe £,, . Then 

sup£ i.^1 XoTx}6 £< m 

Conjecture 1 is true. It was proved e. g. in [3, Theorem VIII. 

6. 8. ] . 

Theorem 2. A c. f. see [13 ) . If X G X-i , X I 0, X.log+x£ £A, 

there are, on a suitable probability space, a random variable Y 

with the same distribution as X and a monotone sequence {, 2>r>jr.-M 
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of sub-0*-algebras, which can be chosen either increasing or de­

creasing, for which sup { E (* Y/ 2>h) }$ £,, m 

n 

Theorem 2 shows that the condition X.loglXl £ £,, in Theorem 1 is 

best possible. 

Conjecture 2. If X6&,, X £ 0, X.log +X^4, there are, on a 

suitable probability space, a random variable Y with the same 

distribution as X and a measure preserving transformation T, for 

which sup { i. JL Y O T 1 } ^ ^4 » 

We are unable to prove Conjecture 2. However, Example 1 shows 
that condition X £ £,, is not sufficient for sup({k ^ X o T 1 } ^ ^ . 

n n \*A 

Example 1. Let (jfl , JL , P ) = (<0 f 1 ) , & , A ) N , where Ji 
is a Borel-^-algebra,A is a Lebesque measure, N is a set of po­
sitive integers. Let T be a shift. Denote Y, = a,.X A t where 
afe = exp(k

J).k , Ak depends only on the first coordinate, 
PfA-,) = exp(-k3) . Let X = JLL Y, . Then X eSk, X> 0, but 

n n M 

Proof. {Y^oT11}^ forms a sequence of independent random 
variables for k = 1, 2,... Then 

E ( ^ r ? £ VT^ > E < V T > + ? - E < V T 2 - * { Y k * T = 0} > + 

+ . . . + iEUkoTM fVT = V T 2 = . . . = Y k O T n - l a o}) + ••• = 

= k. ( 1 - exp(-k3 ) )"1> k for k = 1, 2,... 
So we have E ( supî L fzx*?1] ) > sup\E ( supfi jr Y^T 1})} = oo f 

n n '̂  k n n ?»* K 

so that sup^. IIXoT1}^ X^ . 

Theorem 3. Let X, X , n = 1, 2,... be integrable random va­

riables ofJL,, sur4IXnlle£1, X n >X a. e. Then 

E Un/%) >E( X/3^) a. e. , L 1 , where E ( X/3^ ) is a limit 
of martingale {E ( X/Uh ) } ^ „ 
Theorem 3 is an easy consequence of Doob's dominated convergence 
theorem and martingale convergence theorem. 

Conjecture 3. Let X, X , n = 1, 2,... be integrable random 

variables of -£,, , supflXJH&i f X *X a. e. Then 
n n 

.T-ZIX.oT1 > lim i.^IXoT1 a. e. , Ln , where limj. ̂ ZX^T1 
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is an ergodic limit of X t 

Conjecture 3 is true. We have succeeded to prove it in [61 • 
Theorem 4. (c. f. see [11 ) If XG£A , \ e ^ , n = 1, 2,..., 

X > 0, n = 1, 2,..., X >X a. e. and sup^X U&A9 there 
Y\ * r 

are, on a suitable probability space, random variables iY
n> n = 

1, 2,... } , Y and a sub-C-algebra6 such that Y, Y-^ Y2,... 
have the same joint distribution as X, X-p Xp,..., and 
P ( (E ( Y n / ^ ) - > E ( Y/6)]) = 0 , 
Theorems 4 shows that condition sup^X Ifc^in Theorem 3 is best 
possible. n 

Conjecture 4. The condition sup{|Xnl }e £,, in Conjecture 3 
n 

(which is true) is best possible* 
Again we are not able to prove Conjecture 4. It is clear that if 

XnoT
n >0 (if X in Conjecture 3 is 0) almost everywhere, the 

condition sup\|XnIJ€£>. is superfluous (due to Cesaro convergence 

of the sequence {X " T n ] ^ ) . The condition XnoT
n > 0 a. e. 

is fulfiled e. g. if x ? 0 (uniform convergence ) a. e. , or 
if £lP({X t 0}]<o? . This all leads to the following form of 

r,5<i * n 

Conjecture 4. 

Connecture 4a. If X6&, , X n6&, , X > 0, n = 1, 2,... , 
X^ *-> X a. e., inf^zZ P((X„> Z])t = oo , there are, on a 
suitable probability space, random variables { Y , n = 1, 2,...}, 
Y and a measure preserving transformation T such that Y, Y-. , 
Yp,... have the same joint distribution as X, X.,, Xp,.,. and 

P( { h Tl Y.oT1 > lim i f l YoT1}) = 0 m 
n iM l n

 n \*A 

Example 2 shows that condition X > X a. e. , L-, , is not 

sufficient for «•. ̂ X.-^T1 * lim i IZXoT1 a. e. 
n M x

 n
 n &T 

Example 2. Let ( A , <L , P ) be the probability triple from 
Example 1. Let T be a shift. Let X = n.X A , A' ={oJ , 

n Aft n 
<-A j"6^0 ' n.log(n+30,->? ' T h e n X

n > ° a« e - » L l » b u t 

Pf | J . f l X . ' T 1 » 0}) = 0 , 

Proof. The events {Xn°T
n ^ O l ^ are independent. Since 

zZP( { X oTn ̂  0] ) =oo , almost all co belong to infinitely 
h*l n 

many sets { x n °
T n ^ °) ( Borel-Cantelli ) . Hence for almost all 

co , limsup{i J^X.oT1! > limsup-{i-.n3 = 1, which is the required 
n n r*i 1 n n 

result. 
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I should like to thank Prof. H. von Weizsacker for a very 
helpful discussion as well as for the Example 1. 
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APPENDIX TO "MARTINGALE THEOREMS IN THE ERGODIC THEORY" 

Radko Mesiar 

Conjecture 2 is true. I should like to thank Prof. Kellerer 
and Prof.von Weizsacker for announcement of verification of Con­
jecture 2. 

Sketch of the proof. If X> 0> XeSE,, , there are, on a sui­
table probability space, a random variable Y and a measure preser­
ving transformation T, such that (YoTnjns1 forms a sequence of 
i.i.d. random variables. Then it holds 

sup ZillL 6 ZA iff Y.log+Y e ̂  . 

As sup Kit YaT1 > sup &3j!L , then if X.log+X £ £, 
n n ^ 

i . e< 

Y.log+Y^ tA , i t holds sup i . I lYoT 1 ^ £ 4 . 
n ,=/1 

The condition X.log+Xe£,, of Conjecture 1 is really best possib­

le. 


