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MARTINGALE THEOREMS IN THE ERGODIC THEORY

Radko Mesiar

It was felt for a long time that martingales and ergodic

theory, beeing essentially theories of integration in infinitely
many variables, should be obtainable from a single structure.
In fact there are many similarities in form as in proofs of the
main theorems in both cases, e, g. maximal theorems, limit con-
vergence theorems, c. f. see e. g. [2, p. 342] , [5, p. 135] .
Several authors have tried to solve this problem, c. f. see [4],
£71, [81, [91, [10] . However, the hope to find such a single
structure has not yet been completely realized.

In this paper we look at this problem from a different
point of wiew. If the hypotesis of existence of a single struc-
ture for both martingales and ergodic theories is true, another
analogies of martingale and conditional expectation theorems
should exist in ergodic theory. In this way we obtain some con-
jectures in ergodic theory. Some of them have been proved, the
others, as I know, are not proved yet. But no conjecture was
proved to be false.

Throughout this paper let (., &, P} be a probability
triple, {1}:4a monotone sequence of sub-@& -algebras, T a measure
preserving transformation on (\, &, P) .

Theorem 1, (c. f. see [2])Let 0 & X.log' |X 4 for X € £, .
Then sup{E(X/%)}e L, o

n

Conjecture 1, Let O £ X.log+[Xle$4for Xef, . Then
s;lp{%.‘g XeT*}e &4 o

Conjecture 1 is true. It was proved e. g. in [3, Theorem VIII.
6. 8.7 .

Theorem 2..(c. £. see [11). If X €24, X 2 0, X.1log'X¢ 2,,
there are, on a suitable probability space, a random variable Y
with the same distribution as X and a monotone sequence{fbn}:f4
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of sub- @ -algebras, which can be chosen either increasing or de-
creasing, for which sup{E¢Y/Bn)}¢ L, w
n

Theorem 2 shows that the condition X.logﬂxleff,,, in Theorem 1 is
best possible.

Conjecture 2, If Xe¢%4, X2 0, X.1log X¢ £,, there are, on a
suitable probability space, a random variable Y with the same
distribution as X and a measure preserving transformation T, for

: 1 i i ¢
which sup o ' YoT 4 1 wu
n =1

We are umble to prove Conjecture 2. However, Example 1 shows
that condition X &£, is not sufficient for sup{}-l. iXoTl}e La .

Example 1. Let (N, & , P) = (<0, , B, )Y where B
is a Borel- &-algebra,l is a Lebesque measure, N is a set of po-
sitive integers. Let T be a shift. Denote Y, = ak.IA , Where
a, = exp(k3).k'2 » A, depends only on the first coordinate,
P(Ak) = exp(7k3) . Let X = 2. Y - Then Xe¥$,, X> 0, but
sup{— ‘éXch}é <., .

Proof. {YkoTn}D?,‘ forms a sequence of independent random
varlables for k=1, 2,... Then
E (sup{ ZYkoT )% E(¥per) + £.E (1012, Xy o1 = oy) *

n . -
* et RE (YT Lyt = v01% = ... =y = op) * et
=k(1-exp(-k3))1 K for k =1, 2,;..

So we have E (sups ixwrl}) > supXE( sup{— }: YkoTl})} =00 ,

so that supsl. Zx»Ti}e L, .
n n 1=1

Theorem 3. Let X, X , n =1, 2,... be integrable random va-
riables of £,, supfX [1ef,, X, —> X a. e. Then

E (X /3‘ )———)E(nX/S'oo) a. e. , L, , where E(X/%.) is a limit
of martlngale {E(x/9, )}:04 "
Theorem 3 is an easy consequence of Doob’s dominated convergence
theorem and martingale convergence theorem.

Conjecture 3, Let X, X nt 0 ° 1, 2,... be integrable random
variables of £, , sup{lX l'}e$4 y X,—/*X a. e. Then

—.Z:XioT ——> 1lim = iXoT a. e. , Ly , where lim %.}:XoTi

n
n L " f=a " {=a
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is an ergodic limit of X g
Conjecture 3 is true. We have succeeded to prove it in [67] .

Theorem 4. (c. f. see [1])If Xe&Ls, X eZy, n=1, 2,...,
X 20,n=1,2,..., Xx—X a., e, and sup{X }tf.‘ﬁ,‘, there
are, on a suitable probablllty space, random Varlables {Y , n =
1, 2,...} , Y and a sub-@ -algebra £ such that Y, Y, ¥
have the same joint distribution as X, X, X5y..., and
P({E(Y/®)—> E(YE)]) =
Theorems 4 shows that condition supﬂxnl}e%in Theorem 3 is best
possible. n

Conjecture 4. The condition sup{lxnl }¢¥, in Conjecture 3

n

Dyeee

(which is true) is best possibleg
Again we are not able to prove Conjecture 4., It is clear that if
Xn° T™M—— 0 (if X in Conjecture 3 is O) almost everywhere, the
condition sup{X |je&, is superfluous (due to Cesaro convergence
of the sequegce {X oT }u.),‘) The condition XnoTn——) 0 a., e.
is fulfiled e. g. if X j, 0 (uniform convergence ) a. e. , or

="P({Xn # 0FKeo ., Thls all leads to the following form of
Conjecture 4.

Conjecture 4a. If X¢&,, X WX A O, n=1, 2,.4.,

X, —>X a.e., 1nf{§f P({X > Z})i1 o , there are, on a
sultable probabiliff spacei random variables {Y , n =1, 2,...},
Y and a measure preserving transformation T such that Y, Yl,

Y2,... have the same Jjoint distribution as X, ‘Il, X2,... and
P({-ZYoT —_>11mHZ4YT1}) =0 o
n is

Example 2 shows that condition X ——)X a. e. , Ly, is not

sufficient for Z. }‘_Lxl R 11m L ‘:_XaTl a. e.
=1 n i=1

Example 2, Let (0,4 , P) be the probability triple from
Example 1. Let T be a shift. Let X = n.X, , Ah ={w ,
h

w, €0, m)} . ThenX —30 a.e., L, but
P({%.g){f’l‘l——) 0}) =0 4o
Proof, The events {XoT" # O3nes are independent. Since
ﬁP{ {X o‘l‘n #03}) =00 , almost all w belong to infiniteiy

many sets 5 X oTn # 0} (Borel-Cantelh ) . Hence for almost all

w 11msup{— Y_'LX R 11msup{—.n} 1, which is the required
n

result.
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I should like to thank Prof. H. von Weizsacker for a very
helpful discussion as well as for the Example 1.
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APPENDIX TO "MARTINGALE THEOREMS IN THE ERGODIC THEORY"

Radko Mesiar

Conjecture 2 is true. I should like to thank Prof. Kellerer
and Prof.von Weizsacker for announcement of verification of Con-
jecture 2. '

Sketch of the proof. If X> 0, Xe £, , there are, on a sui-
table probability space, a random variable Y and a measure preger-
ving transformation T, such that {YoTnJ:: forms a sequence of
i.i.d. random variables. Then it holds

n
sup Y"a ¢, iff Y.log'Ye%, .
n

As s

o] [

n s n
2 YoT > sup Y°£ , then if X.log'X ¢ £, , 1. e.
i=1 n

.
Y.log'Y ¢ £, , it holds sup & 3_Yerl ¢ £, .
n n- =

up
n
+

The condition X.log+Xe £, of Conjecture 1 is really best possib-
le.



