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GATEAUX DIFFERENTIABLE LIPSCHITZ FUNCTIONS NEED NOT BE FRECHET
DIFFERENTIABLE ON A RESIDUAL SUBSET

David Preiss

Although a Lipschitz function on a separable Hilbert space is
necessarily Gateaux differentiable on a large set (see, for exam-
ple,[1],[21,[5],[6]), it is not known whether it is Frechet diffe-
rentiable at least at one point. (See [4].) This problem cannot be
solved with the help of the Baire category method, since even on
the real line there are Lipschitz functions which are not differe-

ntiable on a residual subset. (See [7), where it is proved that
for a set EQ R there is a Lipschitz function f such that E equals

to the set of points where £’ does not exist if and only if E is a
Gaz-set of measure zero.) Nevertheless, one may hope that the Bai-
re category method can be used if f is an everywhere Gateaux diff-
erentiable Lipschitz function. Here we intend to show that even
this is false; we shall construct an everywhere Gateaux differen-
tiable Lipschitz function on a separable Hilbert space which is
not Frechet differentiable on any residual set.

Let H be a real Hilbert space and f a real-valued function on
H. Recall that f is said to be Gateaux differentiable at a point
x of H if there is an element df(x) of H such that for all y € H

lim t1(f(x+ty)-£(x)) = Laf(x),y> ,
t»0

and we call df(x) the Gateaux derivative of f at x.
The function f is said to be Frechet differentiable at a point x
of H if there is an element £ (x) of H such that
lim ﬂyﬂ’l(f(x+y)-f(x)- LE(x),y>) = 0,
y=~0

£'(x) is called the Frechet derivative of f at x. Clearly, if
£ (x) exists, then f is also Gateaux differentiable at x and df(x)
= £7(x).

Let R denotes the real line and R"the n - dimensional Eucli-
dean space. '
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We shall first construct Lipschitz functions on R, which are
everywhere differentiable with the derivative equal zero on a den-
se open subset of R, but which are badly approximated by their de-
rivatives. To do this, we use the following consequence of Lemma 7
from [8].

Lemma 1. There is a function ¢ :R-*R and a constant C € R
such that
(i) ¢ is everywhere differentiable and O% p'< C,

(ii) ¢ = 0 on (-®,0], O<¥ <1 on (0,1) and =1 on [1,+e0),and
(iii) f“= 0 on a dense open subset of R.

A simple application of this Lemma gives the following tech-
nical result.

Lemma 2. There is a constant c € (1,+00) such that, whenever
€, €, are positive numbers (n = 1,2,...), there is a sequence of
functicns hn:R-*R such that
(i) Inls e, )

(i)  h, is everywhere differentiable and |h|= c,

(iii) the derivative of h  equals zero on a dense open set, and

(iv) whenever g is a convex combination of two functions hn and

ho and t € R, there is s € R such u}-?.t 0<|t-s|<E& and
lg(t)-g(s)l = c *lt-s}.

Proof. Let o« be a sequence of positive numbers such that
®,<f , o, < g, and o < (4C+4)—lo<n. Let d(x) denote the
distance from x to the nearest even integer.

Put h(x) = ¢ (d(x)), where ¢ is the function from Lemma 1.
Then O € h £ 1, h exists everywhere, lh‘ls_C, h’'= 0 on a dense
open subset of R, h(x) = O if x is an even integer and h(x) =
if x is an odd integer.

Let h(t) = o h (e 1t). Clearly 0 = hy < o, h exists on
R, lh | = C and h = O on a dense open subset of R. Whenever t éR,
we flnd u € ts v such that lv-u | = o« and Ihn(vn)-hn(un)l =
v -ul - If g = ah +(1- a)h (a € [0,1], nem), then
Ig(v ) g(u N =z alv -u l—u > (a-(4C+4) l)|v -u | and
lg(vm) g(um)l (l—a)lvm—uml-aClvm-uﬂ = (1—a(C+1))lvm—um|.

Hence, if a(C+l) = 1/2, then Ig(vn)-g(un)lzl/(4c+4)lvn-ud, and
if a(C+1l) § 1/2, then lg(vm)-g(um)lz 172\ ~u | > 1/(4C+4)|vm-um|.
Consequently, among the points Ups Vs Ups Vi there is at least one

point s # t such that lg(t)-g(s)l & 1/(4C+4) It-sl. Since |s-t|< €&,
this proves that the Lemma holds with ¢ = 4C+4.

We shall also need a special partition of unity in RP.
Lemma 3. Let G € RP be a nonempty open set. Then there is a
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sequence of functions ¢ :RP>[0,1] such that
(i) each n is everywhere Fréchet differentiable, fg is boun-
ded and P = 0 on a dense open subset of RP,
(ii) supp ¥n is a compact subset of G and supp P nsupp o = 2
whenever |n-m] » 1, and
(iii) the sum of \, eguals to the charasteristic function of G.

Proof. Let 7 be a sequence of continuously differentiable
functions with compact supports in G which forms a locally finite
partition of unity on G (see, e.g., [3],pp.224-225). Put ¥ 0
and, by induction, ¥,,, = 2 {'71’ i=k+1 or suppm;n supp Yk # 2}.
Then the sequence p_ =,¢()vn Vo1 )/IP(Pk wk-l) (where ¢ is
the function from Lemma 1) has the desired properties.

We shall construct our example by induction, the induction
step being the following lemma.

mma 4. Let G € RP be an open dense set and let € » O. Then

there is a function f: Rp <» R such that
(1) Iflse
(ii) £ exists on Rp:‘
(iii) WEN £ o1,
(iv) 1f X,y € Rp and t € R, then |f(x,t)- -fly,t) =<
(v)  £'= 0 on a dense open subset of Rp+
(vi) if x € RP°-G and t € R, then f (x,t) = O, and
(vii) if x € G and t e R then there is s € R such that 0<e-s|<e and
I£(x,t)-f(x,s)| 2 c” |s ti.

Proof. We may assume € <1 and RP-G # g. Let Y, be a parti-
tion of unity on G with the properties from Lemma 3. Let d > 0

such that lfhl‘ dn1 and U?ll< d 1. For the given ¢ » O and the
sequence

[ 4 “ x-y“ ’

£, = min( € a27%, a2 aist?(RP-G,supp )

we construct a sequence h according to the Lemma 2.
Put f(x,t) = X cp (x)h (t) for (x,t) € R’ x R = RP*1, Then
(1)  I1f(x, t)l<Zd sz ,

(ii) is clear for (x t) € G x R and for other (x,t) it follows
from (vi).

(111) £, O s T I (O] Ve ol + & kg (0] [hZ (0] = 1+,
(iv) for each t € R the function f (x) = f(x,t) is Fréchet diffe-
rentiable and If (X)X b (t)l Hg(N=e

(v) if D is a dense open subset of {x; Vn(x) > O} such that
?A = 0 on Dn’ H is a dense open subset of R such that h = O on
H end G nlanHn+1,thenf OonUDxG

(v1) for each (x,t) € RP x R we have
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l£(x, )]s 3 L, (Ol In ()]
n, Xesupp ¢
< 2 27Paist?(RP-G,supp ) < dist®(x,RP-G).

n, xesupp g,

Hence, if z ¢ (RP-G) » Rand y e RP*L then If(y)-£(2)l < "y-zﬂz.
(vii) Whenever x € G, the function g:t->f(x,t) is a convex combina-
tion of twec functions from the sequence hn, hence (vii) follows
from Lemma 2,(iv).

The rest of the const}uction is straightforward. Let E denote
the Hilbert space of all sequences X = (xn; n=1,2,...) of real num-
bers such that llxl(2 = Z xr21 < 00 .

Theorem. There is a Lipschitz function f on E which is Gateaux
differentiable at each point of E and which is Fréchet differen-
tiable at no point of some residual subset of E.

Proof. By induction we shall construct a sequence of functions
f :RF > R and a sequence of open dense subsets G_ of RP such that
(i) It = 27P, P
(ii) f£_ is Fréchet differentiable at each point of RP,

(1ii) Hf M = c+1,

(iv) if (x,t), (y,t) € RPx R then lfp+1(x,t)—fp+l(y,tﬂ

= 2Pt X-y ,

(v) £ =0on G,

(vi) if (x,t) € (RP-G)t R then f 1 (%t) =0,

(vii) if (x,t) € G_x R then there is seR such that O <ls-t]< 27P
and pr+1(x,s)-fp+l(x,t)| 2 ¢ lis-tl, end

(viii) G c Gpt R.

p+l

(We put fl = 0, G1 = R and, whenever fl""’fp’ Gl,..'.,Gp
have been defined, we use Lemma 4 with G = G, and ¢ = 2 P11 4,
construct the function fp+1' The set G p+l we define as the inter-
section of G_ R with a dense open subset of RP*1 at each point of
which fp+l = 0.)

For x € E we put f(x) = X f (X)5e0esx)e

Since ¥ Wf £ c+1 according to (iii), (v), (vi) and (viii),
each of the functions gE:q fp(xl,.-.,xp) has Lipschitz constant

<

=< c+l. Consequently, the Lipschitz constant of £ is = c+1.

For each x ¢ E and each natural k the function

X(tl""’tk) = f(tl...,f.k,xk+1!.'..) = pzs:k fp(tl""’tp) +
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+ SEEk £t e s ta Xy e X))

is Fréchet differentiable on Rk since the sum of Fréchet deriva-
tives converges uniformly according to (iv). Since f is Lipschitz,
this implies that f is Gateaux differentiable at each point of E.

Let Hj = {xeE; (lxl,...xp) er} and let H be the intersecti-
on of the sequence Hp. Then H is a dense GJ subset of E and
df(x) = O at each x € H. On the other hand, for each x€H and each
natural k we may find se R such that
|fk+1(x1,...,xk,s)-fk+1(x1,...,xk+lﬂ = ¢ is- +1) end
0« ls-x, 41 < 27k-1 (property (vii)). Hence
|f(x1,...,xk,s,xk+2,...Q-f(x)l2: C_lls-xk+ll- P 270l g-x

n»k
= (20)'1Is—xk+1|.

(The first inequality follows from (iv).) This shows that f is
not Fréchet differentiable at x.

e+l
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