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GATEAUX DIFFERENTIABLE LIPSCHITZ FUNCTIONS NEED NOT BE FRECHET 

DIFFERENTIABLE ON A RESIDUAL SUBSET 

David Preiss 

Although a Lipschitz function on a separable Hilbert space is 

necessarily Gateaux differentiable on a large set (see, for exam­

ple,£l] ,[2],[5]>[6]), it is not known whether it is Frechet diffe­

rentiable at least at one point. (See £43-) This problem cannot be 

solved with the help of the Baire category method, since even on 

the real line there are Lipschitz functions which are not differe­

ntiable on a residual subset. (See [7.1 i where it is proved that 

for a set E c R there is a Lipschitz function f such that E equals 

to the set of points where f does not exist if and only if E is a 

G*̂ ,-set of measure zero.) Nevertheless, one may hope that the Bai­

re category method can be used if f is an everywhere Gateaux diff­

erentiable Lipschitz function. Here we intend to show that even 

this is false; we shall construct an everywhere Gateaux differen­

tiable Lipschitz function on a separable Hilbert space which is 

not Frechet differentiable on any residual set. 

Let H be a real Hilbert space and f a real-valued function on 

H. Recall that f is said to be Gateaux differentiable at a point 

x of H if there is an element df(x) of H such that for all y 6 H 

lim t"1(f(x+ty)-f(x)) = <df(x),y> , 
t+0 

and we call df(x) the Gateaux derivative of f at x. 

The function f is said to be Frechet differentiable at a point x 

of H if there is an element f'(x) of H such that 

lim Hyir1(f(x+y)-f(x)- <f'(x),y» = 0, 
y-*o 

f'(x) is called the Frechet derivative of f at x. Clearly, if 

f'(x) exists, then f is also Gateaux differentiable at x and df(x) 

= f'(x). 

Let R denotes the real line and Rnthe n - dimensional Eucli­

dean space. 
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We shall first construct Lipschitz functions on R, which are 

everywhere differentiable with the derivative equal zero on a den­

se open subset of R, but which are badly approximated by their de­

rivatives. To do this, we use the following consequence of Lemma 7 

from [8j . 

Lemma 1* There is a function JP:R->R and a constant C € R 

such that 

(i) tp is everywhere differentiable and 0 <. jP £ C, 

(ii) p = 0 on (-* ,tfji 0<-/>< 1 on (0,1) and <f = 1 on [l,+oo ),and 

(iii) <f = 0 on a dense orxen subset of R. 

A simple application of this Lemma gives the following tech­

nical result. 

Lemma 2. There is a constant c e (l,+oo) such that, whenever 

£, £, are positive numbers (n = 1,2,...), there is a sequence of 

functions h :R->R such that 

(i) l h n l * e n , 

( i i ) h i s everywhere differentiable and IhJ -£ c, 

( i i i ) the derivative of h equals zero on a dense open set, and 

(iv) whenever g is a convex combination of two functions h and 

h and t € R, there is s 6 R such that 0 < | t - s | < £ and 
m |g ( t ) -g(s) | ^ c - 1 l t - s | . 

Proof. Let of be a sequence of positive numbers such that 
—1 

* n < f ' *n < cn a n d *n+l ^ (4C+4) <*n- Let d(x) denote the 
distance from x to the nearest even integer. 

Put h(x) = ^ ( d ( x ) ) , where <p i s the function from Lemma 1. 

Then 0 < h -S 1, h exists everywhere, l h | < C , h = 0 on a dense 

open subset of R, h(x) = 0 i f x is an even integer and h(x) = 1 

i f x i s an odd integer. 

Let hR(t) = <*nhn( ^ t ) . Clearly 0 «* hn ^ <x R, l / exists on 

R, In I -* C and h = 0 on a dense open subset of R. Whenever t£R, 
we find u^ * t -* v^ such that Iv -u I = ©< _ and |h (v )-h (u )| = n n n n 1 n ' n n n n 
Iv -u J . If g = ahn+(l-a)hm (a € CO, I } , n<m), then n n n H I -» 
lg(vn)-g(un)l * a lvn-unl - <* m * (a-UC+4) )|vn-unl and 

lg(vm)-g(um)l Z (l-a)|vm-uml-aC|vm-uml = (l-a(C+l>) |vm-um| . 

Hence, i f a(C+l) * 1/2, then lg(vn)-g(un)l* l/UC+4) lvn-unl, and 

if a(C+l) * 1/2, then lg(vm)-g(um)| £ 1/2 lvm-uml * l/(4C+4) lvm-uml . 

Consequently, among the points u
n » v ,u ,v there i s at least one 

point s / t such that |g( t)-g(s) | £ l/UC+4) l t -s | . Since | s - t |<£ , 

this proves that the Lemma holds with c = 4C+4. 

We shall also need a special part i t ion of unity in R*5. 

Lemma 3. Let G c Rp be a nonempty open set . Then there i s a 
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sequence of functions pn-R
P*>[0,l] such that 

(i) each f is everywhere Frechet differentiable, f is boun­
ded and fL = 0 on a dense open subset of Rp, 
(ii) supp f is a compact subset of G and supp f n supp ip = 0 
whenever |n-m| > 1, and 

(iii) the sum of y> eguals to the characteristic function of G. 
Proof. Let m be a sequence of continuously differentiable 

functions with compact supports in G which forms a locally finite 
partition of unity on G (see, e.g., [33, pp. 224-225) • Put <p = 0 
and, by induction, y k + 1 = 2 f^-p i -

 k +l or supp/^n supp f k / 0J. 
Then the sequence fn -y(fn" fn^\^ E ̂  ^k~ ̂ k-1^ (wnere f is 

the function from Lemma 1) has the desired properties. 

We shall construct our example by induction, the induction 
step being the following lemma. 

Lemma 4. Let G c Rp be an open dense set and let e > 0. Then 
there is a function f :Rp+1-» R such that 
(i) lfl*£ , 
(ii) f' exists on Rp, 
(iii) llf 'II * c+1, 
(iv) if x»y 6 RP Bnd t 6 R, then If (x, t)-f (y, t)| < d|x-yll, 
(v) f = 0 on a dense open subset of Rp , 
(vi) if x 6 Rp-G and t £ R, then f'(x,t) = 0, and 
(vii) if x c G and t e R then there is s e R such that (Wt-i|«£ and 
|f(x,t)-f(x,s)| * c"1|s-t|. 

Proof. We may assume e < 1 and Rp-G / 0. Let y> be a parti­
tion of unity on G with the properties from Lemma 3. Let d > 0 

-1 ' -1 n 

such that ly*nl-
 d
n and llL*n

n - d n • For the given t > 0 and the 
sequence -

£ n = min( C dR2 , dn2~
a dist^(Rp-G,supp p R)) 

we construct a sequence h according to the Lemma 2. 

Put f(x,t) = 2T ̂ n(x)hn(t) for (x,t) C Rp * R = Rp+1. Then 

(i) | f ( x , t ) | ^ Z d n
1 t n 6 £ , 

(ii) is clear for (x,t) € G x R and for other (x,t) it follows 
from (vi). 
(iii) ||f'(x,t)ll *T lhn(t)| Hy>n(x)!l + T l^n(x)| |h^(t)| * 1+c, 
(iv) for each t € R the function ft(x) = f(x,t) is Frechet diffe­
rentiable and llf+'(x)l| 5 21 lh (t)l lly>'(x)ll ̂  t , 

x n n 
(v) if Dn is a dense open subset of {x; ^Pn(x) > 0} such that 
f' = 0 on D , H is a denSe open subset of R such that hn .= 0 on 

Hn and Gn = Hn-l" Hn * Vl' then f'= ° °n U Dn * Gn> 
(vi) for each (x,t) 6 Rp x R we have 
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|f(x,t)|5 2 1 |y> (x)| |h (t)| 
n, xisupp y>n 

< 2 Z 2~ndist2(Rp-G,supp p ) £ dist2(x,Rp-G). 
n, xcsupp pn 

Hence, if z c (Rp-G) * R and y e Rp+1 then |f(y)-f(z)| < ||y-z||2. 

(vii) Whenever x e G, the function g:t->f(x,t) is a convex combina­

tion of two functions from the sequence h , hence (vii) follows 

from Lemma 2,(iv). 

The rest of the construction is straightforward. Let E denote 

the Hilbert space of all sequences x = (x ; n=l,2,...) of real num-
2 2 bers such that Uxll = I x < oo . 

Theorem. There is a Lipschitz function f on E which is Gateaux 

differentiate at each point of E and which is Frichet differen-

tiable at no point of some residual subset of E. 

Proof. By induction we shall construct a sequence of functions 

f :RP-* R and a sequence of open dense subsets G_ of Rp such that 
P P 
(i) lfpl * 2~

p, 
(ii) f is Frechet differentiable at each point of Rp, 

x p ' 

(iii) llfpll * C+1, 
(iv) if (x,t), (y,t) 6 Rp* R then |f , (x, t)-f (y, t)| 

-n -1 P P X 

S 2 pc L x-y , 

(v) f' = 0 on G , 

(vi) if (x,t) € (Rp-Gf)*R then fp+1(x,t) = 0, 

(vii) if (x,t) € G x R then there is s € R such that 0*ls-t|<2~p 

P i 
and If 1(xls)-f 1(xft)l ^ c" ls-t| , and 
(viii) Gp+1 C V R# 

(We put f, = 0, G, = R and, whenever flf...,f , Gn,...,G 

have been defined, we use Lemma 4 with G = G and f, = 2~p~'Lc~1 to 

construct the function f + 1- The set G -̂  we define as the inter­

section of G R with a dense open subset of Rp+^ at each point of 

which f' -̂  = 0. ) 

For x c E we put f (x ) = 27 f ( x 1 , . . . , x ) . 
Since 2T llf'U £ c+1 according to ( i i i ) , (v ) , (vi) and ( v i i i ) , 

each of the functions !ET f ( x , , . . . f x ) has Lipschitz constant 
p < q P P 

^ c+1. Consequently, the Lipschitz constant of f is ^ c+1. 
For each x c E and each natural k the function 

gk,x(tl,###,tk) = f(tl-*#'tk,xk+ir##) = ^ k
 f

p
( t i , , , , , V + 
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+ pTk f P ( t l , " " , t k , X k + l , , * * , x p ) 

Ir 

is Frechet differentiable on R since the sum of Fr£chet deriva­

tives converges uniformly according to (iv). Since f is Lipschitz, 

this implies that f is Gateaux differentiable at each point of E. 

Let H = {xcE; (x, ,...x ) eG \ and let H be the intersecti­

on of the sequence H . Then H is a dense G* subset of E and 

df(x) = 0 at each x c H. On the other hand, for each xeH and each 

natural k we may find ae R such that 

|fk+1(x1,...,xk,s)-fk+1(x1,...,xk+1)| ̂  c^ls-x^l and 

0 <• ls-xk+-.l < 2" (property (vii)). Hence 

|f(x1,...,xk,s,xk+2,...)-f(x)| ̂  c^ls-x^l- 5Z 2^nc"1ls-xk+1l 

^ (2c)"1ls-xk+1|. 

(The first inequality follows from (iv).) This shows that f is 

not Frechet differentiable at x. 
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