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IRREDUCIBLE IMAGES OF BN-N

A.Blaszczyk

The space BN-N is the remainder of the {ech-Stone compactifica-
tion of the natural numbers. A mapping £:3-980 .y 55 irreducible
if it is continuous and f(F) # Y for every closed set Fc X such
that F # X. Our aim is to investigate irreducible images of BN-N.
Under the assumption of CH (= the continuum hypothesis) we shall
show (see Theorem 1) that a zero-dimensional compact space X is an
irreducible image of BN-N iff weight of X equals 2“° and X has the
following property

(P) there are no isolated points in X and non-empty GS'S

in X have non-empty interior.

Spaces in which non-empty Gg’s have non-empty interior are also
called almost-P spaces or P-spaces. Clearly, BN-N satisfies condi-
tion (P). If X is a compact zero-dimensional space, then B(X =N)
-(XxXN) also satisfies condition (P) ; see e.g. Walker L101 . If X
and Y satisfy condition (P), then the product Xx Y satisfies (P)
as well. Zero-dimensional compact spaces satisfying condition (P)
in which every two disjoint open F&'s have disjoint closures are
called by several authors Parovienko spaces. The well known theo-
rem of Parovifenko [91 says that , under CH , a space is homeomor-
phic to BN-N iff it 1is a Parovi&enko space of weight 2“ ., Concern-
ing Parovifenko spaces Broverman and Weiss [11 have shown that a
Parovi&enko space X has the absolute (= Gleason space) homeomor-
phic to the absolute of BN-N iff 7T -weight of X equals 2“ . If X
is an irreducible image of BN-N, then X is co-absolute with BN-N ;
l.e. the absolute of X is homeomorphic to the absolute of BN-N.
So, our Theorem 1 leads to the following : under CH a compact
space X is co-absolute with BN-N iff X is dense in 1tself and has
a 7r-base of power 2% consisting of non-empty regular-open sets in
which every countable chain (with respect to inclusion) has a lower
bound (see Theorem 3). This improves the result of Broverman and
Weiss [11 as well as the result of Williams [111 who proved, under
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CH , that if X is a compact space of sr-weight 2°° satisfying con-
dition (P) , then X is co-absolute with BN-N.

All spaces are assumed to be compact (Hausdorff). Zero-dimen-
sional compact spaces are called Stone spaces. The symbol CO(X)
will denote the Boolean algebra of all closed-open subsets of X.
If X and Y are Stone spaces,” then every continuous mapping from X
onto Y is uniquely determined by an embedding of CO(Y) into CO(X).
For a space X , w(X) denotes weight and 7(X) denotes smr-weight
of X.

§1. Irreducible mappings of BN-N., Let us note the following

Lemma 1. If f is an irreducible mapping from X onto Y and X is
a (compact) space satisfying condition (P) , then Y satisfies (P)
as well,

The proof is clear, so can be omited.

One can easily chack that if X satisfies condition (P) , then
in X there exists a disjoint family of open sets of size 2“° ., In
particular w(X)» 2“ . Thus, by Lemma 1, if X is an irreducible
image of BN-N , then X is a compact space of weight 2 satisfying
condition (P). To obtain the converse we have to prove two lemmas:

Lemma 2, If U1,UQ,W<_CO(BN-N)-{¢} are countable and

1) for every ie {1,23} , every Upgeas,u e Ui and every
weW , w=(yyveeovun) A6,
then there exist z4,z5¢ CO(BN=-N) such that
(2) Z1 N2y = gy
(3) zZg~u = @ for every ueU; and zynu = g for every ueUs,,
(4) zinwf-¢for ie{1,2} and for every we W.

Proof. By condition (1), for i = 1,2 and for every weW there
exists wje VCO(BN-N)-{Q'} such that w:'Lcw and wjn~u = @ for every
ueU; . Since the family {w : weWand i =1,2} is countable ,
one can assume that it consists of disjoint elements. We set Fi =
=clUfw] : weW1}, 1 =1,2. Since disjoint open F;'s in BN-N
have disjoint closures, we get : Fyn T, =@ , Fy nclVU; = ( and
Fyr elWVU, = @#. Then, there exist two disjoint elements 29329 €
e CO(BN-N) such that Ficzy , Fpczy 4, 29~ V0, =f and z2,~VT, =
= . It is easy to see that z, and z, are as required.

The next lemma 1s well known ; for the proof see e.g. Comfort
and Negrepontis [2] , page 36.

Lemma 3. Let A’and B’be subalgebras of Boolean algebras A and B,

respectively. Let h:A2 9B  pep . oy isomorphism and let ae A and
b €B be such that for every xeA’,
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X~na =0 iff h(x)~ b = 0 and

0 iff h(x)nb = 0.

If A’ and B’’ are algebras generated by A’ctay and B’oib} , res-
pectively, then there exists an isomorrphism g:A’fl  .B’’ such that
glA’ =h and g(a) = b.

Now, we are ready to prove the following

Theorem 1. Assume CH. A Stone space X is an lrreducible image
of BN-N iff X satisfies condition (P) and w(X) =2< .

Proof. Assume X is a Stone space satisfying condition (P) such
that w(X) = 2 = w4+ To prove the theorem it suffices to show
that the algebra A = CO(X) can be embedded as a dense subalgebra
in B = CO(BN-N). Let A = {a_ : @<cwq} and B = {b, 1 4<cyl. By
transfinite recursion we construct for everyac w, an isomorphism
h, :A—B, such that

i}

X n~na

1]
]

(5) A, and B, are subalgebras of A and B, respectively,
(6) if w<o, then A, <A, , B.c B, and b | A, =h, ,
(7) {auipsAl < Ay,

(8) there exists beB, - {0} such that becb_ .

If h, :Ag—B, , for«< w, , are already constructed, we set h =

= Uihy < wy}. Clearly, h is an embedding of A into B and
h(A) is dense in B.

Assume, A, , B, and h, are defined for all«<y. Thus h =
= Ufh, : a<¥]1is an isomorphism of A’= U[A, :a<v}lonto B = UB, :
«<¥}. Suppose a_ ¢ A’ and denote

X, = {XxeA': xna.=01%,

X5 ={xeA’: xca,l,

Y ={xeA": xna, #0 and x-a_ #01}.
For xe ¥, and y eX, , h(x) ~h(y) = O. Hence, there exists ueB
such that

(9) h(x)~u =0 for all x «X; and h(y)cu for all Y eXye

Since X1, X2 and Y are countable, by Lemma 2, there exist z1,22eB
such that z;a h(x) = O for every xeX; , zy~h(x) = 0 for every
X ¢ X, and z1nh(x) A0 # 25~ h(x) for every xeY. Now, by (9) , it
is easy to chack that for v = (11\..-z1)-z2 we have the following :

Xnay=0 iff h(x)nv =0 and

Xx—ag=0 iff h(x)~v =0,
So, by Lemma 3, if A’“c A is a subalgebra generated by A’cla,) and
B’/< B is a subalgebra generated by B‘uiv} , then there exists an
isomorphism g:A™*——B’’ such that gl A’ =h and g(a,) =v. If a.e
€ A’ we set g = h.

Now, since B’’ is countable, there exists w e B-{0Y such that
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wc_b‘_ and
(10) for every beB’’, either baw = O or wc b.
Let C ={xeA’’: g(Xx)aw =0} and D = {xeA’’: wecg(x)}). Clearly,
by (10), A’’= CuD. Since X satisfies condition (P) and y;n ...
AV (xq v ...uxn) # 0 , for every XqpeeesX, €C and Yyseees¥ye D,
there exists z ¢« A-{0O} such that
(11) z~Xx = O for every xe C and zcy for every ye D.

Let A_cA be the algebra generated by A"‘c{z} and B < B the alge-
bra generated by B’‘“{w} . By condition (11) and Lemma 3, there
exists an isomorphism h, :A-——B,_ such that h _|A"’= g and h,(z)=
= w., Now, to finish the proof it suffices to see that h_, A, and
B, satisfies conditions (5) - (8).

We have already pointed out that (BN-N)x (BN-N) satisfies con-
dition (P). Thus, from Theorem 1 we get

Corollary 1. Assume CH. There exists an irreducible mapping
BN-N onto its square.

However, the following question remains open :

Question. Is it true (in ZFC) that BN-N can be mapped onto its
square by a continuous mapping ?

Let X be a compact space. The Stone space G(X) of the Boolean
algebra of all regular-open subsets of X is called the absolute
(= the Gleason space) of X ; see e.g. Comfort and Negrepontis [2],
page 57. Compact spaces X and Y are co-absolute iff G(X) and G(Y)
are homeomorphic. The following lemma summarize the informations
concerning absolutes which will be needed.

Lemma 4.Let X and Y be compact spaces., The following hold :

(a) If X has a dense subspace homeomorphic to a dense subspace
of Y, tken X is co-absolute with Y.

(b) If ¥ is an irreducible image of X, then Y is co-absoluté
with X.

In particular, if X is an irreducible image of BN-N, then X'is
co-absolute with BN-N. The converse implication is not true.

Example. Let F be a closed but not open Gg-subset of BN-N and
let X be the quotient space obtained from BN-N by collapsing F to
a point., Clearly, in X and in BN=-N there exist sr-bases conslsting
of closed-open subsets homeomorphic to BN-N. So, by Lemma 4(a), X
is co-absolute with BN=N. By Lemma 1, there does not exist irre-
ducible mapping from BN-N onto X. We shall show that also X can-
not be mapped onto BN-N by an irreducible mapping. Indeed, suppose
f:X—99L9+BN-N is irreducible. Then, for every open set UcX,
Intf(U) # ¢. There exists a point in X with a countable base of
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neighbourhoods. Then, there exist two countable families [Hn t n<
<w?l and {G) : D<oy of closed-open subsets of BN-N such that

H AG = @ for n # k and for some xeX , f(x)eclu{Hn tn<wlan
" cl\_,/{Gn t: nN<cwte. We get a contradiction, because disjoint open
E;'s in BN-N have disjoint closures.

It is known that CH is equivalent to the statement that all
Parovi¥enko spaces of weight 2“ are homeomorphic ; see Parovidenko
[9]1 , van Douwen and van Mill [43 and Frankiewicz [5] . Broverman
and Welss [1] have shown that CH implies that all Parovidenko
spaces of 91 -weight 2“ are co-absolute and conjectured that the
converse is also true. Recently van Mill and Williams [8] have
proved that if 2“ = 2“1, then not all Parovidenko spaces of
7 -weight 2“° are co-absolute, whereas Dow [31] has proved that if
cf(2«) = w, , then all Parovidenko spaces of 7r - weight 2“ are
co-absolute (note that cf(2« )> w, whenever 299 = 2“4 ), But thae
assertion "X is an irreducible image of BN-N" is stronger than
"X is co-absolute with BN-N" ; see the example above., So, the
question whether the assertion "every Stone space with the proper-
ty (P) and weight 2“ is an irreducible image of BN-N" is equiva-
lent to CH remains open. We only have the following

Theorem 2. It is consistent with ZFC that cf(2<«) = w < 2w
and not every Stone space with the property (P) is an irreducible
image of BN-N.

Proof. Let ‘¥ denotes the formula asserting that there exists
a point p e BN-N with X(p,BN=-N) = @w;. It is known that there
exists a model # for ZFC such that

e Pacf(2¥) = (,.)1<2‘*’ ;
see Kunen [6] , page 289. On the other hand one can prove (in ZFC)
that if X = B(c ¥ 2°%) = (w x2%), where 2% is the Cantor cube of
weight 2% , then the 7T-character at every point of X equals 2“;
see e.g. van Mill L73 , page 41. Now, suppose f:BN-N——X is ir-
reducible and P is a base of neighbourhoods of the point p, |P| is
minimal. Then, the family R = {X-f(BN-N-U) : UeP} is a 7r-base
at the point f(p). Clearly, 2“°¢ IRI < tPl. But in our model # ,
IPl = w, < 2% ; we get a contradiction.

§2., Co-absolutes of BN-N. In this section we shall give a char-
acterization of all compact spaces which are co-absolute with BN-N.
Our characterization gives a strenghtening of a result of Williams
£117 who has proved that under CH every compact space of sr-weight
2% satisfying condition (P) is co-absolute with BN-N.
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A family R of non-empty sets will be called g-closed if for
every decreasing sequence {Un t N<co}<R there exists Ue R such
that UCUn , for all n<co .

Lemma 5. A compact space X admits a o -closed Jr-base consist=-
ing of regular-open sets iff the space G(X) admits a o -closed
77 -base of the same weight consisting of closed-open sets.

Proof., 1. If P is a G =-closed sm-base of X consisting of regu-
lar-open sets and G:G(X)——X is the irreducible mapping, then
R ={clG(U) : UeP} is a 1 -base in G(X) consisting of closed-
-open sets. Clearly, |P\ =1(R1 . In order to show that R is
o -closed it suffices to check only that clG (U) < ¢1G (V) implies
UcV ( because U and V are regular-open).

2, Assume R < CO(G(X)) is a G =-closed fr-base in G(X). We set
P ={IntG(W) : WeR1}. Since G is irreducible, IntG(W) # IntG(W’')
whenever W # W. So, | R\ = IP1 . Clearly, for every WeR , IntG(W)
is regular-open. Hence, it remains to show that P is o =-closed.
To do this it suffices to show that

c1G (IntG(W)) = W,
for every W «CO(G(X)).

To prove that Wc clG (IntG(W)) suppose that there exists a
closed-open non-empty UcW such that UnclG (IntG(W)) = ¢. Then
G(U) ~ IntG(W) = @, hence G(U)c c1(X-G(W)) < G(G(X)-W). Thus G(G(X)-
-U) =X ; a contradiction, because G is irreducible,

To prove that c1G (IntG(W)) ¢ W suppose that there exists a set
U «CO(G(X)) such that UnW = @ and ¢ # Uc ¢1G (IntG(W)). Then
G(U) < G(c16(IntG(W))) = clIntG(W) < G(W). Again, G(G(X)-U) = X ;
a contradiction. The proof is complete.

Clearly, CO(BN-N) is a G-closed Tr-base of cardinality conti-
nuum. Thus, we get

Corollarz 2, If X is a compact space which is co-absolute with
BN-N, then X has a G=~-closed f7r-base of cardinality continuuum
consisting of regular-open sets.

Lemma 6., Let X be a dense in itself Stone space with a c-closed
7T -base P < CO(X) of cardinality w,. Then X has an irreducible
mapping onto a Stone space with the property (P) of weight W

Proof. Let P = {Uy ¢ o ¢ wqy . By transfinite recursion one
can construct for every « < w, a disjoint family T, cP such that

(12) el uT, =X,

(13) for some WeT, , WU, ,

(14)  for every WeTy , \{VeT 4 : VeWll = wy ,
(15) if d<r-and V€T , then VW for some WeT, .
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The construction is possible because P is a g-closed fr-base. In
particular, (14) follows from the fact that for every non-empty
open set UCX there exists a family of size 2’ of disjoint open
sets contained in U.

Let Bc CO(X) be a subalgebra generated by T = (HT, : o< 1}
and let Y be the Stone space of B. By condition (13), B is dense
in CO(X). Thus, the mapping from X onto Y appointed by the embed-
ding of B into CO(X) is irreducible. It remains to prove that Y
satisfies condition (P). First observe that, by (15),

(16) if <y , U & T, and VeTB_, then either Vc U or

U~V = d.

This follows that B = {(U-(Wjueee oW ) : UeTe XY, Wy« T il
Fo T o<Wy and i<k<w § is 2 base in Y. Let {Vn t: n<ey)} be a
decreasing sequence of elements of B. By the condition (16), .for
every n < <o there exist oy < Wy, U‘*neT‘*n and a finite set Rnc
< B such that V, =10, -VUR, and

(i7) if WeRnnTr,then S < E e
Clearly, we can assume, that U,Lna U"‘k whenever k<n, i.e, if k< n,
then Ay Sy . Let A = sup{ekn t nN<coy., If o = “n for some
n <« , then we can assume that o= for all n. Since lL.)ilX1 :
: n<wilscw, there exists, by conditions (14) and (17), Ue Ty
such that UcUy and UnW = ¢ for all W e U{R, : n<c< } . Hence
U(f\{vn: n<wl. So, we can assume that dp<al for all n< co
Recall, P is G-closed. Then, by the condition (12), there exists
UeTy such that UCUd\n , for all n. Set R = u{Rn t n<coj. We
claim that

(18) if W eR, then either WcU or WAU = d.
Indeed, if WeT, and y>« , we apply (16). If y-<a and WeTge ~Ry,
then g<oa, <o for some n such that k<n<cs . The inclusion Uy, <
CW is imposible because Vnc Uay s vncvk and Vyp W = J. Thus ,
Uy, ~W = @, which follows UnW = ¢. Now, by conditions (14) and
(18), there exists U’ e« T,,q such that U'c U and U’'~ W = @, for all
W e R. Therefore, U’C MV, : n<c}, which completes the proof.

Theorem 3. Assume CH. A compact space X is co-absolute with
BN-N iff X is dense in itself and admits a <& -closed Jr-~-base of
power continuum consisting of regular-open sets.

Proof. By Lemma 5, X is co-absolute with a Stone space of
weight <o, which admits a G-closed fr-base consisting of closed-
-open sets., Thus, by Lemma 6, X is co-absolute with a Stone space
of weight @y with the property (P). By Lemma 4(b) and Theorem 1,
X is co-absolute with BN-N. Corollary 2 completes the proof.
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