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A note on the extension of weak Radon measures on locally

convex spaces to strong Radon measures

Gerhard Winkler

Abstract: It is well-known that on a metrizable locally convex
space any weak Radon probability measure has a strong extension.
We show by an example that metrizability is essential. Further,
we give a short proof of the classical result using a theorem of

R.E. Johnson.

Let E be a separated locally convex vector space with topology
1, topological dual space E' and weak topology o(E,E").

The weak Borel o-algebra on a subset M of E - generated by the

weak topology - is denoted by BO(M); the strong Borel c-algebra

- generated by 1 - by BT(M). A probability measure on BO(M) is

called a weak Radon probability measure (w.R.p.m.) if it is

Radon w.r.t. Mno(E,E') and aprobability measure on BT(M) is

called a strong Radon probability measure (s.R.p.m.) if it is

Radon w.r.t. MN t.

The following variant of theorems due to Phillips, Dunford-Pettis

and Grothendieck is well-known:

1.Theorem: Let E be a metrizable locally convex space. Then any

weak Radon probability measure on E has a unigue extension to a

strong Radon prokability measure on E.
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A rather lengthy proof is given in [3], p. 162-166. We give a
short proof. which was indicated to us by J.P.R. Christensen. It
is based on a theorem of R.E. Johnson ([2]), which was general-
ized and supplied with a simpler proof by Christensen ([1]). As
far as we know, there is no example in the literature showing
that in theorem 1 metrizability is essential. We will present

such an example below.

We state Johnsons theorem in a version sufficient for our needs.

A proof is given in [1].

2. Theorem: Let X and Y be compact spaces. Assume further that
X is the support of some Radon probability measure.Then:
if £f : XxY » R is a separately continuous function, the set

{f(x,+):x€ X}=C(Y) is separable in the supremum norm.

The essential step in the proof of theorem 1 is

3. Proposition: Let E be a Banach space with norm topology Tt
and p a w.R.p.m. on E with weakly compact support C. Then:

a. the weak and strong Borel cg-algebra coincide on C;

b. the space (C,Cnt) is Polish; in particular p is a s.R.p.m.

on C.

Proof: Denote by B' the weak*-compact unit ball of E'. Apply

theorem 2 to the evaluation map f : CxB' » R, (x,¢) = ©(x)
to conclude that {f(x,:):Xx€C}cC(B') is separable in the sup-
norm. Since the mapping C3x -» f(x,-) € C(B') is an isometry, C

itself is norm separable. Furthermore, C being weakly complete
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is complete in the norm. As C is Polish, the weak and strong

Borel o-algebra coincide on C ([3], p. 101) and p is a s.R.p.m..

Proof of theorem 1: 1. Observe that a w.R.p.m. is concentrated
on a countable union of pairwise disjoint weakly compact sets.
Apply proposition 3 to get the conclusion for Banach spaces E.
2. Let now E be metrizable. We may assume that E is complete.
Then E is isomorphic with the inverse limit of a sequence of
Banach spaces‘Ei. A w.R.p.m. on E induces a projective system

of w.R.p.m. p; on the spaces Ei‘ Extend these measures according
to part 1 of the present proof to s.R.p.m. q; - The measures qy
form a projective system . The projective limit is a s.R.p.m.

on E which gives us the desired extension.
Let us conclude with the announced example.

Example: Let I be an uncountable index set and for each i€I let

Ei be a copy of 12(11); denote the norm topology by Ty- Let

further denote E the product of these spaces and T the product
topology. We construct a w.R.p.m. on E which has no strong ex-

tension.

The measure p := X 2™
neEN 2

the n-th unit vector of 1“(N ), is concentrated on a weakly

€ where € is the point measure on

compact set, but p(K) < 1 for every norm compact set K. Let By
be a copy of p on Ei and Ci the weakly compact support of By
For a finite subset J of I consider the product measure By of
the measures Hyo jeEJ, on (M E., N U(E-,Eﬁ))- Let pr; be the

jeg 3 jeg J '
canonical projection on E which is weakly continuous.
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The measures Bar J<1I finite, together with the projections
form a projective system of measures; the limit p on

(E,.ﬂ O(Ei'Ei)) exists since the By have weakly compact support
(cf%%i], p.75) . Because O(E,E') = Rl U(Ei'Ei)' we have con-
structed a w.R.p.m. p on E. e

It cannot be extended to a s.R.p.m., since p(K)

0 for every
T-compact subset of E. In fact:

According to the choice of p we have
ui(pr{i}[K])< 1 for every i€ I.

Since I is uncountable, at least countably many of these numbers

are bounded away from 1. This implies
inf{ M p.(pr;.,[K]):J finite subset of I} = 0,
. 3j {3}
j€JT
hence

p(K)

A

inf{p(pr31[prJ[K]]):Jc:I finite} =

inf{uJ(prJ[K]):JC:I finite} <
< inf{ M p.(pr,;.,[K]):JcI finite} = 0.
. 3 {3}
Jjed
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