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SINGULARITIES IN THE GEOMETRY OF AN OBSTACLE v

Stanistaw Janeczko

1. Introduction.

The obstacle problem has been extensively studied in the )
scattering theory of Lax, Phillips and Melrose [lq . They provide
the complete asymptotic properties of a scattering amplitude and de-
tailed spectral theorem for the Laplacian on the exterior domain
with respect to the strictly convex obstacle. The classical theory
of diffraction formulates the similar obstacle problem D{ﬂ U4] and
defining the notion of diffracted ray provides the geometrical fra-
mework for the study of the optical properties of an arbitrary opti-
cal instrument [9] [t4] . It appeared (cf. [4]) that the local geo-
metry of an obstacle determines the singularities of systems of
diffracted rays (the singularities of systems of rays by reflection
were exhaustively studied in [7]). Moreover the local generic mo-
dels for these singularities appeared to be isomorphic to the singu-
lar orbit spaces of the complexified actions of groups generated by
reflections [4] ES]. The planar obstacleAproblem with an inflec-
tion point is governed by the group of icosahedron. Even more gene-
ral point of view on the obstacle problem was proposed recently by
R. Thom DS] [lﬂ . In his theory of interaction of so-called sa-
lient forms and pregnancies, which is the basis of the notion of
preprogramm (coming from the generalization of the organizing func-
tion of DNA molecules) the main problem is to find the singulari-
ties in an appropriate obstacle problem, i.e. to determine how a
propagative flux of eneérgy can be modified in its structure under

a variation of the boundary constraints.

o - -
This paper is in final form and no version of it will be sub-
mitted for publication elsewere.
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All the mentioned above examples and theories suggest the
universal meaning of the obstacle problem and evoke a desire to
find an unifying approach to study of its singularities. To this
end we restrict our considerations to the geometrical theory of
optics and provide the necessary symplectic approach (cf. [9] [to]).
Using this approach we determine the generic singularities of sys-
tems of rays in the geometric theory of diffraction and derive

their analytical properties.
2. Symplectic relations in the geometrical theory of optics.

As one of the possible manifestations of the obstaclec problem
we can consider the optical phenomenon of diffraction, or in more
general setting the theory of transformation of systems of rays by
the various optical instrumentshjggj D4] .

The geometrical optics D3] D6] gives the general framework
for describing formally what happens when a ray hits an edge or a
vertex or when a ray graées on interface or a boundary. Héwever
before Arnold [3] nobody investigated §ufficiently precisely the
structure of singularities of diffracted rays on smooth (not nece-
ssarily convex) surfaces (obstacles) with generic properties.
First, who turned attention on geometrical theory of diffraction
and introduced the notion of diffracted ray was J. Keller DB] .
He derived the exact formulas in the physical analysis of the few
classical diffraction problems on the particular obstacles and
partially for the general smooth objects. However still wiﬁhout
any approach to investigation of singularities appearing there. In
this section we formulate the diffraction theory using the language
of symplectic geometry [9] pl] and the category of symplectic
relations b7] . The singularities of systems of diffracted rays
are reduced to the corresponding singularities of the appropriate
lagrangian submanifolds El]'.

Let V =2 R be the configurational §pace (with refraction co-
efficient n=z1) of geometrical optics. The associated phase space
(M,w) is gi?en by the standard symplectic reduction (cf. [10], PO])
X i l(0) — M,
where the hypersurface H-¥(O) is described by the Hamiltonian H:
T’V — R, .H(p,a) = 3(Ipl%-1).

Let (M,w), (M, (3) denote the symplectic manifolds of optical
rays in homogeneous media, i.e. incident rays and transformed

(say diffracted) rays respectively (cf. [9] E4] ). In this paper,
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as an optical obstacle problem we understand the problem of indica-
tion of singularities of varieties of incident and transformed rays
by the corresponding optical system.

DEFINITION 2.1. (A), The phase space of an optical obstacle pro-

blem is the following product sympléctic manifold
P = (MxM; Kﬁ&r—%;{'w), _
where ﬁl,z: MxM —» M, M are canonical projections.
(B). The transformation process, say reflection, refraction or
diffraction of the incident rays is governed by the corresponding

lagrangian subvariety of P, called an obstacle variety.

As an optical obstacle problem we consider now the refraction
on the sample of inhomogeneous optical medium. To modelize it we

assume the following refraction coefficient in R3:

' 1 for z,€ 24z,
(*) fi(x,y,z) =
n(x,y,z) for zeW,

where W = [(X,y,z)e R3; 2,<242,, 2;< 22} and n is" a smooth
function in the neighbourhood of W. The configurational space

{z (zl} we call the object space and the space [z‘)zz} the image
space (cf. [14] ). The corresponding spaces of light rays we denote
by (M,w) and (M,) respectively. The optical instrument between
{z = zll and {z = zz} determines the transformation of the straight
lines of the object space into the straight lines of the image space.
To find this transformation in our case (%) we must look at the
corresponding Riemannian geometry of it. The corresponding Rie-

2

mannian metric g on W; d§ 2. nz(dx2+dy +dzz). For g we have a flow

Xg on the cotangent bundle (T W, ) At'first we define an "ener-

n

gy" function Hg: T'W —e R by: H (p) = 2 <p,p ) where (. '>g
is the inner product on T W 1nduced by g. Flnally the geodesic flow
Xg on T'W is the unique vectorfield such that Wy (X 5e) -—dH ( ).
By the obvious relation (cf.[1]) between g and X on T W we obtain
the respective geodesics on W, in fact if 1: [a,b —+,T W is an in-
tegral curve of Xg’ then IW-I : [a,b]— W is a geodesic on (W,g).
Every geodesic on (W,g) can be obtained in this way. Thus this is
the main reason for the symplectic description of systems of optical
rays.

By the straightforward calculation, taking the optical length

parameter

0]

2 2 2 2
€.= Snds, (ds”= dq1+dq2+dq3)

o

along a geodesic, we obtain in W:
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1.1

Hy(p,a) = 2(;2\p|2— 1)

and the corresponding Hamiltonian vector field Xg;

192, ipfan 2
X = 2 ( —5p, + &) ).
g n n? 1'bqi a3 Ra, 'bpi
Thus for the geodesics on W we obtain the following equation:
. dq. .
\ s 1,9n J\2 2 3
(%) — = 3G )0 (gg) - 5 2 ) .
42 n'3q, 3 “dG n %q dG
We see that the light rays in the object space (M,Cs), which
are coming to the planezz = {Z;ZI} form the four-dimensional open
subset, say CGIC.M, of initial conditions for the equation (¥*¥%).
These initial conditions propagate symplectomorphically by the flow
of Xg to the plane 2322= \z:zzi being considered as elements of the
image space (ﬁ,é&) covering an open subset CQZ of it. The pairs
of light rays connected one to another one in this way form the

canonical variety of rays associated to the optical instrument. We

easily obtain the following

PROPOSITION 2.2. For a sufficiently small neighbourhood V of the
constant function n: W — 1 (in the C® -Whitney topology [18]), for
each element of this neighbourhood, the corresponding canonical va-
riety of rays forms a lagrangian submanifold of P. It is a graph

of a symplectomorphism @: M — M defined, at least, on a sufficien-
tly small open subset of M (neighbourhood of a principal ray).
REMARK 2.3. The corresponding Darboux coordinates on M (and M res- -
pectively) adapted to the above refraction problem, say (rl,rz;sl,sQ
with w= dr l\ds + dr l\dsz, are connected to the standard phase spa-
ce coordlnates (p,q) of T R3 by the corresponding symplectic reduc-
tion % T'R3>HT1(0)= LGpi12-1)-0} — M,

M
q,P,y QP
Wy (PysP43ay59,543)=(Py,Pg3ay- ———— a4, —13 ) = (r39),
2 2 2
1-p,-pPy \ll-pz—p3
where we assumed in the respective subject and image spaces n = 1.

To each point (rl,rzgsl,sz)ehdis uniquely associatéd the corres--

ponding ray, say "

1 2

pe_n2 PNy 2 .2
. Vl ri-r, Vl ri{-rj
which allows us to translate the concrete optical problems into
the language of the space (M,w) (cf. [9] , [t0] ).

)»

(ql’qZ’q3)=(0’sl’S2)+ t(1,
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3. Equivalence and classification of the canonical varieties.

The problem to which we are coming now ié to indicate analy-
tical properties of lagrangian submanifolds LgC.P, determined by the
corresponding optical metrices defined by n. It seems that this
problem has no simple localization, since it is not‘obvious,that the
local properties of Lg are determined only by the local properties
of the function n. However, in more general setting of a quite ar-
bitrary optical instrument, it is interesting to investigate the ge-
neric properties of L _assuming that all of them are realisable.
This suggests us the classification problem (cf. [18)) for smooth
symplectic relations (cf. [t0}, [9]).

3

Now we formulate the problem. Let L, L,e P = (T Q)<T7Q ;
X ‘xw

20" be two symplectlc relations (lagrangian submanifolds
of P) from T Q to T '0. By K (and H) we denote the symplectic rela-
tion in D = (T ‘0xT'Q; ‘EZwQ o o) (1nD_(T DT Q,"?wﬁ_‘xu.))

corr‘espondlng to a symplectomorphlsm @ (‘Y) of T Q (and T’ Q respec-
tively).
DEFINITION 3.1. Let (Ll’pl)’ (Lz,pZ) be two germs of symplectic
relations in P. We say that (Ll’pl)’ (Lz,pz) are equivalent iff
there exist the corresponding germs of symplectic relations (K,v),
(H,w) (defining for the symplectomorphisms) such that:
(1) L = KoL,oH,
and
% (o) = 0D, w0y = ¥ D,

where f(Q) and T( are the canonlcal projections in T Q xT Q and
T Q xT Q respectlvely.

Let F:(Q x0xA ,0) — R be a Morse family for symplectic rela-
tion (L,0)c P (cf.[20]).. We consider the foliowing germ F: (Q x0 x
A0y — Zya v Flapdnh)=(Fla,ad;, %),0) € Zq o
where Z,q 2 denotes the ring of germs at zero of smooth functions
depending on § and ™\ (cf. [8])
PROPOSITION 3.2. Let F be transversal in the source point O of the
germ (¥ ,0) to the ideal Nné’% ( mca’,A is the maximal ideal in
z;a”). Then the corresponding germ of symplectic relation (L,0)

is equivalent to this one generated by the following Morse family

-dimQ

(ii) G(q,q,'k)— Z 'X (@;- a;)

1

: " * o
representing the identity symplectomorphism of T Q into T Q.



76 STANISEAW JANECZKO

Proof. By.the straightforward calculations it is easily seen that .
the assumed transversality condition is sufficient for (L,0) to be
the germ of symplectic relation representing a symplectomorphism

T*Q — T%ﬁ (cf.[l] s [17]). One can take K and H just represented
by the inverse symplectomorphism and identity. Thus we obtain the
normal form (ii).

We see (by the transversality condition) that the class of
symplectic relations corresponding to symplectomorphisms is stable
(cf£.[8],[18]). The further analysis of the equivalence classes for
the symplectic relations can be conducted by the equivalent notion
of Morse families.

Let 2: Q xQ xN — R, v Q :Q xM — R be Morse families co-
rresponding to K and H respectively. Then using the properties of
composition of symplectic relations (cf. [17], [20}), we obtain:
PROPOSITION 3.3. Morse family for the symplectic relation given by
the composition (i) is following,-

G: 0xQxW — R,
G(a,3,w)=%(q,q',9)+F(q',q"', M)+ (3',q,pm);
where w=(q',v,ﬁ',%vu) is the Morse family parameter.

Thus the symplectic relation (i,o)é P with the Morse family
F: 0x0x® —» R is equivalent to (L,0) iff there exists diffeomor-
phism R such that the following diagram commutes

Qx0T xW —F—v Qx0T xW
N
0xQ
and
GoR = F + q,
where q is a nondegenerate quadratic form of remaining Morse para-
meters (cf. [21] ). By the above mentioned reduction of Morse para-
meters one can reduce G to obtain Morse family with weRdimQ+dimQ
(cf.[ZO]).

Infinitesemal properties of the orbits of that equivalence re-
lation differ from the standard one in singularity theory of mappings,
Because of the product structure of P,presefved by the equivalences
the problemlof classification of the normal or prendrmal forms
seems to be quite difficult and contain the complicated functional
modulus. However some generic local properties of symplectic rela-
tions implied by the concrete physical models can be established.

We leave it to the forthcoming paper. Some remarks concerning of

this problem can be found also in [10] .
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4. Singularities in systems of diffracted rays.

Diffracted rays are prpduced, for example, when an incident
ray hits an edge of an impenetrable screen. 1In this case the inci-
dent ray produces infinitely many diffracted rays (see [13] ), which
make the same angle with the edge as does the incident ray.

Diffraction on the point aperture in a plane screen, éccording
to the preceeding framework is represented by the following symplec-
tic relation (canonical variety)

MxMoL = {(r,s;F,g); S = S,= §1= §2= 0 } .
Hence the diffracted rays corresponding to the point source rays N
in (M,w) are given as a symplectic image (cf. po], PO],[9]),
L(N) = | (F,8); 8= 8,=0 Je(M, &).

It is easy to verify that the canonical variety corresponding
to diffraction on the straight edge of a thin screen [(ql,qz,qs);
q,= o, q3)()} in R3 is given by the following Morse family:

G(sl,sz,gl,52,\)=QISZ+$2§2+}3(51—§1). .
It contains all cones of diffracted rays produced by incident rays
in general position according to the edge (cf. [13], Fig. 12). We

recall the symplectic structure on M xﬁ, namely,

- % (dF,AdE, - dr ads.), (i=1,2)

Thus the lagrangian submanifold of diffracted rays produced by the
rays normally incident on the edge (i.e. the source at infinity)
is governed by

F(Z,,8,,N = 08,.
Taking the point source beam of incident rays in general position
(a,b,c) eIR3
ted beam:

F(5,8,,0 = A h-aVI-X-N  +(A -b)h+ (hg-c)\o+

we derive the following generating family for diffrac-

+)2§2+ %3(%7—51);

We can generalize the problem to consider an aperture in a
plane screen to be a generic smooth curve. In this case, on the
basis of the beautiful paper [6] we obtain,

PROPOSITION 4.1. For the generic shape of an aperture in a plane
screen. The wave-front evolution by diffraction of a normally in-
cident ray beam in the neighbourhood of each ray going through an
edge is described by the following generating family:
Vlartsh0) = Ny () va W (Lewy (0 vayhy-aghywy () ¢,
where  w (%) = w(h)-Ww' (X)), wy(X) = wi(X,), w(d) = a, N+
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+ a3\g+ O(ﬁg) is a smooth function defining the Taylor map corres-
ponding to the aperture curve.
Proof. Let f(sl’52)=0 be a defining equation for an aperture curve.
Thus a generating family for the canonical variety LCP,
G(sl,sz,gl,52,%):%1f(sl,52)+\2f(§1,§Z)+§3(sl—§1)+ﬁa(sz—§2). The
beam N at infinity in (M, w) is generated by
F(s) = 0.
Hence L(N) is generated by the family:
Q(8,8,,N = NE(5,,5,), )

and the corresponding diffracted lagrangian variety in Twmg is ge-
nerated by .

q(q;d)='>‘f(/‘1,/42)+/&1’)\1+/429\2+q2’>\1+q3'>\2+qlv1—%?—?\3 )
where o = ('X,')\l,')\z,/‘l,/“z).
On the basis of [6] , taking the local representation of f, and
reducing the parameters of the family R? , we obtain the desired
result. :
EXAMPLE 4.2. Let us take f(IM1 ,/42) =/A1—/A§, thzngwe obtain the
generating family for the diffracted variety in T R";

'\'|\f(q,'>‘1,'lz)= ql'Xi'(1+49‘§)+q2')\2—2'>‘1'>\2q3—5‘1')\§-‘.
We see that it is not stable in the standard sense [2ﬂ and not lon-
ger a differentiable submanifold of T*RB.‘ An analysis of the gene-
ric properties of these varieties in the neighbourhood of the ordi-
nary and inflection points of the aperture boundary ( cf. [6], [13])
we leave to the forthcoming paper.

Now we can adapt an introduced symplectic framework to descri-
be the diffraction problem on a smooth closed obstacle. The pro-
blem is substantially connected to the Riemannian obstacle problem
(cf.[2},[4]), i.e. determination of geodesics on a Riemannian mani-
fold with smooth boundary. Any geodesic on such manifold is C1 and
consists generically finitely many so-called switchpoints where
geodesic has an initial or end point according to lie in interior
part of the manifold or on thé boundary. Cauchy uniqueness for ma-
nifolds with boundary states that every boundary point (point of an
obstacle) has a neighbourhoodAin which: if two geodesic segments
with the same -initial point, initial tangent vector and length do
not coincide, then one of them has its right endpoint in the inter+
ior part of the manifold and is an involutive of the other (it the
case of thé plane it lies on an appropriate involute of the obstacle
curve [13]). By an involutive of a geodesic ’Y is meant a geodesic

which has the same initial point, initial tangent vector and length

as
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Let us consider an open subset S of an obhstacle surface in Rs.
By 11 we denote the initial tangent line to the geodesic segment 'T
on S. Let l2 be a tangent line to S. We say that 1 is subordinate
to l1 with respect to an obstacle S if 12 (or its plece in (lR‘Z,S))
belongs to the geodesic segment with the same initial point and the
same tangent vector as has.
PROPOSITION 4.3. The canonical variety

L= {(l i)epP; T is subordinate to 1 with respect to' an
obstacle S CIR3 }
is a lagrangian subvariety of P.
Proof. At each point p of S we can choose the geodesic polar coordi-
nates .
:10,Q[*R — L?pcs,
e(r, 0)= expp(r‘cosge (p)+ rsinB e (p)),
where {e (p), e (p)} is an orthonormal ba51s of T S and exp is
the corresponding exponential map (cf. [1]1). Let (1g5p) denotes

a line tangent to the associated geodesic starting at p. We have

u(®,r,p) = ((1g,p); ((TeXP (rcos@e (p)+rsinDe (p)))\(F 0)’
exp, (rcos@e (p)+r51nOe (p)))eL ¢ MxM,
and the mapplng

45 (r,0,p) - u(r,0,p) &P

R
is a lagrangian immersion, i.e.
U (Hhow) = o.
Let N denotes the lagrangian submanifold of rays in (M, w)
starting at the same point p of the object space.

PROPOSITION 4.4. For the generic position of peR3

and the generic
obstacle surface S the only possible germs of systems of diffracted
rays L(N) € (M, &) are symplectomorphic to these ones generated by
the following generating families (not necessary Morse families[lO]):
1. Smooth case

F(§1,§2)
2. The wing singularity

F('é'l,s ,N) = Z—')‘ B—')‘Ss + —'XS
3. The open swallowtail singularity

~ = 1 7. 1 45~ 1 a4~ 1832, 1820 ~ 172
F(SI’SZ’IM= 576 N+ E% §,+ —4'Xs + —6—')‘ 8)+ 2'>‘ §,8,+ 2')\52.
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Proof of this proposition follows immediately on the basis of Propo-
sition 4.2 in [10] and the general methods of [4].

Now we can describe explicitely the generic diffracted wave-
-front evolution in the presence of a smooth obstacle in RB;
COROLLARY 4.5. For the generic obstacle in Euclidean three-space
the only singular models of surface-diffracted wave-fronts are

given by the following phase families (cf. [12)):

1. (inflection points - geodesic has an asymptotic direction).
_ Y 145 1 2 ,’ 2 82
bY = - —N2- ) R .
(«P(ql,qzyqs, lﬁmz"xs) 40&3 2%3')1*‘ q, 1 al %2 .+q2')\1+q3\2
2. (biasymptotic points - geodesic is tangent to a line of asympto-

tic points).

- 7 5 4 1 152
Playray,a,%5%,%) = - 576“ 305‘3%1 24&3’k &37\1')\2
1o o2 ,{ 2 A2
- 7’3m2+ q2Q1+q3ﬁ2+q1 I—QI—QZ B
REMARK 4.6. The wave-front evolution "l:" in the above corollary

ane can obtain also by the Legendre transform introduced in the
singularity theory of functions on manifolds with singular boundary
[15] ,[5]1 . ret (T c%io} ¢”, %;n, ¥en) and (T"e"-qol, M7, X, %)

be two special symplectic structures on (T76 n 'I n) Here M" deno-
tes the manifold of hyperplanes in ¢” and %: T G —{Os — M"  is the
canonical lagrangian fibration associated to it. This fibration
induces a symplectomorphism o : T%C -{0} — T%Mn (and its projecti-
visation o : P’I‘*Gn — PT*Mn) such that X = _'an°o( and VW= ok% '\7‘Mn.

In local map ® is given in the following way:

p

A(p P, ;X x )=(-x,p -X_PysP =2 In X 4%, =2+
1"") n’ 1""’n 21""’ nt1° 1Jp1’°")p1) 1 zpl
Pn
+...+xn51),

where the hyperplanes in " are parametrized in the following way
. PyX +PyXpte e tP X =P X -PyKy=0..-p X = (0]
Let V={zeC"; h(z) = O} be a complex hypersurface (boundary) with

isolated critical zero. We consider the lagrangian variety (qf-flﬂ)
')rn

\ * T erT
=Ty tof ¢
It is obvious that ®&(V) is a costrained lagrangian subvariety of

T'M" with constraint

AN = (Xyne o) (V)
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called a Legendre transform of V (cf. [15]). It appears thet the
singularities of the wave-front evolution in the presence .of an ob-
stacle are diffeomorphic to the. appropriate Legendre transforms of
the singular houndaries with isolated critical points of type Ak'
Their connection to the Coxeter groups generated by reflections is
settled in [10] .

REMARK. 4.7, .It appears (cf..[12),[4]) .that the singularities in the
ohstacle _geometry can be represented in.the. symplectic space of
binary forms.derived in.[12}.. _Using the invariant theory of binary
forms_the three-dimensiopal case, described. in _[4] was generalized
in_[lZ], whene,thevanalytical.structurewof_themgenenalizgdhapén
swallowtails .was .indicated and..the. standard. reduction. procedure

was substantially extended. . Let .us recall briefly these .results.

We say that two binary forms. f£(x,y), g(x,y) . are apolar if
their.apolan.covaniant.(see.[12])m,4flg) is . identically .zero form.
It £, g are written umbrally;.. f= <U\[u.u].‘.1) , g.=4U \[P ul™>, say
mg¢n then. the corresponding apolar covariant. £flg Y is the binary
form of degree n-m defined.umbrally by

<f1gy=<ul® 1M [au]"TT Y
Let (MQfl,UI).be the unique symplectic space..of binary. forms .(deri-.

ved in [12]). The canonical subspaces in Mn+1, say C(l), 0$1$n;1,

of all binary forms apolar to its.l-derivatives.with.respect to .x
are called the canonical apolar subspaces. They form the coisotro-
nf?,u:l,“(chq[lll.. To the space.of hinar;
forms of degree n one can associate the correspanding space of .poly-

pic varieties.in . (M

nomials of one variable.putting y=1. . In oyden.tomhaye the polyno-
mial symplectic spaces. adapted to.the investigations _of_ singulari-
ties in the variational obstacle problem we, associate to every sym-

plectic space (Mn+l,bJ) the canonically reduced symplectic space
Qn_lof polynomials of degree n-1, where leading term has constant
coefficient 1/(n-1)1, Qn—1=lcoﬁv , where "a" is given by the co-
isotropic submanifold C0= {f EMP+J; n!an=1} , (ai)g are coeffi-
‘cients of binary forms. Qnm1 is identified canonically with the

space of derivatives %;(f(x,l)), feMrH1 belonging towCO,.namely

n-1 2k+2 x2k+1 k+1 k k+i

' X X X
07 3 0= BT TR T Ik Tk T Phatkt Fro 21Ty

‘endowed .with the reduced symplectic structure-

Kyl
w'=. 21dp. Adq..
j=r 7
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THEOREM (12). The apolar subspaces C(l), 1=1,..., ﬂél, of
(Mn+1’ps) induce the corresponding coisotropic subspaces of (any}J)
! ~(1 ~(1 -1 =~(1
say &1, ). Lpeo™ s Pé )(a,p)=0, s=1,...,1 ., 121, 0. ks,
where
k k-s+1 k+1 .
~(1)_ (-1) n-1,,n,-1 1 i
PS L= Py 2 ( i )(i) qipi+ zzk . (—]_) qiqn—s-—'i'
i=1 n!” i=k-s+2
k n-1
n-1 P sy gy (—1) n-1 - i1
,Cui_J;k(nAs—})J+_.“.'.NZ: (C77)il(n-s-i)!p, _jq . .+ a_.
- n! 1=k+2

.Hence we have that the reduced symplectic.space.corresponding.

to. the homogeneous system (Q“'¥,uﬁ,6§?2). is.identified. with the

following space of polynomials

2k+1 2k-1 k k-1
z ={ % +q, ¥ bt = -p x + 4+(-1)kp }v
(2k+1) " 1(2k-1)! ° kk! K (k-1)1 = 1

endowed with the reduced. symplectic. structure
- k
W = 2} .

The study of Hilbert’s zero-forms and connected with .them
the corresponding spaces of polynomials with root having .a prescri-
bed multiplicity, :.pravides the .following.result.(see.[12]);:

THEQREM. ( [12)).. .. Let . m )[%]J ..Then .the set.of.polynomials.of .Z

(n)
m-1’ n
ties-in“(Z,C3lbw.The“maximal”isotrnpicwvariety,hiucmmfnn__m;{ilu,

having _a. root_of multiplicity m,.say L form.the .isotropic .varie-

is a lagrangian. variety symplectomorphic,. in the. case_of n=7, to
the system of rays.on an ohstacle,.with. the_ highest _generic_singula=

‘rity, so-called open swallowtail singularity.
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