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CONNECTION THEORY AND PARAMETER TRANSFORMATIONS

Bela Kis

1.1 Introduction

The classical connection theory on fiber bundles has two
symmetries: a fiber symmetry and a hidden one. The fiber symmetry is
related to the fiber group of the fiber bundle. Identifying the
connection with its parallel translation the usual connection
commutes with the action of the fiber group. This part of the
connection theory is well described and has several generalizations:
it includes the theory of linear and homogeneous connections as well
as the theory of the principal connections [3],[1].

The hidden symmetry is related to the ' notion of parameter
transformations of (smooth) curves. Considering the parallel
translation as an operation which maps the curves of the base
manifold to curves of the total space, we can see that in the
classical connection theory this nperatiﬁn also commutes with the
parameter transformations of curves. However, geometrically it is
not obvious that this commutation condition must be satisfied to get
a meaningful connection theory. Our goal in the present paper is to
give a short description of a connection theory in which a

generalized version will be used of the above condition.

In paragraph 1.2 we give a short 1list of the notions and
notations used in this paper. The next three paragraphs of part two
are devoted to build up the basic notions of our theory. These
notions are worked out only for the most simple cases and we do not
touch the question of the fiber symmetries, however fiber symmetry
can be easily transplanted into'this theory; .we use vector bundles
from technical reasons but the connection theory will not be linear
in the "classical" way.

The third part is.daaling with the first order case and contains

the - classical connection theory and the theory of the
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(over)generalized connections as special cases of our general

notion.

In the last part we sketch an application from the Finsler

geometry: the global description of Rund’s é—derivation C[41.

1.2 Basic notions and notations

In this paragraph we collect some basic notions and notations

used in the followings .

First of all we use the term "smooth"” as the synonym of the
phrase "C™ —differentiable".

The +triad é:(E,’R’,ﬁ) is a topological fiber bundle if E ,B
are topological spaces and JA:E—3 is a continuous surjection.
We call spaces E and B . the total space and the base space of § ’
and the map W:e — B its projection. The fibers are the sets
g 25 (p) (ped . _

A topological fiber bundle §=(A,ﬁ;'5) is a smooth fiber bundle if
E and B are smooth manifolds and ¥ is a smooth submersion. g
is locally trivial if for every -PGB there exists an open
neighborhood Up and a continuous (smooth) map ‘PP:T"(U')QU,,XF

(F is a fixed space) for which the diagram

commutes. The total space of a locally trivial smooth fibered bundle

T (up) er

is called fibered manifold. A 1locally trivial continuous resp.
smooth bundle . é is a continuous resp. smooth vector bundle if its

fibers are vector spa‘ces and the maps

are linear on the fibers for every 1 € B, uPn u"'+¢

If é is a bundle, we will denote its total space, base space .
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and projection by tL ¢ , {3 and ffé in order. If M is a manifold,
its tangent bundle is denoted by TM . We also use the following
notations: TM:=tlTHM, Agu:r.rf‘rn -

We will say that the pair (£ ,f) is a bundle or fiber
preserving map between continuous resp. smooth fiber bundles §

and 1) if the diagram

&L

té >t

pré Pre

v v

bat e > ban

is commutative and the maps « , P are continuous resp. smooth. When
the base manifolds are equal and the map P is the identity we say
that the bundle map (L ,‘5 ) is a strong bundle map. If (L ,p ) is a
bundle map between vector bundles and the restrictions of the map
o« to the fibers are linear we say that (£, ) is a vector bundle

map. We also use the 'strbng vector bundle map’ terminology.

The map « completely determines the map p s SO we will use
the simpler notation L instead of the more deductive notation
(L,po. '

Let 4: M ——> 4yt be a smooth map, where ¢ is a bundle.
We construct the pull-back bundle ‘l’!g of & by 4 in terms of the

commutative diagram

W't adgy > 1€

pr(v€) | pr €

G
<
£
<
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which is the so called pull-back square associated to ¥ and é -
The bundle 4yf§ is not canonically determined: its usual
representative is the bundle (PH°i ?ﬂ(P)xg‘,, Pr‘,M ). However, the
vector bundle map ad;lr is canonical relative to the bundle 4'§ '
i.e. Yy g determines ad;ql canonically.

1f K is a bundle map between bundles 7 and g where the base
space of 1L is M , ‘then we can construct a unique strong bundle map

Y!o( ) —> lyfg for which the diagram-

is commutative. We call this map the pull—-back factorization of
K via &4 .

The pull-back functor preserves the following properties:
continuity, smoothness and local triviality. It maps vector bundles
into vector bundles again.

If g is a vector bundle its vertical subbundle is denoted
by V§ . This subbundle uf’t'llg is cannonically isomorphic with the
pull-back bundle (Prg)!}.

2.1 Germs of Curves

Let ¥= {(a,t)]ac<0<t; a,(reM} be the canonical system of the
neighborhoods of O0€R. If PEM then let l"(ﬂ):fl%u l"P (M) , where

l"f,(M)é i"":_l-——-)MlIea", ¢ is a smooth 1-1 map, T(°)=P}

I o (a,(r)*-) M is an element of I;,(M), then for any
A E (a.,(r) let us denote by 1IT4T the map

(Rap)() = g (t+a),

whose domain is the interval (G.-A,(r-a) and which is an element of

I},(A)M - Two elements %:7’- of I}(M) are called ger=s
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equivalent if there exists such an element I of & for which
I < domy; N dom @;

and

fijr = 3411-.

This relation is an equivalence relation on r",(M) . The factor
set of l} (M) by it is denoted by GF(M) and its elements are the so
called curve germs. If yél}(M) then its equivalence class is
denoted by % . The union G(M)= léIMG-(M) of all equivalence
classes is called the curve sheaf of M . We can define a topology-
on G(M) by the system of neighborhoods u:, of any %e G(M) - If .
%GGP(M) ¢ pEM ) then the elements of /] are the sets

u (313‘31) = {(T'rqy‘)ﬂ,,) | eIl
where %= (T)P'I; do",r .

The canonical projection ﬁ'iG(M)"_) M is defined by
ﬂ'(%) =P iff g, € GP(M) . This map-is continuocus. The triad
(G(M), M, Tl') is a (non-locally trivial) topological fiber bundle. - (
We denote this bundle by G(M), too.) .

IfF Y:M—/>N is a continuous map between manifolds-
then the map .

C(e): M (M) — " (N)

T— Ty

induces a continuous fiber preserving map. G‘(‘P) betwesan G(M) and-

G(N) .

Two elements 'Yq', Y of Pf(M) are called rth order equivalent if
‘the derivatives of the map .fo'ﬁ -—fox'_ vanish up to rth order for
any smooth function f defined in an open neighborhood of - The
.rth order equivalence is an equivalence relation on fi,(M) s if
f‘"é r'f(l"l)then its rth order equivalence class is called its r—jet at
! and denoted by J;.("-) . The set of all r—-jets at 'P is denoted by
']-;(M); the union ‘3".'(?4) of these sets is naturally a fibered
manifold with the canonical projection i 'ir(M) —_ '}.Y(N) which is
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defined by the relation J'(z)=p iff ZE€ 9;(1\4) (106”) (see [21).

T
There exists a natural map J* between G‘(M) and ¥ (M) for

which the diagram

J-r
6(M) > 37(m)
g xT
M od > M

commutes and which is defined by the relation

) = 5 (@)
This map is the so called rth jet expansion.

1f ¥: M —> N is a smooth map then there exists a map
Py P
Jr (‘P) between manifolds IJ' (M) and ¥ (N) for which the diagram

5O

37(M) > 4T(N)

T xr
M—-——\L——sN
T x
L

6 e(f) > 6(N)

is commutative. The definition of this map is:

4 ()(fr @)

J"rr(f) (o)

2.2 Subsets of G(M) and Parameter Transforms on M

Let IR = (—oo, oo) be the real line. The set G ('R) is a
topological group with a multiplication induced by the composition

of the elements of l'; (IR) . This group acts continuously the and
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freely on G»(M) on the right by an action also induced by the
composition of functions. I*F/q_ eGo(m) then its action on %GG(M) is
denoted by R, ‘. :

Two elements 3‘;;5 eGr(M) are called g¢graph equivalent at P if
there exists such an element g4 of G.o((k) for which 31=Rﬂ34 . This
equivalence is denoted by 31"'??& 3 the equivalence classes - the
orbits — are called the graph germs of M at P and the equivalence

class of %Gﬁr(ﬂ)is denoted by {3}f .

~
Definition: The family d-:{HAMe @} of disjoint subsets of
G(M) are called a refinement of ~p if the following condition is

satisfied:

(«) if g,,g,_éfr(")are elements of the same subset Hy (1€0
then 31~f3’- for some pEM .

In this case we say that %, and 3 are congruent.
~
A refinement ,*={H1|A€ @] of ~p is called a parametrization
structure on ™M if there exists a subgroup *G of G-o (IR) which

satisfies the following condition:

((5) if 3,,326(}(}4) are elements of the same subset Ha
(A€O) then there exists a/«.ﬁ*G-» for which 31=Rﬂ31 .

This element /L is wuniquely determined and we call it the
parameter transformation associated to tlle pair (g.,j._) - The group
¥G is not unique; any subgrouP of Ga (IR) which contains it
satisfies condition (f!») . We call the smallest subgroup of G-o(ln)

which satisfies condition ((5) the pParameter transformation group of

~

* .

There are two special types of the above defined notion: .

(1) The parametrization structure sﬁ[H;Iae@} is called full
if G(M):Al‘Je Hx . 1In this case # induces an eguivalence relation
~  on G(M)which is finer than ~Mp 5 i.e. if‘ja”ga. then ‘I‘ij"' .
This relation is compatible with *G and in this case @ is
denoted by G(M)I'G- - ~ . »

(2) The parametrization structure \#=[H;|Aee} is called fat
if every G'r(M) contains exactly one element aof Hj -

I+ % - is a parametrization structure the subsets of it are
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also parametrization structures.

-
Definition: A parametrization structure &= { Hal 2 e @} is
called homogeneous if the parameter transformation groups of the

subsets

F = {HalA€6, H,c G (M)]

are equal.
In thié paper ‘we will use only homogeneous parametrization

structures.

Examples: (i) Let O= M and Hy= G'A(M)' The set ;:{Halle @l is
a parametrization structure onM. Its parameter transformation group
is the group G,(IR) . This parametrization structure is obviously
full.

(ii) Two elements 31'3,_66-(") have the same orientation if the
parameter transformation associated to the pair (3,,31 ) has a
representative k whose first derivative 1is not negative on its
domain. This relation is well defined and is an equivslence relation
which determines a full parametrization str;u:ture + onM . Every
set Gr(M\ contains exactly two elements of *— because curves have
exactly two orientations.-

(iii) An element 3, of Gr(M\ (fEM ) is called geometric if it
has a representative T whose tangent is not zero in the domain of

. If the iEt of geometric elements of Gf(M) is denoted by Gr
then the set J'G'-'fq-,lreM} is a full parametrization structure on M.
The parameter transformation group of ‘*'G- is called the group of

the allowed parameter transformations of M .

2.3 General Connections

Let g be a fixed smooth vector bundle.

Triads (G(l-bg)"lt'lhg) and (}'(hg),it;'lm&) are topological (smooth)
vector bundles so we can construct their pull-backs via f s these’
bundles are denoted by (Frk)!é-(blg) and (‘w?)‘??b&&) . We can define
the action of the group G,(R) on the total space of (Prg)!G((mi)as the
pull-back of its action on G(ba§) 5  i.e. if A €G(R) - ana
%e((rrj)"(.,“bf))? then Rﬂqe((f'l)"G('Ms»f is determined by identity

(ad 6(ab) P7$) (R = Re (0 (sat) frEXG) -
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Definitions The continuous fiber preserving map

P (pr) 6(tr5) ——> 6 (tf)

is called a (free) continuous connection on vector bundle § if it

satisfies the following condition:
G(pré)e ¥ = adeeag) pré

(which is the pull-back factorized version of identity
(préY G (pri)e ¢ = id (prfyiceat)

~ ~ . -
Let \#‘“J and ‘*&A} be parametrization structures on -l:?f and
ME respectively.

Definition: (1) Continuous connection ¥ is weakly (‘;Rf ’;:LAE)
symmetric if for any two elements 31.%1 of (frrk)’G.(l,-A t) the fact
that (qole(“g)rofg)(ﬂ,) and (adg(“ntwﬂ(t},) are congruent implies that
‘”%‘) and ‘f(%,‘) are congruent. ~

(2) Suppose that parametrization structures ;ﬂ} and d’hg
have common parameter transformation group ¥G- . A continuous

connection ‘P is called *G —symmetric if for any 34,71 G'H.(P'rg)'ﬁ-(c-l\k)
the fact that Rf‘%‘ = 31

for some neGO(IR\ implies that Rﬂ Y(%,): '9(31) .

It is obvious that if a connection is*G ~sypmetric then it is
weakly symmetric.

Smooth functions and curves can be approximated by finite
segments of their Taylor-series. From the differential geometrical
point of view connections which are determined by their finite
approximations are very significant. The correct definition of the
phrase "finite approximation" for connection theory is the
following:

Definition: We say that the ¥*G -symmetric contiﬁunus connection
is rth order determined if there exists a continuous map

b: (prs) F(6af) — ¥ (1E)
for which

Jo (2longp) = & (ndeol@)
for every (N'; %) 6{»} X Gr(lm&)c 1t (Frt)G(("A“ (P'—'- (f‘\'g)(v‘))
and & is smooth on the set (od(r(‘r“)lp'rf)"‘(r &“"J‘-;Mf H))

This mapi “\, is called the horizontal map of ¥

The most often used type of rth order connection theory is the
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first order connection theory. The remaining part of the present

paper is dealing with special first order connections.

3.1 First order connections

Let Y be a¥X(G -symmetric first order determined connection

on vector bundle f . where ¥G is the common parameter
transformation group of parametrization structures ;tef and
dzbf . In this case we can identify the functor 1 with functor

d+ i.e. for any manifold M the space j‘(M) is the tangent space
TM of M and the first jet of maps is equal to their tangent map,
so we can consider the horizontal map 4\, of b as a fiber
preserving map

Ao: (peb)yrlat —> Ted
which satisfies condition

(V(Ara’f,)) 4. (v, dlpy)

for every (5 ) € {v} x Gy (bad) 4t (pe)! GUal) (p= (pr b))

Proposition: [( ¢y df,ff] od = ‘dcmwnu
Proof: If (T) 2 ?(yp) then  (v4e) = «d (P"f) G (bat) (4;-,-*) =
= (Liprty & (prt e %) (v; 253)= LiptYeprbil (o= (s fprtofly) » o = (prieF)p

Now
L(prttdprt)er] (e clpy) = [prtY dpr (o e (vl =
=Llpeb) dpr 1 (lef) = (7 oy ((p«&) #) = (ardpy) =
= Wortfrray (wolpy) O-E-D-

Lemma: *'°l'ctt§ — 4 0 [(’r«'f)'olf-r!‘] (z) €tt V-t
for every 4 et} ’ 26(’&'.”0—
Proof: It’'s known that x ettt V§ if and D“1V if (dr".t)(x) =

and this is true if and only if ((r-,-f) AF(H(K)
Now ((f"f) d'?"'t)("d'ﬂ(! Lo ((p f)df‘rf»—
(e Ctprb)— (et o)) Cprbidpe) = O B.E.D.

Using this lemma we can define the analogues of the notions of

the classical connection theory:

Definition: 1) The map 'W“‘-:&.‘(Prf)!clfwf is called the
horizontal projection of P

(2) The map 'Jt'v = H'H:lf —_ ']I’” is the vertical projection of
v .

(3) 1+ (F"k)'.t and Vf are identified by the map 'rf :Vf—’(‘.w_”"!
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then U“:q}ojrv is called the vertical map of Y .

(4) The map D:(od“wf)or is called the Dombrovski map of ¢ .
If G 1is a section of _{ and & is an element of T‘rAé then we
call the expression (D'olﬁ')(l_l‘) the covariant derivative of § by ~v ,
and we denote it by VV.G' .

Now we will study the interpretation of *G —symmeﬁry in the
first order case. Let us notice first that the tangent space g: (IR)
can be identified with IR . This identification gives a map

T:6,(R) —> R
which is a semigroup homomorphism. 1f *G is a subgroup of G,,(R),
its image by T is denoted usually by ¥R . The functor T maps of
the action uf,(ﬁG"(K)Dn %GGr(M) into t(}t)dr% .

Lemma: For any (ij)é (t)ff)'-‘HrAf and A€’
f (v2%x) = A% (47x)
Proof: If A= T(«) (we*G ) and X=dpy then
4 (5, 2x)= & (0,dp Rup) = Ay (P (5 RPN = oy (Ry P (433 )=AR(vix) @ E. D.

3.2 (Overl)generalized Connections

In this paragraph we are dealing with a special kind of

* G —-symmetric connections. We give the definition in term of the map

i .

Definition: We say that we are given an (overlgeneralized
connection on the vector bundlegif a continuous map
L (prd) voat —— vtk
is given for which
((r'rf)! dprt)eb = iol(?,p-.ﬂ,,f
and which is smooth on the manifold of the non-zero elements of

’(Pvf)"'t’(mk and 1-homogeneous on the fibers.

We can define the vertical and horizontal projection and
vertical and Dombrovski map of the (over)generalized connection
similarly as in the previous paragraph. All these maps are fiber
preserving and 1-homogeneous.

In the following proposition we give a description u#
(Dver)genéralized connection in terms of the notions introduced in

the previous paragraphs:
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~ -~
Let \#{(t and J’&d denote the parametrization structures of ﬁlf
and (Mf determined by the geometric elements of G("A_ﬂ and

G (tlf) » and denote ¥G its common parameter transformation group.

Proposition: There exists a 1—-1 correspondence between the set
of all ¥G —-symmetric first order connections and the set of all
(over)generalized connections on f -

Proof: 1+ ¥ is a¥G -symmetric first order cunnectiun, then its-
horizontal map A is. 1-homogeneous (because of 't(*G):lR-{o} ),
smooth on the set of non-zero elements of (?Vf)' 't‘(rbg . (which set
coincides with (“ATO-AkP"!).‘(d}gxw H)) ) and satisfies condition
(?'rf)!dp‘ft"\": ‘d(?"w‘u'“ ,S0 it ~determines an (over)generalized
connection.

On the other hand, if # is an (over)generalized connection on -
f then we can associate to any (U‘,'ff) ( U'G-“f,f=(?"f)(°')) an
element f,eG-,, (’l(f) in the following way. Let us consider the first
order differential equat?an

= 4G
( 5; is an unknown curve in {(§ ).

The map f is smooth, so this equation has a local solution j;
which satisfies the initial condition 7—‘(0) =N . The curve germ
of T— uniquely determines the curve germ of the solution. Denote
this germ by ‘F(U;ﬁ) . This map is¥*G -symmetric: if /‘LG'G' and
s =(3)°:then o ? is the solution of the equation

r =+ (F & 0e3)

Indeed,

Aof =5 (Foq)=A(F 5 rog) =& (FAF) = A4 (F7)
where A= 'L’(/t) .

We can easily check that if 4u corresponds to ¥ in this way,

then 4L is the horizontal map of L4 .

3.3 Classical Connections

We show how the notion of the "classical" connection fits into
the frames of the just described theory.

Classical connection theory has several settings; we will'fnllbw
the way of the splitting of the vector bundle morphism; for details
one can see [51.

Definitions: We say that a classical connection is given on the

vector bundle f if we have a smooth 1-homogeneous map
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4 (r,r;)"rwst — qtef
for which the condition ((rq-f]!dfrf)-l\_ =id(f"f)£'uh} | is satisfied.

Lemma: The map 4 is linear on the fibers.

Proof: By the Euler’'s theorems for homogeneous maps every smooth
1-homogeneocus map is linear.

Corollary: Every classical connection is an (dver)ganeralized

connection at the same time.

If we define the horizontal and vertical projections and the
vertical and Dombrovski maps as we did in the general. first order

case, we g&t back the usual objects of the classical connection

theory.

Now 1let #ug and ;id be the parametrization structures
determined by the graph germs of GQQ) andG@ﬁL Recall that their

{(common) paraheter transformation group is Gh(m).

Proposition: There is a 1-1 correspondence between the set of
classical connections on § and the set of the G,(lﬂ.) -symmetric
connections.

Proof: The proof is similar to the proof of the Proposition of
the previous paragraph, the only difference is that the map £ will
be smooth on the whole bundle (f-n!'mg ,50 it is linear.

4.1 Global description of Rund’'s J-derivation

In this part we will describe a possible application of the

(over)generalized connection theory.

First we give some motivation: The classical connection theory
is historically based on the parallel translation of the Riemannian
geometry; its prototype is the Levi-Civita connection.

In the Finsler geometry - which is a generalization of the
Riemannian case - several connections are used but there is no such
a canonical connection as the Levi-Civita connection. We will show
in a Lemma that the conceptual difference between the Riemannian
metrics and the Finslerian one is very similar to the difference
between the theory of the . classical connections and the

(over)generalized one: it depends on the domain of smoothness of
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some maps. After that we give a reinterpretation of Rund’'s
Cs —derivation from this point of view. (We chﬁnse this derivation
because it is defined on the tangent bundle of the base manifold and
not in a pull-back bundle of some vector bundles as connections in
the Finsler geometry usually are). '

All details are ignored here; the classical description of
¢§ —derivation can be found in [41].

Definition: (1) The pair (M ,K ) is called a Finsler space if
M is a smooth manifold and K:eTM — R is a continuous map
which is smooth on the ' submanifold of the non-zero tangent vectors
and satisfies the following conditions @ -
(A) K is homogeneocus of degree 2 on the fibers of TM .
(B) The quadratic form (9:", K.) L"Z‘ {where 9;‘-_ denotes the
partial derivation along the fibers by indices ¢ ,J'. ) 1is positive
definite.

(2) The Finsler space (M ,K) is called Riemannian space if K

is quadratic on the fibers of ™ .

Lemma: The Finsler space (M, K) is a Riemannian space iff K
is smooth on the whole TM .

Proof: If (M ,K) is a Riemannian space then K is
quadratic, so it is smooth on the whole TM . .

DL\ the other hand, if K:TM= IR is a smooth function then.by the
Euler ‘s theorems it is quadratic, so (M ,K ) 1is a Riemannian

space.

Now we can give the global definition of the 5 —derivation in

terms of (over)generalized connections:

Definition: On the tangent bundle Y™M of the Finsler space
(M, K) the (over)generalized connection 4: ﬂ M —> tM  is
called (the Rund’ S)J —derivation if (in natural coordinates) locally

it has the form

£ (xlgh, ) = (6 POty X X*eR", n=dim M
where the ith component P* (x*x?) (Aa,‘) of Plxx)y)is
P, () = P (ka0 = [n () 2ty = e (' (X x‘)(k‘)](x‘)’

with the notations

£ _ % / . - IS ' 34-&
Che ":- ¥ %KttK ] "% (Bx‘ YO )
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and .
43»‘ = «‘3‘)‘, 20, (Q1)~) H x's= ((x‘)‘, 00, (x.)n.); x¥ = «"")‘, 0o, (xt)"),

where (3_‘.*') is the inverse of the matrix (3;,)=({ 3.-5K) -

It can be easily checked that 4 is 1-homogeneous on the fibers
[}
of 8,"tM and the covariant derivative associated to it is the same

as the 5 —derivative given in [4] (p. 55, formula 3.18).
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