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QCD AT THE HADRON SCALE AND
NON-LOCAL THIRRING MODEL

Ji¥i Soulek

1. Introduction 4

Quantum Chromodynamics has become the favoured candidate for a theory of
strong interactions. At short distances the effective coupling strength has been
shown to be small, thus for large momentum processes the behaviour of QCD is
calculable and essentially known (perturbative QCD ). At moderate and large di-~
stances the effective coupling is not small, perturbative theory cannot be relied
on, and different, in general less controled approximations must be used. Some of
them are : variational ansatz of the BCS-type [41, the lattice QCD [9], self-
-consistent method of Nambu and Jona-Lasinio [6]. The renormalization group me-
thod improves our understanding considerably, bu& also in the perturbative region
only.

In a sense, the continuum QCD is defined only at short distances : the usual
definition of quantum field theory is based on the perturbative theory with a
small coupling constant [7]. It is known from the lattice QCD [9], that the
high temperature expansion gives good results at large distances. But at the most
interesting region of hadron distances, both perturbative and lattice QCD fall
into troubles. ’

In this paper, we will address the problem of behaviour of QCD at the had-
ron scale. We propose a new perturbative scheme which combines together the weak-
-coupling expansion at short distances with the high temperature expansion at
large distances. Our scheme is a generalization of the perturbative QCD ; it re-
duces to it at short distances.

Our main idea is the following one. The reasonable approximation scheme at
the hadron scale should be non-local and should break explicitly the scale inva-
riance. We break it through the introduction of the approximation scheme - we
use different approximations in the long-wave and short-wave regions.

Generally, any theory describing hadrons must break scale invariance.:In the

"This paper is in final form and no version of it will be submitted for publica-

tion elsewhere".
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perturbative QCD , the coupling constant is replaced, via dimensional transmuta-
tion [1], by a distance scale, which we may for convenience think of as the dis-
tance at which the coupling constant attains the value of order unity.

We shall assume that at distances small compared to a certain scale AO , the
QCD ground state will have properties of the perturbative vacuum, while at larger
distance it will have properties of the ground state of the lattice QCD at a
high temperature. (The relation of Ao to AQCD is not cleér.) This Aj is an
input parameter of our scheme; its precise definition will be given bellow.

In our scheme we shall treat the long-wave and the short-wave components of
gauge fields differently - this is often used in the superfluidity and the su-
perconductivity theories [5]. Let us consider an Euclidean field configuration

¢(x) . In the momentum representation we can write

(1.1) o(x) = J a* #(p)elP* .
We shall divide each such ¢ into the short-wave (S) and long-wave (L) parts
by
~ ~ i
(1.2) »5(x) = J a*p St , ol = J a'p B(pretP* .

[p|>Ag [p[<Ag

In our case the parameter A, defines the theory (contrary to [5], where it plays
only a technical role), because it breaks ‘the scale invariance.
We will consider QCD 1in the covariant gauge

- vy - Lga g
(1.3) L= ¥ivd¥ -7 Fiv B+ Loouge fixing T Cghost

Instead of the decomposition L = Ly + Lj,¢ from the perturbative QCD we pro-

pose another decomposition

(1.4) LQCD = LQCDO + Lpert .

Our O-th order approximation QCD0 is not a free field theory, but the non-lo-
cal colored Thirring model with the infinitely strong interaction. Its Lagrangian

is
1 s S,2 = -2,.aL,2
LQCDO = - Z(auAv - avAu) + Yigy + m (Ju )
(1.5)
: a_ = 1 ,a
m +0, Ju =Y Yy 3 AT Y

where 'JiL is the long-wave component of the color current. The perturbative re-
duction of QCD to QCD0 is the main result of the paper.

In our scheme, there are two differences with respect to the perturbative QCD:
the free part of the Lagrangian for Fﬁ& will become perturbative and the inter-
action term between the quark field and the long-wave component Aﬁ of the gauge
potential will become non-perturbative. It can be summarized that quarks interact

strongly with the long-wave part of the gluon field and that the kinetic term for
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Fﬁv is considered as a perturbation.
It may seem that we have made some strange tricks with .the coupling constant.

But, in fact our coupling g plays a double role. At small distances, g < 1 is

the usual weak-coupling constant from the perturbative theory, while at large dis-

tances g_1 > 1 1is the effective coupling constant and we make the expansion in

the inverse coupling (g'l)"1 = g . This enables us to suppose that effective
coupling g is small at all distances (more precisely: that the perturbative ex-
pansion in g could be meaningfull).

It means physically that the "bare" coupling g9 << 1 1is renormalized at
small distances to g < 1 , but at large distances to g_l > 1 . (The relation
g-g'l =1 defines Ay, as it will be shown.)

In the part 2. we give the "heuristic" derivation of our scheme, which will
clarify its meaning and we will obtain the 0O-th order approximation QCD0 . Nothing
better can be done, because the continuum QCD is not defined at large distances
- our scheme could be the way how to define it. In the part 3. we discuss the
non-locality of the scheme and the main problem how to work with QCD0 . It is not
a free theory, so that some nonperturbative method is needed.

We hope that the proposed perturbative scheme could improve our understanding
of the behaviour of QCD at hadron distances. The problem of finding noq—perturbé—
tive methods is reduced from the full QCD to QCD0 » which is substantially simpler

(e.g. it has only trivial UV-divergences).

2. The derivation of the scheme

We need a slightly unusual point of wiev on the renormalization procedure for
our way of reasoning. Let us recall the well-know idea in the case of QED , where
we left away all questions connected with the gauge. The Lagrangian expressed in

bare quantities is
50 0 0 1 1 0,2
(2.1) L=V (i3 - £ - mO)W % 3 (Fuv) .
In the usual procedure we introduce renormalized fields and couplings, express L
in them and add counterterms

(2.2) L =Y - £ -mY - 2

L o4 .
g2 uv counterterms

1
4
Everything is then expressed in the renormalized quantities. The "unphysical" bare
quantities disappear from the theory. .

We need rather the conceptual framework of the Kadanoff-Wilson ( block - spin)
renormalization procedure [8]. Let us supposé that we are given the bare teory
(2.1) with a certain fixed fegularization (given by a sufficiently large cut-off).
Evidently, it makes no sense to expand it around the bare fields with the bare
couplings m and 8o because we would obtain large contributions ("divergén—

ces"). The resulting theory differs much from the bare one. To have a meaningfull’



230 J. SOUCEK

perturbative scheme we must :
(i) to guess the "physical" O0-th order approximation,
(ii) to guess the "physical" interaction terms,
(iii) to add counterterms in such a way that the resulting Lagrangian will be
the same as the original one.
All this must be done in such 5 way that the Lagrangian expressed in the new, renor-

malized quantities

(2.3) L= L0 +Lie? Lcounterterms

would give small contributions in the perturbative theory.
If the resulting coupling g is small, we will obtain the usual QED. From the
term F&v in (2.2.) we see that only configurations with a small Fuv X g con-

tribute significally to the Euclidean partition function
(2.4) exp (- S[?,A]) .

The term Fﬁv gives the Gaussian damping factor. To normalize the distribution
of F's we scale the gauge field Au

. A > gA .
(2.5) w8y

Then we will obtain the well~known form

- V(i - gk - -1g?
(2.6) L = ¥Y(id g‘ m)¥ 4 Fu\) + counterterms

in which the weak coupling of electrons and photons is evident.

Let us now consider the opposite case, where the resulting coupling g (given
by gy and by the assumed regularization) is large, so that we have the strongly
coupled QEDStrong . The scheme (2.2), (2.5), (2.6) is now meaningless and the
right choice in (i) - (iii) is completely unclear. One possible choice, the strong

coupling expansion, means that we take for a 0O-th order approximation the theory

with g'l = 0 and we shall expand in g'l . From (2.2) we have
(2.7) Lgt‘°“g = V(g - K -my,
(2.8) pstrong _ _ 1(3—1)2 F2 .

pert 4 Hv

The partition function in the O-th order is such that all configurations of A.u
contribute almost equally - there is no damping factor for Au . In the 0-th
order we have an infinitely strong coupling between electron and positrons. Such
a situation is well-known from the high temperature expansion in the lattice QCD
[9]. This infinitely strong coupling will become weaker only after taking into
account the perturbation (2.8). b

But there are two important differences with respect to the lattice theory.
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On the lattice the field values belong in the compact group space and thus the
high temperature expansion makes sense. In our case, there is also a certain dam-
ping factor for ALS which could be obtained using functional integration for

the fields Y . We will not make this integration, because it contradicts to the
meaning of the perturbative theory. But we will suppose such a damping factor im-
plicitely. For the practical purposes we introduce the term regularizing the equal
distribution of A's

N m, +0 .

2
(2.9) L = my A 0

2
reg u
In another interpretation this term mimicks the finite group space from the QCD
on the lattice which is shown to describe the behavior of QCD at long distances
(our consideration of QED serves only as a motivation for the QCD case). The se-
cond difference lies in the fact that the lattice constant regularizes UV-diver-
gences, which we would meet immediately in our QEDSYTOTE _ Byt this problem is not
essential, because the parameter AO will make the appropriate cut-off in the
strong coupling expansion in the QCD case.

The "strong" perturbation theory (2.7), (2.8), (2.9) is an analogue of the
high temperature expansion on.the lattice and its characteristic feature is that
all gauge field configurations contribute equally in the O-th order. We see that
in the strong coupling case the scaling (2.5) makes no sense.

Now we shall come to QCD. Our scheme combines the weak coupling expansion
(2.6) at short distances with the strong coupling expansion (2.7), (2.8),-&2.9)
at long distances. The bare coupling g0 is given at a certain very small¥dis-
tance (corresponding to an assumed regularization) by the perturbative QCD - like .
in the Kadanoff-Wilson approach. Thus the affective coupling at large distances
is determined and must be large, if = QCD has to confine quarks. We will assume
this.

The reasonable choice (2.2) and (2.6) of Ly and Lige in QEDweak is for-
mally identical with the bare Lagrangian (2.1). But this should not be true in
the case of QCD. Our choice of Ly and Ly, should respect what we already
know abou; the behavior of QCD at small distances (perturbative QCD) and at large
distance (lattice QCD).

We shall assume that the parameter Ao divides these two regions : p > Ao
and p < AO . The breaking of the scale invariance originates in different appro-
ximations used in these two regions. Thus we cannot use the concept of a running
coupling. We will use rather the old-fashioned "constant" coupling, fixed by cer-
tain (yet unknown) renormalization conditions. .

We will suppose that in the short-wave region p > AO there is an effective
coupling constant gg <1 and in the long-wave region p < Ao there is an effec-
tive coupling g; > 1 . We will expect that the renormalization in the Kadanoff-

-Wilson sense will give
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2.10) gy =~ > gg <1 in p > AO R
gy = - > 8, > 1 in p < A0 .
At first we must choose a suitable 0O-th approximation for gluons. We will sup-
pose that the self-interaction of'gluons manifests itself at the O-th order only
in the renormalization (2.10) and otherwise their interaction can be neglected, so
that the typical features - damping of Fuv in the weak regiqn, equal distri-
bution of Fuv in the strong region - considered above will remain conserved.
A corresponding chong of the gluon part of the Lagrangian (with color indices

supressed ) will be

__1c-2..5 .2 -2, L 2
(2.11) L= - gl @) + e "F D7)
where Fuv = Fﬁv + Fﬁv is the decomposition (1.2) of Fuv into short-wave and

long-wave parts. The term (2.11) is exactly the one, which gives the right limits
for p >~ and p + 0 . Neglecting the self-interaction of gluons (apart from
(2.10)) we also have

S,L s,L

Folo g a5l g ,SeL

(2.12) wo Y v A

This means that the configurations A11 with the prevailing short-wave part Aﬁ
are supressed as in the perturbation QCD, while those with the prevailing long-
-wave part contribute equally into the partition function at the O-th order.

In the relation (2.11) we have neglected the self-interaction of gluons, but
when we shall turn it on we can suppose that (2.11) is still true for the free

part of Fuv like in (2.11). The formula (2.11) then means that the free part of

0

Fuv will come over to

(2.13) Lo a0 549 - s L aS-0aS +Lal-sal
gp wv Vi gg wov T vl T gty T WV

during the Kadanoff-Wilson renormalization.

The relation - - > will mean our choice of the corresponding part of the
"renormalized" Lagrangian. From the other point of view this transition is expec-
ted to be the result of renormalization effects.

Now we must propose the term corresponding to the self-interaction of gluonmns.
Our choice is, as in (2.13)

_ 1,0 __, 1S ,Sy,.1L Ly, 1S L L ,S
(2.14) go[Au,Ag] > gS[Au,Av] + gL[Au,Av] + gSL([Au,AV] + [Au,Av]) .

The problem we had to solve here was the choice of the [AS,AL]—term. We have
suggested to put in the constant interpolating between gg and gy, in front of
this term

(2.15) Bgr = (gsgL)l/2 .

We can suppose

8gL to be of order of unity (see (2.10)). The relations (2.14)
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and (2.15) also represent well our basic idea, that configurations A ~ A° are

supressed and those with A = Al

contribute almost equally.
Now we can make the scaling (2.5), but with respect to our discussion of
QEDStrong we shall scale only Ai :

S S L L
2.1 A” > A", > A .
¢ 6) H &s M Au H

After this redefinition the relations (2.13) and (2.14) will read

(2.13") éa(auAg - SVAS) N (auAi - BvAﬁ) + gzl(auAﬁ - avAt) ,
(2.14") éa[Ag,AS] - gs[Aﬁ,Ai] + ggl[Aﬁ,At] + gi;([Aﬁ,Agj + [At,Ai]) .
Let us denote parts of Fuv by ( f = free)
FSL o pS L 48D
pvf THRY) v
(2.17) Fi;; = [Aﬁ’L,Ai’lj ,
Fﬁﬁl = [Ai,At] + At,Ai] ,

where .in the first two relations the superscript is either S or L . Together

we have obtained

10 53
gOFuV Fy s
(2.18)
~ S S -1 _SL -1 L L
- o+ 7
Fuv = Fooe * 8s(Fpur + 8gp Fuop) +8p e T F L0

We have to add the regularization term (2.9) for the long-wave part of Au

i

(2.19) Lgluon B 4 Fuv + Lreg ’
_1 2 L2 :

(2.20) Lreg =3 mO(Au) » mO >0 .

The scaling (2.16) gives for the quark terms

(2.21) Woiéwo - = > Vigy = Lquark .
_— < s . L
. Y AY -~ - > + Y = .
(2.22) 0" Yy (Bghy +ADY = Loy

Thus our resulting Lagrangian

(2.23) L= Lgluon + Lquark + ng

can be expanded in the coupling constants 8g and g;l (see (2.18) and (2.22)).
From (2.10) we can expect that

-1
(2-2[4) gs s gL 1 >

so that the expansion in the both constants 8g and gil could make sense at all
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distances.
We shall not write down all interaction terms. But the O-th order approxima-

-1 .. :
= 0 ) is interesting

tion ( gg = 8,

- Tl Lyy _ Lo 28 _ & 452 l 2,,Ly2
(2.25) Locod = (13 + ADY - 23 AT - 3 AD® + 5 m(A)

Let us now suppose that the couplings 8g and gzl are fixed by some renor-

malization conditions. Let us consider the change of our basic parameter AO

' =
Ay > Aj= Ay + Ay, 8Aj >0 .

We can expect that the corresponding change of 8g and 8, will be
Ggs<0’ GgL<0v

because &g and gy, are the effective couplings in the regions p > AO and ‘
p < Ay . We have G(gL ) > 0 and making an appropriate variation of A0 we ob-
tain
(2.26) g =g =8,
S L
where the‘common'value of coupling constants is denoted g . This condition fixes
and we shall take (2.26) as a definition of AO .
Now the interaction terms in our "physical" Lagrangian simplify considerably;

Ay

gSL =1 and our decomposition (l.4) has the form
1r.S L S SL L 2
(2.27) L=- Z[Fuvf +g(F + F o +F oo+ FuVI)]
+ wY (ia + gAS + Al )w + = 2(AL)2

so that the only changes with respect to the perturbation QCD are
FL

wvE g? LLW > WALW

L
> gFuvf ’

and the introduction ?f Lreg

This is the motivation of our choice of the "physical" Lagrangian of QCD . We
are not able to introduce counterterms (besides the UV-counterterms, which are the
same as in the perturbative QCD), because the O-th order approximation QCD0 is
not a_free theory and we do not known any non-perturbative method to solve it.

We are aware that we have used many assumptions which are only plausible (at
the best), but not proved. We shall show now that the resulting scheme is quite
reasonable, especially that QCD0 could be a meaningfull O-th order approxima-
tion at the hadron scale. '

The short-wave component Ai of the gauge field is not coupled in QCD0 and
the long-wave component AE can be integrated out (by functional integration).

In this way we shall obtain the non-local colored Thirring model with an infinite-
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ly strong interaction
T 1 -2, aL?
=y idy, +3 myt) s mgr 0, I =Yy

(2.28) 0 "

L
qcp®

where we have reintroduced the flavor indices. Note that there are only trivial
UV-divergences in (2.28), because AO is fixed.

In the regularization limit m  +» 0 we will obtain (roughly) a model of free

0
quarks with a constraint

(2.29) L = ¥ipgy

(2.30) .Ju =0,

because contributions of configurations with J:L # 0 are supressed in the parti-
tion function. More exactly, the second term in (2.28) goes to the §-functional
(we have neglected the corresponding Fadeev - Popov determinant). The constraint
(2.30) is in a sense momentum space analogue of the usual boundary condition in
the bag model. This means that essential configurations are those with the vanis-
hing long-wave part of the color current.

The physical meaning of the model (2.29 , (2.30) is clear. The interaction
between quarks mediated by a gluon exchange is vanishing if the gluon carries a
momentum greater than AO and is infinitely strong if the gluon carries a momen-
tum smaller than A, . Clearly, in QCD0 quarks are confined.

3. Discussion

The condition (2.30) looks non-natural, because there is a sharp cut-off at
the momentum space. But this is as non-natural as the sharp cut-off at the x-space
in the usual bag model. The sharp division of S- and L- regions seems to be neces-
sary in our method; but this holds only fsr QCD0 .

The behavior of QCD at intermediate distances is the most complicated (and
most important) problem in QCD. Our method tries to describe this region by appro-
ximating it simultaneously from both sides. In QCD0 this region is infinitely
thin and it will be enlarged by perturbative contributions. The fact that the
intermediate region is infinitely thin seems to prevent QCD0 to be a realistic
theory. But the 0-th order theory need not be realistic - it must only satisfy the
condition that the "distance" between QCD0 and the full QCD can be treated
perturbatively. See QED as an example : the O-th order non-interacting theory
is completely non-realistic. We think that QCD0 can be considered as a basic non-
-perturbative part of QCD parametrized by AO which should be related directly
to the properties of hadronms. QCD0 describes well the basic non-perturbative fea-'
ture of QCD - the confinament of quarks.

QCD0 has'an important property of non-locality. It is the theory in the

Euclidean space and it has the Euclidean symmetry. The non-locality is clear from
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(2.28) and (2.30) - only long-wave components of Jz enter these formulae -
it means also the non-locality in the Euclidean time. Thus QCD0 is not a Hamil-
tonian theory. It is only approximately local in time having an approximate evolu-
tion operator in time intervals greater than Aal . The same must be expected at
any finite order approximation in our scheme; only by summing the whole expansion
we recover the original local QCD .

We think that this is exactly what should be expected for the approximation
scheme to QCD at intermediate distances. The local QCD can describe non-local
hadrons only by using substantially infinitely many degrees of freedom. Reasonably
simple description o% hadrons should be non-local in the space and then the Eucli-
dean invariance implies a non-locality in the Euclidean time. Thus it cannot be a
Hamiltonian theory. There is a problem, how to define the particle spectrum for
the non-hamiltonian theory. But QCD0 is the asymptotically Hamiltonian theory :

we can define the Euclidean evolution operator UE(O,T) for T >> A_l by

0
(3.1) <o | U0, | o> = pge~SLOT |
6 (x,0)=0 (%)
0 (x,T)=0" (%)

and an asymtotic Hamiltonian by

- 1
(3.2) B = lin [~ 3 1g U;(0,T)] .
T
Our scheme generalizes the perturbative QCD . To the perturbative QCD there
corresponds the region where distances are << Aal what means the limit AO +0 .

In this limit our scheme reduces to the perturbative QCD . We see that the prob-
lem of UV-renormalization is in our scheme exactly the same as in the perturbative
QCD and can be solved equally well. For QCD0 this problem is completely absent.
The problem of IR-renormalization is not clear in our scheme, because we are not
able to solve QCD0 . Our scheme is at large distances similar to the strong coup-
ling expansion in the lattice QCD and we hope that the IR-divergences in our
scheme will be milder that in the perturbative QCD , perhaps absent.

Up to now we have not discussed the gauge symmetry. In our approach we have
considered the Euclidean QCD in a fixed covariant gauge. We have supposed that
the gauge symmetry was changed for the BRS syﬁmetry, which gives the Slavnov -
Taylor's identities - all goes like in the perturbative QCD . Fixing the gauge
is necessary in our approach, because the division (1.2) of field configurations
into short-wave and long-wave parts is not gauge invariant. Parameters AO and
g 1in our scheme may generally depend on the choice of the gauge. We must use the
covariant gauge, because we want to obtain a relativistically invariant scheme. .

Our scheme is defined by the two parameters AO and g , while in the per-
turbative QCD there is only one parameter AQCD . In principle both Ao and g

are determined by AQCD through the Kadanoff-Wilson renormalization procedure -
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but this procedure cannot be done explicitly. So we suggest to use both AO and
g and to postpone the question of their relation to a future investigation.

The best method how to treat QCDO would be the bosonization [2], especially
in the functional integral form [3]. Unfortunately, it is known only in the two-
-dimensional case. Nevertheless, QCDg can’be solved by the methods of Refs,

[3] and it may give an usefull insight into the properties of QCD2 .

We left many important questions away, among them : the gauge-fixing and the

ghost terms in the Lagrangian, the structure of counterterms, the renormalization
conditions etc.
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