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VECTOR FIELDS AND CONNECTION ON FIBRED MANIFOLDS *

Anton Dekrét

If is known, see [1] , [2] , [3] , that every differen-
tial equation of second order on a manifold M determines con-
nections on THM. In [3] we have established the set Cp° TM of
such vector fields on TM by which it is possible to constructe
connections on TM, we have found all natural differential ope-
rators of first order from Cﬁ°TM into the space of all connec-
tions on TM. In this paper we generalise some of these con-
structions in the case of vector fields on fibred manifolds.
All manifolds and maps are assumed to be smooth.

1. Tangent value 1-forms and connections on fibre mani-

folds,
Let %: Y— M be a fibred manifold. A TY-value 1-form &'

on Y will be called fibred if @(VY)< VY. If (xT, y*) is
a chart on Y then expression of a fibred 1-form is

© = aj(x,y)axd @D/ 0x" + (af (x,y)ax’ + af (x,y)52 )@ /05"
Let '/T.lzz—»M be another fibred manifold. Denote by 7*Z
the 7 -pull-back of Z, T%Z = Yx,Z. Every fibred TY-valued
form & determines the forms (oh:Y—-»?(*(TM®T*M) and @' :Y->
VY @V*Y, where wv(X) = W(X), X € VY and &)h_(X) = TTw(U)

for TA(U) = X. In coordinates Wy = agdxj® o/ 9xio W, =

v
= aﬁ yPed/oy®.

A connection ' on Y can also be viewed as a .fibred TY-
valued 1-form & on Y such that &, = 0 and @, = idpxmp

* This paper is in final form and no version of it will be
submitted for publication elsewhere.
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see [6] - This form will be denoted by Ph and called the ho-
rizontal form of . In coordinates I, = axle o70xt +

+ N (x g)dxi® 0/ 0y* where the local functions f'°c will
be called the Christoffels of .

Let & be an arbitrary fibred 1-form on Y. To find the
conditions for « to determine a connection " on Y let us
consider the linear morphism @ °:VY®€ T*M — VY ® T*M of the ex-
pression x+ K gX - X where the dot denotes the composi-
tion of the maps given by x, fcv, (dh.

Lemma 1, Every fibred TY-valued 1-form « on Y such that
W ig regular determines a connection on Y,

Proof. Consider the linear morphisn b, :xPWex - xm)h
on TY®T*M. It is of the expression

=i

(1) Xtaa:

1 '5(/3 0(-8)
J t

J _ Li.s = J

X xsat’yt ajxt+(aﬂ Xt~ *g 8
This means that if @° 1is regular then there exists a
unique x ¢ C®TY& T'M such that TV x_ = id rrqy 8nd by (xo) =

= 0. By (1) the coordinates (x 51, xg“) of x  are x;c =

= -¢ sn at s Where ¢goc are the components of the tensor
field which is determined by the inverse map to w©, Obvious-

ly X, is the horizontal form of the connection on Y with the

Christoffels % = - ¢%%t, a2 . qup.

The connection determined by the form X, discribed in
the proof of Lemma 1 will be denoted by Q . Let C,‘.’”(T*Y&TY)
be the space of all fibred TY-valued 1-forms &« on Y such that
w® is regular. Using the theory of natural fibre operators,
see [5] , it is easy to prove that only in the case of
wecy (T*Y® TY) there is a natural fibre operator D of O-order
such that D(& ) is a connection on Y and that every O-order
natural operator from Cp° (T*Y®TY) into the space of all con-
nections on Y is of the form wtr>1I; .,

Lemmg 2. Let & be a fibred TY-valued 1-form on Y. Let

‘181, ecey 81:1} 'y BV ={b:, ecey b:: } be the Spectras of
the linear morphisms «&,, W, at y €Y. Then &° is regular at
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y € Y if and only if A and B, are disjoint.
Proof. At y € Y there are bases in VyY and in (7* ™M)y
in which the matrices of C\«h and W, are of the Jordan’s form,

; i-1
ice. Wo%x) = (b - ai)x + bo%(+1 xi'"+1 - aj xi 4+ Now, it

is easy to see that «° is regular if and only if b;f # ai
for any values of £ and i.

Corollaries, 1. If &) = O or &, = O then u° 1is regu-
lar if and only if Gy or &y is regular, respectively. In

these cases according to (1) f'”ic = e.‘/c3 a"f , /5 = J"" .
or M 't 'é.':.;_ , ai‘ 'é.'g = J?j' ,» respectively,are the Christof-

fels of o

2. It &° is regular then at least one of the maps Wy
Wy is regular.

3. If Wy Or wy is regular then w® is regular if and
only if A = 1 is not the eingenvalue of the linear operator
U WU, cuh or uk> (dv.u. W,yrespectively,on VY ® T*li,

2. (B, V) - structures

A fibred manifold T:Y —M is said to be a (B,V)-struc-
ture and denoted by (Y, £ ) if there is a cross-section £ :Y—
-+ VY® T*M. Throughout this paper, & is viewed both a VY-va-
lue 1-form on Y and a linear morphism from 7*TM into VY over
id_.

Let us recall the Frolicher-Nijenhuis bracket of two
tangent vector valued forms which is in the case of 1-forms
of the form, (see [4] )»[ L,K J (X,Y) = [ IX, KY ] + [ LX,
KY J+LKCX,YJ+KL[XY]-L[KXY]-L[ XK ]-
-kK[ X,y ]-k[ Xx,LY J.

Let W= a;jdx"j ® 9/9xt + (a.i axt + aady )@D/a’y be

a fibred TY-value 1-form on (Y, £), £ = E‘; axte 0/2y*
Then [¢ ,w ] is called ¢ -torsion ofiw. In coordinales we gt

(2) CE, w]=-adﬂ£’5 axI A ax® @ 2/ D=t +E(£t ajs"

- e.“.z‘:xéar fj ta 63 Ta‘r + a £ )dxj/\dxs +
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+ (E: aia + ag J.E;P- 636.3’ ag+ a?f; E;;)dxj/\dyﬂltz
& 9/3y°c ’
1

(3)  —Cesel-= 535,,6:@8/\“3 ® 9/9y° ,

Where we use through_thout this paper the designations

D2y 21y . ] _ :
-"D?. = fu,oC ’ -9—;5-. =- fu,;]' This is immediate from (2) that

if w is projectable then [£ , w] is a VY-value 2-form and
that the restriction of [¢ ,w ] to VY vanishes.

Remark 1, A vertical vector field Z on Y is called €E-
basic if there is a vector field X on M such that 2 = £ (X).
Let Vs V5 € TxIvI. Let X1, X2 be local vector fields on M such

that Xi(x) = vy, i =1, 2. Then E(xi) is a local ¢-basic
vector field on Y. Let y € Y_. Put \Py(v1, v2) = [g(x,),

£(X2) ]y . Calculating it and comparing with (3) we get -
=%EE »¢] - It means that [£, £] = 0 if and only if [ Z,,
Z, ] = 0 for any ¢-basic vector fields Zyy 2, on Y.

3. Vector fields and connections on (Y, € )

Let X = ¢'(x,y)2/2x" + b* (x,y) 2/23%< be a vector
field on Y. Being a crossection Y—X9TY, X determines a linear
morphism Xg: = pr2.V(T’)’I’.X): VY — Th, VY — 7T*TN, (xi, y%, o,

dy* )l-—b(xi, axl = ci,@ dy” ), where V(T7 .X) denotes the
vertical prolongation of the map TT .X:Y —TM and pr2:VTME
= TMxMTM—-»TM is the projection on the second factor. In the
only case of a projectable vector field X on Y,XB = O,
The straight_forward calculation of the Lie derivation of
€ by X ‘

(4) L€ =-chel axd@I/axt 4 (af axt + Efc ) arhe

99/9y°c,
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gives

Lemma 3. LXE is a fibre TY-value 1-form on Y such that
(Lg €y = = Xpe€, (Igé), = € Xpo

Denote by C,?." (Y, £ ) the set of all vector fields X on
(Y, € ) such that LyE € CP (T*Y@TY), i.e. that (Lyf )° is re-
gular. If X€C°(Y,€ ), then Iy is the abbreviated notation
for FLXE . According to (1) the Christoffels of [y satisfy

(5) (€ cpd S+ di ey DY = oA,

If X is a projectable vector field on Y then (Lxe )° =0
and X ¢ C3(Y,€). It is cleer that if X€CP(Y,€ ) then
X + Z€C°°(Y,6) for any projectable vector fleld Z on Y,
i.e. X is an operator Z /- FX-;-Z from the space of all projec-
table vector fields Z into the space of all connection on Y.
The expression ums Ej c,JAug + u.j ,-,6” of (L £)° induces

some special cases. If dim M < dim Y then €. XB is not regu-
lar, i.e. XGC,”,”(Y € ) implies that X +£ is regular. Certain-
ly, if Xg. £ = 1d g p gy then XGC,1 (Y, 6) if and only if the

operator utr> €. {geu on VY® T*M has not the eingenvalue - 1.
Quite analogously if dim M > dim Y_ then Xg.€ is not regu-
lar and the regularity of G.XB is a necessary condition for
X to belong to CP (Y, £ ).

Example 1. There is the canonical (B,V)-structure on TM
given by the canonical morphism €& = ax* ® 9/8:{?" on T¥ with
a chart (xi, xj1‘). In this case (Lxé )h = - Xz = -(Lxe) .
Then, by Lemma 2,X € c (TM, € ) if and only if X is regular.

Let dim M = dim Y o« Let £: T*TM — VY be an isomorphism.
A vector field X on (Y,é ) is said to be conjugated with £
if X = £-1, There is an isomorphism & that does not admit
a vector field conjugated with6 To show it we constructe
an object £7'. Let £ = (X ax'@ ©/2y< be an isomorphism.
Then €7 1°V!{ —»TM is e. morphism over 7f’ . Its expression in

charts (xi, ¥y*, 0,%) on VY and (xi , xi) on T is X" = xi,
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x% = E1y% , where 5;_(5,;} = é‘g . Tet V€~ be the vertical
differer}tial of £ -1 accqrding to the submersion YY -» M,
ve~1(xt, y%, o, %, axt = o, d4y%, 0, at¥) = (x%, dx% =

= 5‘1,/_:. t*ay? + €} at*). Recall the canonical involution
12(xisyoc ’ !i’ Z“‘,dxl)dyoc ’dfi,dt‘{ ) = (xl’yoc 9dxisdyoc ’ ’fi’

2%,a§%,a1 ) on 1. Then V&1 (xt,y%,0,%% ,ax’ = 0,

~

ay® ,0,d¢% ) = (xi,dx% = 52;/5 dy%eh + 5} d¥% ). Let 'Z1,

%, € VY. There is ¥ € VVY such that ppy(%) = ¥y, ppy(i, T) =
= Z2, where ppy:TTY —1TY is the tangent projection. Put

- =1 v y. -1 p =1, _ogoiozi o« ah
2 “(‘01, E)e = (VETT = VET (8 ) = (x7, {p( EY T35 -
- 1582, tee. E3€C¥(APVYEm).

Lemma 4. Let X be vector field conjugated with £ .
c=1

Then EV = 0. . . ~
Proof. Let X = ¢ 2/ 9x% + b¥ 2/9y* . Then cloc = ac:;l
H

and thus é'j,a = 531,& « It completes our proof.
Lemma 5., If a vector field is conjugated with & then
XeCP (Y, €). |
Proof. In this case (LXE)o = 2idyy ppey 18 regular. QED.
If X is conjugated with £ then by (5) the Christoffels

of the connection FX are of the simple form f'_{ca - % 'f ,
in virtue of (4) (idTY - LXE )/2 is the horizontal form of FX

and €-torsion of PX’ (ies [ €, Ly € ] is a VY-value 1-form
of the expression
L b g £ of
(6)  [€Lgk] = (-7 5 Eg + 287 - & 1Y) axdnaxo
& 9/9y£ o

Proposition 1, If X is a vector field on Y such that
XB:VE - J*TM is an isomorphism then X determines a connection
on Y.

Proof. Denote £ = X';. It is clear that X is conjugated
with the (B,V)-structure (Y, £ )« Then Lemma 5 completes our
proof.




VECTOR FIELDS AND CONNECTION ON FIBRED MANIFOLDS 31

If X = ot 2/ 2x' + v¥9/93% 1is such that X is an iso-

« 1 a0 o deao o3 ¥ o L8 n
morphism then Fj = - 5 A 'Q(c;j oy +787,5¢° +8f 50

- b°‘,5 3’? ) are the Christoffels of PX on (Y, £= X]'31), where

;j ck = J . This means that the map Xl-*r'x is an operator
of second order from the space of all vector fields X on Y
such that XB is an isomorphism into the space of all connec-
tions on Y..

4. Special (B,V)-structure on vector bundles.

Let T:E—> M be a vector bundle. The canonical identifica-
tion VE ¥ Ex E states by every E-valued 1-form € on M a (B,V)
structure (E,€ ), (called projectable), where é(y,v) = )

= (y, E(v)), y€E, vETg ( M. In coordinates, = fx)axte
® a/ay . In this case accordlng to (3) [&, 6] = 0.

Let (E, £ ) be a projectable (B,V)-structure such that
£:T*TM = VE is an isomorphism. A vector field X = ¢ (x,y).
LD/ 8%t + b% (x y)2/d3% on E is conjugated with € if and

only ifcﬁ=5A(x), 6%5 -J , i.e. if and only if ¢’ =

= 6/.&(x)y + ¥1(x). Let L = y**a/a y* be the Liouville
vector field on E. We immediately get

Proposition 2, Let X be a vector field on a projectable
(B,V)-structure (E, £). Then [ V,X ] is conjugated with &
and every vector field on E conjugated with £ is of the form

X + 2, where £(X) = V and Z is a projectable vector field on
E.

Propogition 3. Let X be a vector field on a projectable
(B,V)-structure (E, £ ) conjugated with £. Then the connection
PX is wilhout & -torsion, i.e. [€, Lyé] = O.

Proof. Since £°( = 6/5 therefore 55‘]( scjr = - égc?rs

T - j = - ( d ol J 9( /]
Ej 'g ¥+ Then by (4) Aia‘ 3,1%F + & 3%y = ,/!3"6 .

With respect to (6) we have [¢ , Lyé ] = ( Eg,1 ~E4,5*

s ok e8€% 4 2 £f paxtaax®©2/9y%

Remark 2, Let X be a vector field on E such that XB:VE">

*TM is an isomorphism and (E, £ 3%1) is projectable.
Then X is conjugated with & and by virtue of Proposition 3

i
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Ck is without ¢ -torsion.

Example 2, Let us return to example 1. The canonical
(B,V)-structure (TH, &= dx~ & 0/ Z’xi) is projectable and it
is induced by £ = idTM' If V is the Liouville field on ™
then a vector field X on Tii such that £(X) = V is a diffen-
tial equation of second order on M. Therefore we can reformu-
late Proposition 2 in the following way.

Proposition 4. A vector field X on.TM is conjugated with
the canonical morphism- £ = dx* @ 9/ 9x31‘ if and only if it is
of the form U + Z, where U is a differential equation of se-
cond order on N and Z is a projectable vector field on T,

In coordlnates, X is concugated with ix'e 7:7/ EJX1 if and
only if X = (x + 2 (x))’t)/?x +b(xx )9/8}: . Then the

Christoffels of f’ are l"i Aj

ml—a

1 1 .
(7) ool -5 (9zt/9x) - 2vt/2xd) .

J 2 3T

It coincides with [1] , [2] for X being a differential equa-
tion of second order on M.

Let Z = a'(x) @/ Ox' be a vector field on M. Then 1Z =

. . 9al 1

=a" J/9x" + ?;3- xq 9/2'7:!1 is the T-prolongation of Z on
TM. It is a projectable vector field on TM.

Proposition 5. Let X be a differential equation of second

order on M. Let Z be a vector field on M. Then PX p7 = FX'
Proof. Let X = x1 2/ 0xt + bi(x,x1) 9/9x1 y 2 = aia/ax .
1 _ 1 _2pt
= -2- —pe

Then by (7) r‘j are the Christoffels of both ’;m:z

)
-

x
and Fxo

Another special (B,V)-structures on TM can be construc-
ted as follows. Let X be a vector field on pM:TM - M such

that XB:VTM-—>p;:1TM is an isomorphism. Since VIM = TMx,TH =

sp;dTM there are two (B,V)-structures on TM both (TM,X'%)
and (TH, Xz). We say that X is 2-homothetic if X5 = teidyny,
t € R, Bvery vector field X = tW + Z where t € R, W 1is a di-
fferential equation of second order and Z is a projectable
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vector field on TM is 2-homothet1c. In coordinates, X =

= ¢ (x,x )9/ 0xt + b T(x,x )U/ax1 is 2-homothetic iff
(ﬂci/ax )( 2%/ 0x5) = tcf i+ Then using (3) or (2) we get,
respectively-

Lemma 6, If X is 2-homothetic then [ Xz Xg 1= 0.

Proposition 6., Let X be a 2-homothetic vector field on
TM, Let W be a vector field on TM conjugated with XB. Then
the connection P is without X -torsion.

Example 3. 'R‘ :T*M - M.,

Let (x, z; ) be a chart in T™M. Then V = z, 9/ 232,
A=z, dxl, d)\ = dz'A dx' are the Liouville field, the Liou-
- ville form,the canonical symplectlc form on T*M.

Let (T*M, €= E;.(x, z)dxt ® azj) be a (B,V)-structure
on T*M. If £: W*TM -> VT"M is an isomorphism and X =
= ol(x,2) 2/ oxl 4 b, (x,2) 0/ az is a vector field on T*M
conjugated with £ then X determines both the connection P

the Chrlstoffels of which are ,glj - 2 (£ls ]+ 513 © +
8 s £
+ 513 s - b Es 30 where £°: = ,azs , and the conn_ectlon dA -
orthogonal to r'u the Christoffels of that are qj = Iy
We say that & is symmetric if for any X,Y € TT*M
dA(EX,Y) = aA( EY,X), 513 = 531'

If £ is an isomorphism then we can constructe a func-
tion on T*M as follows. Let X be an arbitrary vector field
on T*M such that ¢(X) = V. Put Hg : = dA(V,X). In coordina-
tes Hg = gijzizj, Eis 583 = dﬁ;‘ .

Let (T*M, € ) be projectable and regular, i.e. € is given
by an isomorphism £ :TM —> T*M, £ = €ij(x)dxi®dxj. By virtue
of Proposition 2 every vector field on T*M conjugated with €&
is of the form W = (ﬁ'ikzk + Ti(x)) D/Dxi + by 9/321, i.e.

= TE(X) where X is a vector field on TM conjugated with
the canonical (B,V)-structure (TM, ixite 9/ axj{).

It is easy to verify that the vector field X on T*M sa-
tistying the equation iXd)\ = X dHy , where dPcR and iy de-
notes the usual insertion operator, is conjugated with & if
and only if 3f = - ~2- and £ is symmetric. Then the connec-
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PX is the just connection induced on T*M by the Levi-

Civita connection on TM determined by the regular symmetric
bilinear form £ on M.
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