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GENERALIZED EINSTEIN MANIFOLDS

Stanistaw Formella

INTRODUCTION, Let (M,g) and (M,3) be two n-dimensional
Riemannian manifolds of class C” with not necessarily positi-
ve definite metrics g and g respectively. A diffeomorphism
¥ M,g) —(M,g) which maps geodesic lines into geodesic li-
nes is called geodesic mapping. The following theorems are
well-known. A mapping T M,g9) —(M,g) is geodésic if and
only if the Christoffel symbols are related by
(1) va = VY s YOY + POX o,
where Y(X) is locally a gradient. There is a geodesic corres-
pondence between (M,g) and (M,g) iff there exists a vector
field Y(X) on M with the property '

(2) (V@) (¥,2) = 2¥(X)g(¥,2) + yv)g(x,z) +

+ $(2)§(X,Y)
for any vector fields X,Y and Z. In the sequel the geodesic
mapping ¥ determined by vector field Y(X) will be denoted by
T (M,g)-¥3(M,g) . As it was shown in [8] this theorem is
equivalent to the following one: a manifold (M,g) admits a
non-trivial geodesic mapping iff there exists a non-singular
symmetric covariant tensor field a of degree 2 satisfying
(3) (Vya) (¥,2) = A(Ng(X,2) + A(2)g(X,Y) ,
where A(X) is a certain 1-form. The tensor field a we can ta=-
ke as a new metric tensor on M,

In [8] N.S. Sinyukov has proved that if (M,g) admits geo-
desic mappimg onto (M,§) , then (M,a) admits geodesic mapping
onto (M,a=exp(2¥)g) with the same 1-form¥X). For better under-

This paper is in final form ‘and no version of it will be
submitted for publication elsewhere.
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standing of manifolds and mappings among them, we introduce
the following diagram

(M,g) ‘—:E""? M,9)

conf.,

(M,5=exp(24)g) é—tme (M,a) .
This process can indefinitely being continued. In this way we
obtain an infinite sequence of Riemannian manifolds admitting
geodesic mappings.

J. Mike% has proved that if it is possible to map geodesi-
cally (M,g) onto an Einstein manifold (M,g) then (M,g) is
also an Einstein manifold.

A manifold (M,g) is said to be generalized Einstein mani-
fold if the following condition is satisfied
(@3] (V,8) v,z) = o(X)g(Y,Z) + viNg(X,2) +

+ v(2)g(X,Y) ,
where S(X,Y) is the Ricci tensor of (M,g) and o0(X), v(X)
are certain 1-forms. The generalized Einstein manifold is
manifold with harmonic conformal curvature tensor,

It is known ([11 , [8]1 , [10]) that if an Einstein manifold
(M,g) can be geodesically mapped onto (M,g) , then (M,8) is a
generalized Einstein manifold. "

In this paper we shall studied properties of conformal
and geodesic mappings of generalized Einstein manifolds. We
shall give the local classification of generaelized Einstein
manifolds when g (¥(x), Y(X)) # 0. If ¥(X) is a null vector
on a generalized Einstein manifold (M,g) then (M,g) is an
Einetein manifold [2] .,

1. PRELIMINARIES. Let (M,g) be a Riemannian manifold with
a metric g. If g 1s an another metric on M and if there
exists a function ¥ on M such that g = exp(2¢)g , then we
say that the metrics g and g are conformally related. It is
well known that the Christoffel symbols, the Riemannian curae
vatures and the Ricci tensors of (M,g) and (M,d) are rela-
ted by
(5) VY = VY« MY+ TNIX = gX,VIU

. X
with 1-form = d¥Y and vector field U which is defined by



GENERALIZED EINSTEIN MANIFOLDS 51

g(X,u) = W(X) ,
(6) R(X,Y)Z = R(X,Y)Z + s(Y,2)X = s(X,2)Y + g(Y,Z2) TX -
' - g(Xx,2)TY ,

where s and T are the tensor fields defined by

7) $(X,¥) = (7,T) (¥) = TEOTM + FT(W) gex,v)

g(TX,Y) = s(X,Y) .
The Weyl conformal curvature tensor field
(8) C(X,YfZ = R(X,Y)Z + L(Y,2)X - L(X,Z)Y + g(Y,Z)PX =
- g(Xx,2)PY ,

where

1 r
(9) L{X,Y) = == [S(X,Y) - PGSV gtx,y)] ,
g(PX,Y) = L(X,Y) and r is the scalar curvature of g,

is an invariant of the conformal transformation. \Wle also have

(10) D(X,Y,Z) = D(X,Y,2) + ¥(c(x,vz) ,
where
(11) D(X,Y,2) = (V,L)(Y,2) = (V,L)(X,2) ,

D having a similar expression.

2. SOME PROPERTIES OF CONFORMAL AND GEODESIC MAPPINGS OF
GENERALIZED EINSTEIN MANIFOLDS.

LEMMA 1 ([1],[10]) . Let g be a generalized Einstein met-
ric on a manifold M, Then (M,g) is a manifold with harmonic
conformal curvature tensor, i.e., L(X,Y) is the Codazzi ten-

sor.,
LEMMA 2 ([8]) . Let the relation (4) holds on (M,g) . Then

olX) = .(_1"7__27 v.r
n=1) (n+ X
(12) ne2

v(X) = STh=TI (A72) er ’

where r is the scalar curvature of (M,g) .

From (3), employing the Ricci identities, in view of
Lemma 1 and Lemma 2, we obtain

LEMMA 3. If (M,g) is a generalized Einstein manifold then
the relation

A(c(x,v1z) =0

holds on M,

From (3) and (4) we have
LEMMA 4 ([8)) . For an arbitrary generalized Einstein ma-
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nifold (M,g) , there always exists a Riemannian manifold
which is geodesically equivalent to the given manifold (M,g)

LEMMA 5 ([2]) . The condition g(¥(X), ¥(X)) # O holds on
(M,g) if and only if g (A(X), A(X)) # 0 .

As an immediate consequence of Lemma 3 and (10) we obtain
the following

PROPOSITION 1. Let (M,g) be a generalized Einstein mani-
fold. Then the manifold (M,g=exp(21)g) , where Yy A= A,
is a manifold with harmonic conformal curvature tensor.

Suppose that there is given a geodesic mapping ¥: (M,qg)
¥4(M,3) satisfying the condition g (W(X), Y(X) # O . Then
we have

THEOREM 1. A necessary and sufficient condition for a Rie-
mannian manifold (M,g) to be a generalized Einstein manifold
is that
(13) S(X,Y) = w-a(X,Y) +(0+ Cl) g(Xx,y) ,
where

Cl,a = const., w # 0, 0is a function such that
Vo = 0(X) (see (4)) .

Proof. In the local coordinate system (U,xi) , the condi-
tions of integrability of equations (3) are
atiR;kl * athikl = X119k Y A13%ik = Mki951

)",kjgil '

where the comma indicates covariant differentiation with
respect to the metric g. Contracting now (14)with ng we
obtain
(15)

(14)

t _ t
33¢Sk = 8keSy -
Hence by the covariant differentiation, in view of (3) and

(4), we find

t a t r
(16) ai v,t - — ,i = a Sti - .ﬁ xi
and .
N r.
(17) lk(s:LJ - 79iy) - 11(sjk - ?‘gjk)
= a a
= vlagy = 59550 = vilay = 79y o
where
a = tg .'

p
Transvecting (14) with 1 and using Lemma 3 and (17) , after




GENERALIZED EINSTEIN MANIFOLDS 53

straightforvard calculations, we obtain

1 t r a
18) l,ij = =73 [ajSit - m aiJ - -I’—'Isij + (n=2) flgij],
where
~ A 1 tr ra
Pr= % - a2 Ser * ATy AT Nerdt
Similarly, from (4), we find

1 t r.
(19) Vi * 73 ESiSke - a=1Sik * (2) Ppey, T
where 2

Differentiating covariantly (16) and alternating the resul=-
ting equality, in view of (3),(4),(18) and (19), we obtain
(20) vy T Ay

The formula (17), in virtue of the above equality and Lemma
5, implies

(21) S1J = A)aij + /hgij R

Hence by the covariant differentiation and making use of (3)
and (4), we obtain ® = const # O and Myo= 0y The con=-
verse part of the theorem is obvious. ’

Let g be a generalized Einstein metric on a manifold M.
The manifold (M,g) admits a geodesic mapping Y : (M,g)L(M,§).
According to the theorem of Sinyukov the manifold (M,g=
= exp(2y)g) admits the geodesic mapping (M,§W-:*$(M,a).
where a is a tensor field satisfying (3). We shall prove

PROPOSITION 2. If (M,g) is a generalized Einstein mani-
fold, then

(1) the relation ‘y(C(X,Y)Z) = 0 holds on (M,g) ,

(11) the relation (¥,§)(¥,2) = AMF(X,2) + A(DIF(X,Y)
holds on (M,g) (s.(3)) ,

(ii1) the manifold (M,g) is a manifold with harmonic
conformal curvature tensor.

Proof. (1) From (2), by Ricci-identity and making use of
(13) , we obtain (s. [7] p.294)

‘I’,katj = "’J tk and ‘P,k ty © ‘P.J tk °
Transvecting (13) with ? , differentiating covariantly and

alternating the resulting equality. in view of (4), we ob-
tain
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(22) 14y =- By,

and

(23) a, AP = B A, .

Differentiating covariantly this equation and alternating the
resulting relation, we obtain 91 = 0'(2) Xi. From (23), by
covariant differentiation and making use of (13), we have
(24) A, AT (8-2)=0.

Now, from Lemma 4 and (22) we obtain our assertion.
(ii) This relation is an immediate consequence of (5) and (1)
(1i1) This follows from (i) .

THEOREM 2. A manifold (M,g) is a generalized Einstein ma-
nifold if and only if one of the following two conditions is

satisfied :

(1) (M,g=exp(2¥) g) is an Einstein manifold admitting a
geodesic mapping,

(ii) (M,§) is also a generalized Einstein manifold.
Moreover, if (M,g) and (M,g) are Einstein manifolds, then
(M,3) and (M,a) are Ricci-flat manifolds. In this case
(M,3=exp(2¥)a) is a generalized Einstein manifold.

Proof. Differentiating covariantly (14) and contracting
with g1m
we obtain

t t 1 t t
MeRyks * ARy + ey (rag Oy ¢ a9y -

1
= sty (Bkaty * ey ri) = 859y * 849y - Ay = Akgs
where

the resulting equality, in view of (3) and Lemma 1,

= = pt
rg = Vir o @y = X509 '
which, by antisymmetrization in i,k and application of (23)
and (13), gives
A = =1y [(s,, - pa, A, +2(S, - ) Ay
(25) ,kij ® A=2 iy = 79130 Ak 1k T 791k Ay
+ Sy = w95 M1
where
Vaﬁ:ri -(w9+U+C).
The above equation, together with (4),(5),(6),(7),(9),(22),
(20) and (24), gives ’
(26) bigyk = YiSiy *o Vi9jt Vy9uc o
where the comma denotes covariant differentiation with res-
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pect to g and G (n-1)(n+ T « If the scalar curvature
¥ = const. then, according to the paper [5], (M,g) is an Ein-
stein manifold. The converse follows from (26) and [1],([10].

3. CLASSIFICATION OF GENERALIZED EINSTEIN MANIFOLDS. We
consider the following cases:
(i) the manifold (M,g) is an Einstein manifold. Then, as
an immediate consequence of (1] and (3), we have
THEOREM 3. A manifold (M,g) is a generalized Einstein ma-
nifold iff in some coordinate system a metric form of M
takes one of the following forms

1
2 A 1,2 CA{x") -1 4 o
(27) ds® = (dx™) @ + Seeg=m—==ggdx dxd
(KA=R (x1) )+ ( cAtx) “=1) ¢
(28) ds? = . = dxhH?Z .
(KA=K(x™) T)- (cA(x™) ©=1)
CAx %21 w s ROXNDZ-AK 2 o o
+ = Gay py A% f!x + —m—-gqp‘dx dx
where

c,A,K,K = const. # 0, g%p dx*dxP is a metric of

(n-1)Adimé Einstein manifold with RIg = (n-2) K'gls ,
K*= E_Z%i_- v 92,8, dx¥dxP1 is a metric of (m-1)~dim.

(m¢n) Einstein manifold with R;,p,- (m-2)K:g$1p, , Ky =
AL Ke
= £°Z§KE' R g;lpzdxﬁdxal is a netric of (n=m)-dim. Einstein

K= CcASK
manifold with RZ g, = (n-m-1) Kzg“h VK = S

2CE ]
Jpp = 2,.-.,” N ",pq = 2,on-.m N} ‘l.ﬂg = m+1,-..'n »
. 2
@9) de? = h — @xH?2 . hA(cAZ(x -1)g dx< dx®
Kx1) % (cA (xD %-1)
where
R = 2y AK h o=
®p n- (n=- 7r'gcg ’ = const.t O, £,8 = 2,..
ceesn , ’
P _ 9
(30) ds? = L [T =B gm2,
CiCpeeeCpX X" 0uux q#p Q(xP)
1
» 184 = x7) 1= Iaa = x0) Ooyw AX™ dx®  + ... 4
CopoeeC X oooX !
1 m
1 m
CqeveCpX oaox k
where

m+1 m m+1
Q(z) = 4Kz + Bmz + ees Blz + (~1) tlac v B0ece08),

C,cl,...,cm,Bp = const.#0, p = 1,2,...,m, 1¢Lm&n=4 ,
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k¢m+1, Q(a,) = O, g’:,,“,‘._a are metric tensors of Einstein mani-
folds (M™,g% ) and Reus = Kighas » Ki = <2322 Q/(ay),

= 1,2,000,ke

(ii) the manifold (M,3) is a generalized Einstein manifold.
Proposition 1, in the same way as in the proof of theorem 1
of (1], gives

PROPOSITION 3. If (M,J) is a generalized Einstein manifold
then the geodesic mapping ¥ : (M,g) — (M1,g) is normal.

If manifolds (M,g)uand (M,gd) admit a normal geodesic
mapping, then their metrics are of the form ([8]1, p. 117)
(31) ds? = fuhuh? + Progl, (ud) dutduf

d§2 = c exp(4u1) gll(dul)2 + exp(2u1) Pl gop du* du®,

Pl = (P - %exp(-Zui)S:) , Y=ul, ¢, p,0,2=
= 2,000,N,
where
g:P du“du® 4is a metric of an (n-1)-dim. manifold,
Pep = Pe g%s is some (0,2) symmetric tensor on
(Mn'l,g‘) of the rank n-1, covariantly constant with respect
to metric g*, and P{(u*) denotes the reciprocal of P& .
Making use of (6) - (9),(25),(4), Proposition 2 and (31),
it is easy to verify that the following cases hold
(1) Pep = Agip , A = const. # O ,
id (Mn'l,g') is decomposable and

» (g‘:ﬁq) O
(gep) = . '
0 (ggp)
A-(g’ ) 0
(p‘F) - ; <y By . .
(0] B'( g‘lpl)

Consequently, we have

THEOREM 4. A manifold (M,g) is a generalized Einstein ma-
nifold iff in some coordinate system a metric form of M
takes one of the following forms .
(32) 'dsa = -%— (dx?l)2 + fgéizi%- g:# dx*dxf ,
(33 d32 = xlde?
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where c 1
(34) f = 4x1(ch1 - 1)(- E%%:?T = a0t Cfx1)2) ’
c,C,A,0, = const. , @ = (n=2)AC ,
g%p dx*dxP is the metric of an (n-1)-dimen-
sional Einstein manifold with Rzp = (n-Z)K'g:P and
L, B = 2,000,n , 1
2 2 AX =1
(35) ds” = —%—(dxl) + §ﬁf—-’ gzh dx“4 dxA1 +
1
cBx"=1 _» < P
+ ——1 948 dx*2 dx ’
2cx ro
(36) 432 = x! de? ,
where
(37) £ = ax1(bx! + E)}(cAx! = 1(eBx! - 1)-,

gz, 8 9x*dxP is the metric of an n,~dimensio~
nal Einstein manifold with RI‘p, = (nl-l)K; 9:4511
2
» (n, =1 w AB oA w A
K1 = —t——LD(A-B) + m + - = m(nlB +
+ n2A) .
¢, py dx“2dx® is the metric of an n,-dimensio-

nal (n1 +n, + 1= n) Einstein manifold with R:zPL= (ny=1):

*
Ky 9%,p, and 2
(ny =) w AB wB wB
kg = H=0(B-A) + gropy ¢ - praczy (A

+ n18) , W= (n-2)cE ,

dqo Bq = 2....,n1+1 ¢ Lo By = n1+2,...,n.
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