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NATURAL TRANSFORMATIONS OF AFFINORS
INTO FUNCTIONS AND AFFINORS

Jacek Debecki (Krakéw)
presented by Jacek Gancarzewicz

An affinor on a manifold M is a tensor field of type (1,1) on M which can be
interpreted as an endomorphism TM — TM of the tangent bundle covering the
identity on M.

In this paper we give a characterization of tl}e natural transformations of affinors
into functions and affinors. In section 2 we prove that all natural transformations of
affinors on n-dimensional manifolds into functions are of the form F(ay(t),...,a,(t)),
where a,(t), ...,a,(t) denote the coefficients of the characteristic polynomial of ¢ and
F is a smooth function on R™. In section 3 we prove that all natural transformations

of affinors (on n-dimensional manifolds) into itself are of the form

. -
t— Z Fi(al(t)v oesy an(t)) -
i=1
where F,..., F,, are smooth functions on R".
All manifolds and maps are assumed to be infinitely differentiable.

1. Natural transformations of tensor fields.

Let p,q,r, 8,n be positive integers. Let M be an n-dimensional manifold. We
denote by X?M the space of tensor fields of type (p,q) on M.

A family of maps Ty : A¥ M — A M is called a natural transformation of tensor
fields if :

OThis paper is in final form and no version of it will be submitted for publication elsewhere.
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(1) for any M, any open U C M and all ¢,,¢; € X7 M the following implication
4H|U = 1,|U = Tyta|U = Tiyta|U

is true,
(2) for any two n-dimensional manifolds M, N and for every injective immersion
¢ : M — N we have

pe0 T =T oy

Using Borel’s lemma in a standard way (see [3]) we can easily verify that for tensor
fields t,,t; € Xq’M and a point z € M we have

ity = j2ty = (Tyty)(2) = (Tmtz)(2)

Let k be either a positive integer or co and let L**! be the group of (k + 1)-jets of
local diffeomorphisms of R™ with source and target 0 € R".

We denote V,;, = @" R* ® ®@?(R")*. The linear group GL(n,R) acts on V}, 4 in
the natural way.

Let V., = J§(R",V, ). f X = jét then (@, ¢1) ¢(2) ) are coordinates of X,

where L
s481...8p

t(') = {'8?;1}—8!"4;‘- : il, saey ip)jl) veny j', kl, ...,k, = 1, eeny n}
The group L:*! acts on V¥, in the natural way: if { = jEtlo, X = jkt then - X is
the k-jet at 0 of

R*>u— Jy(p)-t(u) €V,

where J,(¢) is the Jacobi matrix of ¢ at u.
It is easy to verify that for a homothety

)

o |-

Ke(u) =

where ¢ € R\{0}, the coordinates ({9, #(1), {(2), ...) of (j&*'x.) - X are given by #*) =
-t fors=0,1,2,...
A map E: V;,’fq — V;,, is called equivariant if

E((j5*'¢) - X) = Jo(v) - E(X)

for jitlp € LAY, X e VE,.
We have the following:
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Proposition 1.1. There is a one-to-one correspondence between natural iransfor-
mations of tensor fields of type (p,q) into tensor field of type (r,s) and equivariant
maps E: V3 — V,, which satisfies the condition :

(3) for every open subset @ C R™ and every smooth v: Q — V, , the map

32— E(jg°(vo7:)) € Vs

is smooth, where 7, : R" 2y — y + 2 € R" is the translation by vector z.
If T is a natural transformation then the corresponding equivariant map Er is
defined by

| Br (i) = Tre(1)(0)

If E is an equivariant map, then the corresponding natural iransformation TF is

defined by -
(Trt)(@) = (T 0™ N EGS ()
where ¢ 13 a local system of coordinates on M such that o(z) = 0.

The one-to-one correspondence between natural transformations and equivariant
maps is formulated in Krupka’s theorem [2]. We prove only that for a natural trans-
formation T the corresponding equivariant map Ep satisfies the condition (3) and
" that for every equivariant map E which satisfies the condition (3) and for every tensor

fields t of type (p, g) on an n-dimensional manifolds M the map T (t) is smooth.
We have

Er(jg°(vo 72)) = Er(i5°((7-2)+7))
= TR ((7-2)«7)(0) = (7-2)s Tr~(7)(0) = Tr~(7)(<)
Since Tr~(7) is smooth, Ey satisfies the condition (3).
Now let us suppose that an equivariant map E satisfied (3) and that ¢ : U — R"
is a local system of coordinates on M such that ¢(z) = 0. For every y € U the

composition 7,(y) © ¢ is a local system of coordinates on M and (7_,(;) © ¢)(y) = 0.
We have

(T3t} () = T (T-p(3) © @) "HEGX (- p(5) © #)s1)) = T, 07 (E(E ((#41) © 7))
By (3) the map f(z) = E(;&°(pst 0 7)) is smooth, hence Tt = ¢! f is smooth.

A natural transformation T of tensors of type (p, g) into tensors of type (r,s) has
order k if for any n-dimensional manifold M, any z € M and all t1,t2 € AP M the
following implication

jHy = jits = (Tut)(2) = (Tarta)(2)

holds.



104 JACEK DEBECKI

From Proposition 1.1 we deduce that T is of order k if and only if the following

implication
o8 = jge2 => Er(jg°s1) = Er(j§s2)

holds for every smooth s;,8; : R* — V..

We prove now the following;:

Proposition 1.2. If p=r and r = s then every natural transformation of tensors
of type (p, q) into tensors of type (r,s) has order zero.

To prove this proposition we need the following:

Lemma 1.3. Let f :R™ — V}, ; be a smooth map such that support f is compact.
Then there is a smooth map F : R® — V,, , such that for any i € N and for any
a€N"

olal 1 1 olal

" 9za (G200 = G 5 ©

This lemma implies immediately that F(0) = f(0) and

& Foy=0
for |a| > 0.
Proof: Let ¢ : R — [0, 1] be a smooth function such that ¢p(z) =0if z < —1+¢
and p(z) =1 if # > —¢ for some € > 0. For i € N, 2 € R" we denote

oli- (i +1)- (21— 3)) itz <1
pi(z) = l—cp((i—l)-i«(zl—'_l)) ifz;>}andi>1
1 fz;21landi=1
ft'(z) f(z,_ ( )’ 2,_1 * & v"'vri_l'zn)
and
_ [ XTRivi(2)- fi(z) ifz>0
ro={ 7 ifz; <0

The proof that F is smooth and satisfies (4) is standard.

Proof of Proposition 1.2: Let T be a natural transformation of tensors of type
(p,q) into tensors of type (r,s) and let f be a smooth map R® — V,, o with compact
support. For every c € R\{0} we have

Er(f@,c- 0, & §3),..) = Br((i§xe) - (38 1)) = Jolre) - Er(i&°f) = Er(i& )
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Let F be the function from Lemma 1.3. Then we have
Er(i&(Foryp,..0) = Er(f®, = 2,_ i (2,_1 )2 f3,..) = Er(i§° )
for every i € N. Since the map 2 — Er(j$°(F o 7.)) is smooth, we obtain that

Er(ig°f) = lim Er(jg°f)

= lim Er(i°(F o 130,..0) = Er(i® F) = Er(£©,0,0,...)

Hence for all smooth #;,¢5 : R® — V, ; such that j3t; = j3t2 we have

Er(i$t) = Er(t,0,0,...) = Er(t,0,0,...) = Er(j&ts)

2. Classification of natural transformations of affinors into functions.
If L: V — V is an endomorphism of an n-dimensional vector space V then
ay(L), ..., a5 (L) denote the coefficients of the characteristic polynomial

Wi(A) = det(A-idy — L) = A" + ay(L)A""! + ... + an(L)idy

Theorem 2.1 There is a one-10-one correspondence between natural transforma-
tions of affinors into functions and all smooth functions F : R® — R. The natural
transformation corresponding to a function F is defined by

(Tmt)(z) = F(a1(tz), ..., an(tz))

for every an n-dimensional manifold M, t € X!,z € M.
Propositions 1.1 and 1.2 ensure that Theorem 2.1 is equivalent to the following:
Proposition 2.2. There is a one-10-one correspondence between all smooth func-
tions F: R® — R and functions G: R" ® (R")* — R such that
(5) for every open set @ C R™ and for every smooth map v : @ — R" @ (R")*
the composstion G o v is smooth,
(6) for all matrices X € R*"®(R")*, A € GL(n,R) we have G(A-X-A~1) = G(X).
The function G corresponding to the function F is defined by

(U G(X) = F(ay(X), ..., an(X))

for every matriz X € R* ® (R")*.
Proof: It is clear that for any smooth function F : R® — R the formula (7)
defines a function such that the conditions (5) and (6) hold.
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We need to show that for a function G : R"* ® (R")* — R we can construct a
function F' for which the equality (7) holds. It suffices to prove that for all matrices
X1, X, € R®* ® (R™)* the following implication

(8) Wx, = Wx, = G(X1) = G(Xz)

holds. The condition (6) says that the function G is constant on orbits of the group
GL(n,R). Let J; be Jordan’s matrices equivalent to X; for i = 1,2. The matrices J;

are of the form

[ A 1
5‘11 Al
5';2
Az
5'21 /\2
ng
Ay
J
12
4,
n A2
Ej,
where e{l,ei,,...,egl,egg,...,... are either 0 or 1 and E’{'I,E'{z,...,E'gl,Eg,,...,... are
either
00 10
0 of°Jo 1
and

A = _ﬂI] ,A2 = az -ﬁz] i

ay

B o P2 o2

The coefficients Aq, A2, ... and the matrices A;, As,... are the same in both matrices
Ji and J; because Wy, = Wx, = Wx, = W, and Ay, Ay, ..., a1 — By, 01 + i1, a2 —
182, az + ifa, ... are the eigenvalues. Let us denote

P:R"3t—t;-J1+(1-t)-JeR"®(R")*

For every t € R" the matrix P(t) has the same characteristic polynomial as the matri-
ces Jy, J3. Clearly all matrices having the same characteristic polynomial are included
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in a finite number of orbits, because every orbit holds Jordan’s matrix and there is a
finite number of systems &1, &2, ..., €21, €22, ...y ..., E1y, Bya, ..., Eay, Ega, ...,.... Hence
(Go P)(R") is a finite set. From (5) the composition Go P is the continuous function.
Hence Go P is a constant function. In particular (Go P)(1,0, ...,0) = (Go P)(0,0, ...,0)
and the condition (8) is satisfied.

We denote
0 -2,
S:R"32 — 1 : eR*®(R")*
v 0 —29
1 —21

It is easily seen that a;(S(2)) = 2; fori =1,..,n and F = Go S. Hence F is unique
and smooth, as the condition (5) is satisfied.

3. Classification of natural transformations of affinors into affinors.
Theorem 3.1. There is a one-to-one correspondence between natural transforma-
tions of affinors into affinors and all systems of n smooth functions F; : R® — R for

i=1,...,n. The natural transformation corresponding to functions F; is defined by

n
(Tat)(2) = Y Filar(ta), . anlte)) - 127
=1
for every an n-dimensional manifold M, t € X} M, z € M, where th=t,0..0t; (k
times).
Propositions 1.1 and 1.2 ensure that Theorem 3.1 is equivalent to following:
Proposition 3.2 There is a one-lo-one correspondence between all systems of n
smooth functions F; :: R® — R for i = 1,..,n and maps G : R® (R*)* —
R"” ® (R™)* such that
(9) for every open set @ C R™ and every smooth map v : @ — R" ® (R")* the
composition G o v is smooth,
(10) for all matrices X € R" @ (R")*, A € GL(n,R) we have G(A- X - A™!) =
A.G(X). A-L.
The map G corresponding to functions F; is defined by

1) O(X) = 3" Fi(@(X), - an(X)) - X"~

i=1

for every matriz X € R* ® (R")".
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Proof: 1t is sufficient to show that for every G satisfying (9) and (10) there are
the unique smooth functions F; for i = 1, ..., n such that the equality (11) holds. If F;
satisfy (11) then for 2 € R" we have
n Fﬂ(z)

G(5() =Y _Fi(=) - (S@)" =
‘ =1 Fi(e)
because (S(z))'(e1) = ej41 for i = 1,...,n — 1 where e,,...,e, denotes the canonical
basis in R". Hence the functions F; are unique. Let us define

(12) " F(2)=G(S@)rH

for i = 1,...,n. Clearly F; are smooth from (9). We only need to show that F; satisfy
(11).

At first we prove (11) for a matrix X which has n different eigenvalues. We need
following;:

Lemma 3.3. Let us suppose that X € R"® (R")*. If the matriz X has n different
eigenvalues then X" for i =1,...,n are linearly independent.

Proof: From Jordan’s theorem the matrix

0 —an(X)
y=|1 :

0 —az(X)

1 —al(X)

is equivalent to the matrix X because X has n different eigenvalues. Assume Y =
A-X-A"" where A € GL(n,R) and 37, A; - X"~* =0, then

i=1

An ol
n n n n
0=A.(ZA'..XH—|').A-1 =Zz\;'(A'X'A-l)"-i=ZA;-Y”_‘ =1:
i=1 i=1 i=1 Al e
Hence A; =0 for i = 1,...,n. This prove the lemma.
If the matrix X has n different eigenvalues then from Jordan’s theorem there exists
A € GL(n,R) such that X = A-J - A~! where
-Al -
Az '

o =
",= A o ]
az —ﬂ2]

B2 @
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Let us denote

o

Cleartly K~! = K and K- J - K~! = J. From (10) we have K - G(J) - K~ =
G(K-J-K~!) = G(J). Multiplying an arbitrary matrix by K on the left is equivalent
to multiplying the first row of this matrix by -1. Multiplying an arbitrary matrix by K
on the right is equivalent to multiplying the first column of this matrix by -1. Hence
the terms of the first row and first column of matrix G(J) are equal to zero except for
the term in the (1,1) entry. .

Suppose ! denotes the integer such that the matrix

a; —p ]

ﬂl ay

is on the Ith and (I + 1)th rows and the Ith and (I + 1)th columns in the matrix J.
We denote

where the matrix
-1 0
o A
is on the Ith and (I 4 1)th rows and the Ith and (I + 1)th columns in the matrix L.

Clearly L=! = L and L-J-L~! = J. From (10) we have L-G(J)-L~! = G(L-J-L~') =
G(J). Multiplying an arbitrary matrix by L on the left is equivalent to multiplying
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the lth and (I + 1)th rows of this matrix by -1. Multiplying an arbitrary matrix by L
on the right is equivalent to multiplying the Ith and (I + 1)th columns of this matrix
by -1. Hence the terms of Ith and (I + 1)th rows and the {th and ({ + 1)th columns of
the matrix G(J) are equal to zero except for the terms in the (1,1), (I,1+1), (I+1,1)
(I1+1,1+41) entries.

Repeated application of the argument above enables us to write

m 1
n2

(13) G(J) _ | [;’: 2]

[‘Yz 52]
&g (

We denote

We see that for all a, 8 € R we have

HE R RS e
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-1 0] [a -] [-1 O]'_[« &

0 1 B «a 0 1] " |-8 «a
It follows that M - J- M~1 = N.J.N-'. From (10) we have M - G(J) - M~! =
G(M-J-M-1)=G(N-J-N-1) = N.G(J)- N-1. We see that for all 7,,¢,¢ € R

we have
[0 1].[7 6]'[0 l]—l_ : e]
10 e ¢ 1 16 7

B B I B s

From the equality M - G(J)- M~ = N -G(J)- N-! and from (13) we conclude that

S R Eay

o

- o

Hence ¢; = 71 and €, = —§;. Repeated application of the above arguments enables
us to write
e -
12
S n -4
(14) G(‘I) = [61 " ]

T2 -52]
5 7

Let V be a set consisting of all matrices of the form (14) for n1,92, ..., 71, 61, 72, 62, ... €
R. The set V is an n-dimensional linear space. By induction J* € V for every k € N.
By Lemma 3.3 the matrices J*~* for i = 1,...,n form a basis of V. Hence there is A;
such that G(J) = Y7, Ai - J*~¥ as G(J) € V. By (10) we have

G(X) G(A-J-AY)=A-G(J)- A

=A'(i’\i'J"'-'-)'A-l=Zn:/\;-(A-J-A-1)"-"=zn:l,~-X""'

=1 i=1 i=1
We need only show that \; = F;(a1(X),...,an(X)) for i = 1,..,n. From Jordan’s
theorem there exists B € GL(n,R) such that S(a1(X),..,an(X)) = B-X-B~! as
matrix X has n different eigenvalues. Hence

G(S(a1(X), .., an(X))) = B - G(X) - .B'=B. (Zx Xx"-%).B!

i=1
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n n An ..
=D X (B-X-B)" =3 A (S(@r(X), o an(X))"F = [ : ]
i=1 i=1 A

From (12) we have that X; = F;(a1(X),...,an(X)) for i = 1,...,n. This proves (11) for
the case of X with n different eigenvalues.

We next show (11) in general case. Let X be an arbitrary matrix and let Y be a
matrix which has n different eigenvalues. Let P be an n-dimensional affine subspace
in the R" ® (R")* such that X,Y € P. Suppose that W(Z) denotes the discriminant
of the characteristic polynomial of a matrix Z € R ® (R")*. Then W is a polynomial
and W(Z) # 0 if and only if Z has n different eigenvalues. We have W|P # 0 because
W(Y) # 0. Hence Q = {Z € P|W(Z) # 0} is a dense subset of P. We know that
G|Q = C|Q where C(Z) = Y0, Fi(a1(Z2),...,an(Z)) - Z*~* for Z € R" ® (R")*.
Suppose D denotes an affine parametrization of P. From (9) G o D is smooth and
G|P = Go Do D! is smooth too. If two smooth maps are equal on a dense set then
these maps are equal. In particular G(X) = C(X). This ends the proof.
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