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N A T U R A L T R A N S F O R M A T Ю N S OF A F F Ш O R S 

I N T O F U N C T Ю N S A N D A F F I N O R S 

Jacek D§becki (Kraków) 

presented by Jacek Gancarzewicz 

An affinor on a manifold M is a tensor field of type (1,1) on M which can be 

interpreted as an endomorphism TM — • TM of the tangent bundle covering the 

identity on M. 

In this paper we give a characterization of the natural transformations of affinors 

into functions and affinors. In section 2 we prove that all natural transformations of 

affinors on n-dimensional manifolds into functions are of the form F(ai(t),.... an(t)), 

where a-^i), . . . ,an( t) denote the coefficients of the characteristic polynomial of t and 

F is a smooth function on R n . In section 3 we prove that all natural transformations 

of affinors (on n-dimensional manifolds) into itself are of the form 

<—>E-7.(ai(.),...,o,(*))-<n-' 
1 = 1 

where .F\,..., Fn are smooth functions on R n . 

All manifolds and maps are assumed to be infinitely differentiable. 

1. Natural transformations of tensor fields. 

Let p,q}rts,n be positive integers. Let M be an n-dimensional manifold. We 

denote by X* M the space of tensor fields of type (p, q) on M. 

A family of maps Tj& : X*M — • XIM is called a natural transformation of tensor 

fields if: 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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(1) for any M, any open U C M and all tut2 € X*M the following implication 

h\U = t2\U =>TMh\U = TMt2\U 

is true, 

(2) for any two n-dimensional manifolds M, N and for every injective immersion 

ip : M — • N we have 

<P* o TM = TN O (p+ 

Using Borel's lemma in a standard way (see [3]) we can easily verify that for tensor 

fields t\,t2 6 X*M and a point x £ M we have 

i?U = iTh => (TMh)(x) = (TMh)(x) 

Let k be either a positive integer or oo and let L*+ 1 be the group of (k + l)-jets of 

local diffeomorphisms of Rn with source and target 0 € R n . 

We denote VPiQ = <g)p Rn ® <g)*(Rn)*. The linear group GL(ntR) acts on VPi9 in 

the natural way. 

Let Vp
k

q = Jk(Rn
tVp,q). If X = j£t then (tC0),^1), <« , . . . ) are coordinates of Xt 

where 

ptfr-y 
= ^flu*i.!."«tif*- : ' 1 ' - ) , V ' i - ' - ' i ^ * i » • • • > * • = *> •••>"} 

The group Z*+1 acts on V̂ *g in the natural way: if £ = i * + V , -Y = i** t n e n £ • -X" is 

the ib-jet at 0 of 

Rn3u-^Ju(<p)-t(u)eVPiq 

where Ju(<p) is the Jacobi matrix of ip at u. 

It is easy to verify that for a homothety 

KC(U) = - • ti 
c 

where c € R \ { 0 } , the coordinates (tS°\ ft1), #2),. . .) of ( iS + 1 * c ) • * are given by #') = 

c*-**') for* = 0,1,2, . . . . 

A map E : V*q — • Vft g is called equivariant if 

E((jP\)-X) = Ш.E(X) 

We have the following: 



NATURAL TRANSFORMATIONS OF AFFINORS INTO FUNCTIONS AND AFFINORS 1 0 3 

Proposit ion 1.1. There is a one-to-one correspondence between natural transfor-

mations of tensor fields of type (p,q) into iensor field of iype (r,s) and equivariani 

maps E : V™q — • Vft$ which satisfies the condition : 

(8) for every open subset Q C R n and every smooth 7 : fl — • VPiq the map 

SlZX-+E(j«>(yoTt))€Vrt. 

is smooth, where TX : R n 9 y — • y + x € R n is the iranslaiion by vector x. 

If T is a natural transformation then the corresponding equivariani map Er is 

defined by 

-3r(i5°.)--rR-(i)(o) 

If E is an equivariani map, ihen ihe corresponding naiural transformation TE is 

defined by 

(T%i)(z) = (T,<p-1)(E(}?(<p.t))) 

where tp is a local system of coordinates on M such that (p(x) = 0. 

The one-to-one correspondence between natural transformations and equivariant 

maps is formulated in Krupka's theorem [2]. We prove only that for a natural trans­

formation T the corresponding equivariant map ET satisfies the condition (3) and 

' that for every equivariant map E which satisfies the condition (3) and for every tensor 

fields t of type (p, q) on an n-dimensional manifolds M the map Tjjfc(t) is smooth. 

We have 

^ ( i o W ( 7 o r , ) ) = ^ ( i 0 - ( ( T . x ) , 7 ) ) 

= T R . ( ( T . . ) . 7 ) ( 0 ) = ( T - . ) . T R . ( 7 ) ( 0 ) = T R . ( 7 ) ( « ) 

Since TR»(7) is smooth, £ 7 satisfies the condition (3). 

Now let us suppose that an equivariant map E satisfied (3) and that <p : U —• R n 

is a local system of coordinates on M such that (p(x) = 0. For every y € U the 

composition T^(f) o tp is a local system of coordinates on M and (^-^(y) ° ¥>)(y) = 0. 

We have 

(T*t)(y) = 3T(r-KF) ° vrllE(tf{(T-rt) ° *>>•'») = r§v-
l(EU?((v**) o rm))) 

By (3) the map f(z) = E(jg>(<p*t o TZ)) is smooth, hence T$t = <p~lf is smooth. 

A natural transformation T of tensors of type (p, q) into tensors of type (r, s) has 

order Jb if for any n-dimensional manifold M, any x € M and all <i,<2 € X*M the 

following implication 

iih = ilh => (TMti)(*) = (-M *-)(.) 

holds. 
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From Proposition 1.1 we deduce that T is of order Jfe if and only if the foUowing 

implication 

JO'I = J0*2 = • ETU^'I) = ET(J?82) 

holds for every smooth *i , s2 : R n — • VPtq, 

We prove now the foUowing: 

Proposit ion 1.2. If p = r and r = s then every natural transformation of tensors 

of type (p,q) into tensors of type (r, s) has order zero. 

To prove this proposition we need the foUowing: 

Lemma 1.3. Let f : R n —• VPtq be a smooth map such that support f is compact. 

Then there is a smooth map F : R n — • VPtq such that for any t € N an J for any 

a € N n 

Q\<*\ i 1 fll«l 
(4) _ F ( _ , 0 , . . . , 0 ) = - - - — - . _ / ( 0 ) 

This lemma implies immediately that F(0) = / (0) and 

| — F(0) = 0 
dx« v ; 

for | a | > 0. 

Proof: Let <p : R — • [0, l] be a smooth function such that (p(x) = Oifoj<—1 + £ 

and (p(x) = 1 if x > — e for some e > 0. For t € N , x € R n we denote 

U i - ( i + l ) . ( n - l ) ) i f * i < } 

w(») = < 1-?>(( ' - - )» ' (* i -r -r ) ) i f * i > f andi> l 
[ 1 if xi > 1 and i = 1 

/<(») = /(-~-T ' (*- ~ 7)' 2<-T ' *2''"' F-T' *") 

F( v f D-iW(») •/<(») » * i > 0 
V ' 1/(0) i f * i < 0 

The proof that F is smooth and satisfies (4) is standard. 

Proof of Proposition 1.2: Let T be a natural transformation of tensors of type 

(jp, q) into tensors of type (r,s) and let / be a smooth map R n — • VPtq with compact 

support. For every c € R \ { 0 } we have 

_ M / ( 0 ) , c • /<l>, c2 • /<»),...) = _M(io°°*e) • (io00/)) = Jb(«.) • ErUTf) = ErdSTf) 
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Let F be the function from Lemma 1.3. Then we have 

ETU?(F O r ( f 0 0))) = £ r ( / ( 0 ) , - i - • fU, (±)> • /<»,...) = ET(j?f) 

for every i € N . Since the map x —• ET(jg>{F o TX)) is smooth, we obtain that 

ErUg>f) = lim Ertiff) 
• -*oo 

= .lim Er(j?(F o r(h0_0))) = ET(j?F) = Er(f(°\0,0,...) 

Hence for all smooth <i,t2 : Rn —• Vv%q such that ;§<i = jgl2 we have 

^(io0 0^) = ET(t?\ 0,0,...) = ET(t<?\ 0,0,...) = ET(j?t2) 

2. Classification of natural transformations of affinors into functions. 
If L : V —• V is an endomorphism of an n-dimensional vector space V then 

ai(L),..., an(L) denote the coefficients of the characteristic polynomial 

WL(X) = det(A • idv - L) = An + ax(L)\n~l + ... + an(L)idv 

Theorem 2.1 Thtrt is a ont-to-ont correspondence bttwttn natural transforma­

tions of affinors into functions and all smooth functions F : Rn —• R. Tht natural 

transformation corresponding to a function F is defined by 

(TMt)(x) = F(al(tx),...,an(tx)) 

for tvtry an n-dimtnsional manifold M, t € X\ ,* € M. 

Propositions 1.1 and 1.2 ensure that Theorem 2.1 is equivalent to the following: 
Proposition 2.2. Thtrt is a ont-to-ont corrtspondtnet bttwttn all smooth func­

tions F:Rn —• R and functions G : Rn ® (Rn)* —• R such that 

(5) for tvtry optn stt fi C Rn and for every smooth map 7 : Q —• Rn ® (Rn)* 

tht composition Go 7 is smooth, 

(6) for all matrices X € Rn®(Rn)*, A € GI(n, R) we have G(A-X-A-1) = G(X). 

Tht function G corresponding to tht function F is defined by 

(7) G(X)^F(ax(X)t...}an(X)) 

for tvtry matrix X € Rn ® (Rn)*. 
Proof: It is clear that for any smooth function F : Rn —• R the formula (7) 

defines a function such that the conditions (5) and (6) hold. 
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We need to show that for a function G : Rn ® (Rn)* —• R we can construct a 
function F for which the equality (7) holds. It suffices to prove that for all matrices 
Xu X2 € Rn ® (Rn)* the following implication 

(8) WXl = WX2 = > G(XX) = G(X2) 

holds. The condition (6) says that the function G is constant on orbits of the group 
GL(ny R). Let J, be Jordan's matrices equivalent to X, for t = 1,2. The matrices J,-
are of the form 

4 i At 

e\ 12 

~2\ A2 

é $ 
22 

E[2 

E\x A2 

E\ 22 

where cl
n,e\2t —tc211e22f...,... are either 0 or 1 and E[i,E[2,...}E2i9E22f...,... are 

either 

and 
[::] - [І Ï] 

Чs ?]Чs ?]-
The coefficients Ai,A2,... and the matrices .Ai,.A2,... are the same in both matrices 

Ji and J 2 because Wjx = WXl = Wx3 = Wj3 and Ai, A2,..., ori — ifa,at\ + i/?i,a2 — 

»/J2« or2 + i/92,... are the eigenvalues. Let us denote 

P : R » 3 « — • * 1 . J 1 + ( l - f l ) . J a € R , , ® ( R , i r 

For every t € R n the matrix P(t) has the same characteristic polynomial as the matri­

ces Ji, J2. Clearly all matrices having the same characteristic polynomial are included 
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in a finite number of orbits, because every orbit holds Jordan's matrix and there is a 

finite number of systems *ii ,ei2, . . . ,£2i ,£22--, . . . , ^ i » £ » « ' " » f t i » f t 2 r » . - Hence 

( G o P ) ( R n ) is a finite set. From (5) the composition Go P is the continuous function. 

Hence GoP is a constant function. In particular (GoP ) ( l ,0 , ...,0) = (GoP)(0,0, ...,0) 

and the condition (8) is satisfied. 

We denote 

5 : R n 5 x 

0 -*„ 

1 '•• : 

'•• 0 -xi 

1 - * i 

Є R n ® ( R " Y 

It is easily seen that a{(S(x)) = X{ for t = 1,..., n and F = G o S. Hence F is unique 

and smooth, as the condition (5) is satisfied. 

3. Classification of natural t r a n s f o r m a t i o n s of affinors i n t o affinors. 

Theorem 3.1. There is a one-to-one correspondence between natural transforma­

tions of affinors into affinors ani all systems ofn smooth functions F{ : R n —• R for 

i = l,...,n. The natural transformation corresponding to functions F{ is defined by 

(тмt)(x) = £ nыu) <.„(.„)) • *;-•' 
1 = 1 

for every an n-iimtnsional manifold M, t € A^Af, * € M, where t). = tx o ... o ^ (k 

times). 

Propositions 1.1 and 1.2 ensure that Theorem 3.1 is equivalent to following: 

Proposit ion 3.2 There is a ont-to-ont corrtsponitnct between all systems of n 

smooth functions Fi : R n — • R for i = l , . . . ,n ani maps G : R <g> (Rn)* — • 

R n ® (R n )* Jiici that 

(9) for tvtry optn set SI C R n ani tvtry smooth map 7 : to — • Rn ® (Rn)* tht 

composition G o 7 is smooth, 

(10) for all matricts X € R n ® (Rn)*, A € GL(n, R) we have G(AX- A'1) = 

A>G(X).A-K 

Tht map G corresponiing to functions Fi is defined by 

(11) G(X) = £ Fi(a1(X),.... an(X)) • X « - ' 
1 = 1 

for tvtry matrix X € R n ® (Rn)*« 
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Proof: It is sufficient to show that for every G satisfying (9) and (10) there are 

the unique smooth functions F\ for i = 1,..., n such that the equality (11) holds. If F{ 

satisfy (11) then for x € Rn we have 

•Fn(x) . . . 

G(S(x)) = Y,Fi(x).(S(x)Y-i = 
í » l Fx(x) 

because (S(a?))'(ei) = e,+i for i = l , . . . ,n — 1 where e i , . . . ,en denotes the canonical 

basis in Rn . Hence the functions Fj are unique. Let us define 

(12) *" Fi(x) = G(S(x))Ti+l 

for i = 1,..., n. Clearly F{ are smooth from (9). We only need to show that F{ satisfy 

in). 
At first we prove (11) for a matrix X which has n different eigenvalues. We need 

following: 

Lemma 3.3 . Ltt us suppost that X € R n ® ( R n ) * . Iftht matrix X has n iifftrtnt 

eigenvalues thtn Xn~% fori = l , . . . ,n art lintarly initptnitnt. 

Proof: From Jordan' s t h e o r e m the m a t r i x 

TO -an(X) 

1 '•• : 

'•• 0 -a2(X) 
1 -ax(X) 

is equivalent to the matrix X because X has n different eigenvalues. Assume Y = 

AX A-1 where A € GL(n, R) and £"=i A. • Xn~; = 0, then 

;A„ 

0 = A • ($2 Ai • Xn-;) A-%=Y,Xi(AX- ^"1)n"'' = X , A. • r n - ' = 

r = 

í = i i a l í = l LAX 

Hence At- = 0 for i = 1,..., n. This prove the lemma. 

If the matrix X has n different eigenvalues then from Jordan's theorem there exists 

A € GL(n, R) such that X = A • J - A'1 where 

"Ax 
A2 

J = 
f«i -ßi 
[ßi «i 

Ofj -ßi 

ßi Of» 
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Let us denote 

к = 

- i 

[ІÏ] 
1 01 
0 l j 

Clearly K~l = K and K - J - K"1 = J. From (10) we have K - G(J) • A'"1 = 

G(K • / • if""1) = G(J). Multiplying an arbitrary matrix by K on the left is equivalent 

to multiplying the first row of this matrix by -1. Multiplying an arbitrary matrix by K 

on the right is equivalent to multiplying the first column of this matrix by -1. Hence 

the terms of the first row and first column of matrix G(J) are equal to zero except for 

the term in the (1,1) entry. 

Suppose / denotes the integer such that the matrix 

ax - f t 
ft <*i 

is on the /th and (/ 4- l)th rows and the /th and (/ + l)th columns in the matrix J. 
We denote 

L = 

- 1 0 
0 - 1 

[ІÏ] 
1 0 
0 1 

where the matrix 
- 1 0 
0 - 1 

is on the /th and (/ + l)th rows and the /th and (/ + l)th columns in the matrix L. 

Clearly L~l = L and LJL'X = J. Prom (10) we have L-G(J)-L~l = G(L-JL~l) = 

G( J). Multiplying an arbitrary matrix by L on the left is equivalent to multiplying 
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the /th and (/ + l)th rows of this matrix by -1. Multiplying an arbitrary matrix by L 

on the right is equivalent to multiplying the /th and (/ + l)th columns of this matrix 

by -1. Hence the terms of /th and (/ + l)th rows and the /th and (/ + l)th columns of 

the matrix G( J) are equal to zero except for the terms in the (/, /), (/, /+1) , (/ + 1 , /) 

(/ + 1,/ + 1) entries. 

Repeated application of the argument above enables us to write 

(13) G(J) = 

m 
42 

We denote 

7l *l 
£i Cl 

[72 *2І 
1*2 C2J 

м = 

[0 i l 
T °J 

T o' 
0 1 

1 01 
0 1 ] 

п 

N = 

- 1 0 
0 1 

We see that for all or, ft € R we have 

1 01 
0 i] 

[łï] 

\m Mír-\.% í\ 
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r-i oi [« -/?] r-i o i - l _r« 0] 
[ 0 lj [(J a j [ 0 l j ~[-0 «J 

It Mows that MJ- M~l = N-J-N'1. From (10) we have M • G(J) • M" 1 = 

G(M- J- M~l) = G(N-J-N~l) = JV • G(J) • JV*--. We see that for all 7,6, e,< € R 

we have 

[jii-tauir-i.;] 
[v!]-[.a-[vtr-[it] 

From the equality M • G(J) - M" 1 = N - G(J) • N"1 and from (13) we conclude that 

Г& *il _ ľ 7i -*i 
L*i 7iJ L"c- íi 

Hence & = 7i ^^d c i = "~^i. Repeated application of the above arguments enables 
us to write 

(14) G(J) = 

m 
m 

\ъ -61] 
1*1 71 J 

72 -*a 
62 72 

Let V be a set consisting of all matrices of the form (14) for 771,172, —»7I»^I>72J^2J— € 

R. The set V is an n-dimensional linear space. By induction J* € V for every fc € N. 

By Lemma 3.3 the matrices Jn— for i = 1,..., n form a basis of V. Hence there is A; 

such that G(J) = £ n
= i At- • J

n - as G(J) € V. By (10) we have 

G(X) = G(A • J • -4"1) = .4 • G( J) • .A"1 

= .A • ( £ At • J
n - ) • A"1 = £ A t - ^ 

i s l i s l t-1 

We need only show that At- = Fi(ai(X)t...fan(X)) for i = l,...,n. From Jordan's 

theorem there exists B € GL(n,R) such that S(ax(X)}...fan(X)) = B X B'1 *s 

matrix X has n different eigenvalues. Hence 
n 

G(S(at(X)t..., an(X))) = B • G(X) • B~l = fl • ( £ A,- • Xn~{) • J3"1 

• - 1 
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= ^ A, • ( 5 • X • B'1)^ = j ^ A« • {S{ai(X)9.... an(X)))n^ = : 

«=1 »'=1 LAi . . 

From (12) we have that A,- = F;(ai(<Y), ...yan(X)) for i = 1,..., n. This proves (11) for 

the case of X with n different eigenvalues. 

We next show (11) in general case. Let X be an arbitrary matrix and let Y be a 

matrix which has n different eigenvalues. Let P be an n-dimensional affine subspace 

in the R n ® (R n )* such that X, Y € P. Suppose that W(Z) denotes the discriminant 

of the characteristic polynomial of a matrix Z G R n ® (R n )* . Then W is a polynomial 

and W(Z) ^ 0 if and only if Z has n different eigenvalues. We have W\P £ 0 because 

W(Y) £ 0. Hence Q = {Z € .P|W(Z) ^ 0} is a dense subset of P. We know that 

G\Q = C|Q where C(Z) = £ ? « i /«(a1(Z) l . . .>o f l(Z)) • Zn"{ for Z € R n ® (R n )* . 

Suppose D denotes an afRne parametrization of P. From (9) G o D is smooth and 

G\P = G o D o D " 1 is smooth too. If two smooth maps are equal on a dense set then 

these maps are equal. In particular G(X) = C(X). This ends the proof. 
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