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THE TANGENT AND THE COTANGENT VECTOR SQUARE
OF A POINTED DIFFERENTIAL SQUARE

Bronistaw Przybylski

Let S, M, N, P be differential spaces (see [2]D such that
M, N and P are non-empty differential subspaces of S, M UN =
S and MN N =P. Let us take p € P. We say that these data
define a pointed differential square ¢ = (SM,N,P,p)>. One can
ask what are relations between tangent vector spaces JFM,pd,
TCN,pd, TP,p> and TC(S,pd as well as between cotangent vector
spaces 7"M,p>, T N,p>, 7*P,p> and 7¥S,p>. In particular,
if dim 7(S,p> < o, for what ¢ is the equality
(€ D) dim 7¢S,p> = dim FM,pd> + dim FN,pd> - dim FCP,pd
satisfied? To get partial answers to these questions, we
associate with ¢ the tangent (cotanger_\t) vector commutative
square diagram which is shortly called the tangent <(cotangent)
square of o. It turns out that if o is J-couniversal
(J‘*-couniversal), that is, the tangent (cotangent) square of ¢
is couniversal, then we get partial (full> information about
the above mentioned relations (Theorems 2.2, 26 and 2.9>. In
particular, if dim Z(S,p> < ® and o is J‘*—couniversal, then
'equality (*) is satisfied (Corollary 2.12).

In this paper we are especially interested in glued
pointed differential squares, that is, pointed differential
squares for whicl:. the corresponding commutative square diagram
of algebras of real smooth functions is ‘ couniversal. Such

squares arise as the square gluings of overlapping pointed

This paper is in final form and no version of it will be
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differential spaces. We show that every glued pointed
differential square is J-couniversal <(Corollary 2.4> but need
not. be J‘*—couniversal (Proposition 3.14>. On the other hand,
each glued pointed differential square (S,M,N,P,p>, such that
P is a local smooth retract of M or N at p, is J‘*—couniversal
(Corollary 3.6>. . In particular, we obtain that the square
gluing of pointed differential manifolds, which are
overlapping relative to a regular differential submanifold, is
T*—couniversal (Corollary 3.10).

It s SGEI:; that our notion of a pointed differential
square is not a general one in the sense of the theory of
categories. Moreover, we do not study arbitrary poi.nted
differential squares, but we are rather interested in finding
necessary and sufficient conditions for such squares to be
JF=-couniversal, J‘*(O)-couniversal and f’-couniversal. Therefore
the results of this paper are far from being conclusive. It
seems that a more complete theory can be obtained by using

deeper homological algebra methods.

1. Preliminaries. For any differential space M, denote l;y
B(M> the differential structure of M, ie. the family of all
real smooth functions on M which will be regarded as a real
algebra under the pointwise operations. If f£ M —- N is a
smooth map of differential spaces, then by f: 68N> — BM> we
denote the homomorphism of algebras given by f*(a) = oo f.

By a pointed differential space M,p> we mean a
differential space M together with a base pofnt p. We say that
Ff:r M,p> — N, is a smooth map of pointed differential
spaces if f# M — N is a smooth map of differential spaces. and
f<p> = q. The resulting category is called the category of
pointed differential spaces. .

For any pointed differential space M,p>, denote by ¥M,pd
the algebra of all germs of M) at p. If a € €M), then the
symbol a; stands for the germ of a at p. Let jf: M,p> — (N,
be a smooth map of pointed differential spaces. Denote by
fﬂ Y(N,q> — $M,p> the homomorphism of algebras defined" by
f#(aq) = (f a)p where _f a = oo f,
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Let € (¥ denote the assignment which sends every
differential space M (pointed differential space M,p> to the
- algebra 8M> ¢M,pd> and ever'y smooth map f of differential
spaces (pointed differential spaces)> to the homomorphisl"n _)"*'E
(f#) of algebras. Clearly, we have’

1.1. Lemma. The as.signment € & 1is a contravariant
functor from the category of differential spaces (pointed
differential spacesd) to the category of comnmutative real
algebras. m

If (M,p> is a pointed differential space, then we set

' BM,p> = {a € BM>: oalp> = 0}
and note that BM,p> is a maximal ideal of ¢@(M). The cotangent
vector space of (M,p) is defined to be the quotient space

F*M,p> = €M, pd/8M,pd2.
By the differential of a € (M) at p we mean the element
dy o = Camap + EM,p>? e 7 M,p>.
If f: M,p> — (N,@> is a smooth map of pointed differential
spaces, then the codifferential of f d(at pd is a linear map
7 ¥ N - 7FM,p> defined by
I + BN, = fro + BM,pd2

where a € 8NN,q> and _f*Ol. = oef.

The tangent vector space of M,p> is defined to be the
vector space JTM,p> dual to .T*(M,p) or,  equivalently, the
vector space derpﬁ(M) of all derivations of the algebra &M
at p. In fact, we accept,_ that v = V(dM,pa) for o € €M,
where v on the left is meant as a derivation ‘of 8(M> at p.
Moreover, if f is the above map, then the differential of f
Cat. pd> is defined to be the linear map J(f: TWM,p> — JTN,q>
dual to 3"*( > or, equivalently, the linear map given by
FCHHWID = v(f o> where o e END.

Denote by J (.7‘*) the assignment which sends every pointed
differential space M,p)> to the vector space FM,p> (J"*(M,p))
and every smooth map f of pointed differential spaces to ‘the
linear map J'(f I C(>. We have

1.2. Lemma. The assignment 7 @™ is a covariant
Ccontravariant) functor from the category of pointed

differential spaces to the category of real vector spaces. m
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A diffefential pair (M,A) consists of differential spaces
M and A where A is a non-empty differential subspace of M. If
(M,A> is a differential pair, then the inclusion map i A 9 M
is called the canonical inclusion wmap of M,A). This map
determines the restriction homomorphism i*:v‘é’(M) — 8CAd> of
algebras which is defined by the assignmer:t. map a O(IA. Set

8CM,A> = ker 1"
and note that 8M,A) is an ideal of 8(MD.

A pointed dif ferential pair M,A,p> consists of
differential pair (M,A) together with a base point p € A. If
M,A,p> is a pointed differential pair, then by
i,: (A,p> & M,p> we denote the inclusion map of pointed
differential spaces which will be called the canonical
tnclusion map of M,A,pd>. This map determines the algebra
epimorphism i".g: EM,pd — ECA,pD which is defined by the
assignment

a; [ a;:IA where a;|A = (aIA);.
In turn, notice that 1i. determines the Ilinear epimorphism
7*cid: 7 Mp> — 7*CA,p> given by the assignment

dM,pa - dA,pa where dA,pa = A,p(alA)'
Let. us set
7*MA,p> = ker 7.

We get the following exact sequence of linear maps of vector -
spaces ' -

*

* s
A1 0 — F*MAp o Fraqp> L G2,

7*aap> — 0
where 'rf denotes the inclusion map. One can prove

1.3. Lemma. If M,A,pd 1is a pointed diffefential pair,
then 7*M,A,p> = fdy oo o € EMA>L =

Lett (M,A,p> be a pointed differential pair. Since sequence
11> is exact, it follows the exactness of the following
sequence dual to 1.1>

0 — FCAp> —LE2, FM,p> —» FM,A,p> — O.

Let. us set ;T(MlA,p) = im 7D = ker T.. Obviously, TCiD
defines a linear isomorphism from J(A,p> onto J‘(MlA,p). If.'_ is
easily seen that Lemma 1.3 involves

1.4. Lemma. If MA,pd is a pointed differential pair,
then J‘(MIA,p) = {v e IM,p>: J"(M,A,p) < ker v.}. ]
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2. Pointed differential squares. A differential square
o = (S,M,N,P) consists of differential spaées S, M, N, P where
M, N, P are differential subspaces of S such that MUN = S
and M N N=P # 0. To any such square we assign the following
commutative square diagram of inclusion maps of differential
‘spaces: .

P 2

[ESE

M2

Applying the functor € (Lemma 1.1) to this diagram we get the
following commutative square diagram of homomorphisms of real

algebras: '
t 3

B(S) —— BN

IR

BMd) — BPD

The last. diagram will be denoted by J/8CoD.

A pointed differential square o = (SMNP,pd> is a
differential square (S,M,N,P> together with a base point
p € P. With any such square we associate the following
commuﬂat.ive square diagram of inclusion map§ of pointed-
differential spaces:

T

i, :
(P,p> — CN,p>

2.1> l J! l J.
1.
M,p> — (S,pd
Applying tl,he functor € (Lemma 1.1) to this diagram we get

the following one of homomorphisms of real algebras:

# .
€CS,p> ———> $N,p>
li‘.’ ‘l‘i:#
»*

€M, p> —— $CP,p>
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This diagram will be denoted by SgCoD.
Now, applying the functors 7 and 7* Lemma 12> to diagram

(2.1> we obtain the following ones of linear maps of vector

spaces:
™
T N o,
FCP,pd ———— JTCN,pd T (S,pd — T N,pD
* »* .
j?"(j") lff'(j.) 17' @D l:f" (€D
* .
7CiLD N 7* e .
FM,p> ————  (S,pd 7*M,p> ———— 5 77, p>

Denote by #7(od and J’\T*(o) the square diagrams on the left and
the right hand side, respectively.

Consider now an arbitrary commutative square diagram A of
linear maps of real vector spaces:

p -2, B

I e

A2,c

Let us set A &, B = {(a,b) € A & B: aad = B(b)} and note that

A
A GBA B is a linear subspace of A & B. The diagram A determines
the linear map A#: D — A eA B defined as follows A#(d) =
3 <dd,o’ <dDD. This diagram is said to be couniversal

(O-couniversald if the map A, is an isomorphism d(monomorphismd

#
(see [1], p- 359, Theorem 1.1). Obviously, A is couniversal
(0-couniversald if and only if A

Cker A# = OD.

From Lemmas 1.3 and 1.4 we get immediately
21. Lemma. Let (SMNP,pd be a pointed differential

is surjective and ker A, = O

# #

square. Then

> 7*sMp> + 7SN ¢ 7¥E,Ppd,

2> FCS|M,pd> N FCS|N,p> > FCS|P,p>. =m

2.2. Theorem Let <SMNP,p) be a pointed differential
square. Then the following conditions are equivalent:

ca> 7*SsMp> + 7FE,Npd> = 7¢S,P,pd,

(> TS |Mp> N TS|N,p> = FCS|P,pd,

(c> Diagram FJISMN,P,p> is couniversal,

Proof. <ad =» <(b). According to Lemma 21 (2> it remains to
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prove that
.7‘(S|M,p) N J‘(SlN,p) < 3‘(S|P,p).

Indeed, let us take v e J(S|M;p> n J¢S|N,p>. By Lemma 1.4 we
get J'*(S,M,p) < ker v and T*(S,N,p) < ker v. Hence and t‘ro‘m
condition (a> it follows that T*(S,P,p) < ker wv. Thus, by
Lemma 1.4, we conclude that v e JF(S|P,pd.

(> 3 (3. Let A = PTESMNP,p). First, we prove that A#.
A JCN,p>, which
means that u € JFM,pd, v € JTN,p> and JFidu =

is surjective. Let us take du,v) € FM,pd> @

JCGIv € JCS,pd. Thus the vector w = FDdu = F(GOv  belongs
to I(S|M;p> N TCS|N,p>, and so, by condition (b3, it belongs
to .’I‘(SIP,p). Therefore, there Iis w® e JCP,p> such that
FCrOWC = w where k. = 1,6j] = jei!. Let us set u' = .7‘(j_’)w°
and v’ = JF >w®. It is seen that u' e FM,pd, v/ e FWN,pd> and
TN = FADdu, TFGIV'Y = F(GIv. Since IFED and JT¢D are
injective, it follows that u’ = u and v/ = v, whence
u = J¢’ >w® and v = Fc! )wo, which means that A#wo = (u,v). Ve
have thus proved that A# is surjective.

To prove that the linear map A# is an isomorphism, it
remains to show that kex: A ”
A Cw~d = (TG OW~, TG dw~d = 0,00, This implies that w~ =20

#
because 7'(j/> is a monomorphism as well as 7).

= 0. Indeed, if w~ & kerA#, then

(c) = (ad. Suppose to the contrary that
7*es,Mp> + 7*s,N,p> = 7¥s,P,po.

Hence and from Lemma 21 (1) - it follows that there is
w e JC,pd such that é“'(S,M,p) + 3‘*(.S,N,p) < ker w and
J“(S,P,p) does not contain in ker w. By Lemma 1.4 we conclude
. that.
2.2 w € J¢S|M,p> N FC(S|N,p> and w & J(S|P,pd.
This implies that there are u € JM,p> and v € FWN,p> such
that 7(idu = w .and J(j)dv = w because im 7D = f(SlM,p) and
im F(jO = J"(SlN,p). Clearly, we have (u,v? e TM,p> QAJ‘(N,p).
Since diagram A is couniversal, there is a vector: w’ e TCP,pd>
such that A = TCHWe 7w = u,v>. Hence FCROWC = w,
and so, w € im JC(kD = J‘(SIP,p), which co_nt.radicts 22). =

We say that a pointed differential square is J-couniversal
if it satisfies at least one of the equivalent conditions of

,
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Theorem 2.2.

A differential square ¢ = (S,M,N,P) is said to be glued if
diagram JS€Co> is couniversal. This means that the following
condition holds:

€@ If a is a real function on S such that a|M e &M and

Oll e BN, then. a € BCSD.

" By an easy verification we get
2.3. Lemma. If GMNP) is a glued differential sgquare,

then €(S,N> + B(S,M> = €(S,P). m

Note that ' if SMNP,pd> is a glued pointed differential
square, then from Lemma 23 it follows that condition (a> of
Theorem 2.2 is fulfilled. Thus we have

2.4. Corollary. Every glued pointed differential Squam;a is
J-couniversal. m

The following example shows that there are non-glued
differential squares (S,M,N,P> such that <S,M,N,P,p> is
J=couniversal for each p € P. .

2.5. Example. For each r >0 define the function
¢P: R — R as follows: ‘

0 for x £ 0,

P x> = -
r er/xforx>0.

It is well-known that ¢r e ¢®MR>. Let F: = {(x,¢r(x)): X € IR}
and Fr = {(x,-¢p(x)): x € R} be the graphs of ¢r and -¢r’
respectively.
+ - +

Let us put S =F UF, M =F, N
+ _ r r r r r r
l=‘P M Fr’ and consider these sets as differential spaces under
the natural structure induced from R It is easy to see that

= F ‘and P =
r r

for any p € Pr the pointed differential square (Sr’Mr’Nr'Pr'p)
satisfies condition (b)> of Theorem 2.2, and so, it is
J-couniversal. .
Now, we shall prove that the differential squares o, =
(S-P’Mr’Nr’Pr) are non-glued for all r > 0. Indeed, suppose to
the cont.rar_y that on is glued for some r > 0. Let us take

r > s > 0 and consider the real function A on Sr defined by



THE TANGENT AND THE COTANGENT VECTOR SQUARE OF A POINTED DIFFERENTIAL SQUARE 171

g = ¢S(x) for q = (x,¢r(x>) € Mr’
-¢s(x) for q = (x,—¢r(x)) e Nr.
Obviously, A is well-defined and note that )\|Mr e ‘8<Mr) and -
._)\.lNr e 8(Nr). By our hypothesis, from  condition (G) it follows
that \ e 8CS . Since S, is a closed subset of R?, there is a
function A € 8(R*> = CCR®> such that A[S_ = .
Finally, note that applying the Lagrange Mean-value
Theorem it follows that for any x > 0 we have
L2900 = At GO = Alx,mg (X0 = a—"<x,nx>-z¢rcx>'

ay
where -¢r,(x) < Ny, < ¢P(x). Hence we get

al;(x,n > = e(r-s)/x for x > O,

which is impossible because

tim Bain > = 220,05 and 1im TV 2 4

x->0+ay 9y x>0+
This contradiction involves that our hypothesis is false, i.e.
all differential squares o, are non-glued. =

2.6. Theorem. Let GSMNP,p> be a pointed differential
square. Then the following.conditions are equivalent:

@ 7*sNp> n 7*SsMp = 0,

(¢ %) J‘(S'M,p) + .7’(S|N,p) = J¢S,pd,

(c) Diagram ff*(S,M,N,P,p) is O-couniversal.

Proof. (ad> = (b). Since the inclusion map kp: P,p> L»
¢S,p> determines the epimorphism f‘(kp): J‘*(S,p) d T‘(P,p) of
linear spaces, it follows that there is a linear monomorphism
EKP: .7'.(P,p) — .7'*(S,p) such that J“(hp)ofl( = id.’f'*(P,p) Ve
have thus the following decomposition

7*s,p> = 7*s,Pp o K

where Kp = im 9<p, defined by the identity

a = (a - (9( o™ (kp)a) + (i'er.T (kp)ot
Obviously, condition <(ad impues that 3‘ S,N,p> + J‘ S,M,pd =
T‘_(S,N,p) [} T‘(S,M,p). Since this linear subspace of 7’ S,P,p>
has a direct summand L _, it follows that

IS, P> = FES,Np @ TTESMp) @ L.
To sum uyp, we get, the following decomposition
Q2.3 " S,pd) = " (S,N,p> & * SM,p)> o RP
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where Rp = Lp -] Kp.
Clearly, to prove condition <(b), it suffices to show the
inclusion
FCS,p> < TCS|M,p> + FCS|N,pd.
Let us take u e 7(S,pd>. From (23> it follows that there are
vectors u,u U e J¢S,p> such that u = u + u, + u, and the
following inclusions are fulfilled:
7*cs Mpd @ R < ker u,
J‘ S,N,p> & R < ker uz,
~ 7% N,p) @ 7*cs M,p) < ker u.
These inclusions imply that u TS |M,pd, u, € F(S|N,p> and
u, <€ J‘(S|M,p) N T(SlN,p), so u e J"(S]M,p) + J‘(SIN,p). .

(b> # (ad. Let us take a function a € 8(S> such that
dS,pa = J‘*(S,N,p) 2] ?‘(S,M,p). It remains to show that
dS,pa =0 or, equivalently, that. u(ds’poo =0 for each
u e J,pd. Indeed, if u e 7G,pd, then, by condition <(b),
there are v € J(S|M,p> and w € JC(S|N,p> such that u= v + w.
Hence, by Lemma 14, we get. udd pOl) = v(ds’poo + w(ds’pa) = 0
because ds pa 1= .7‘ (S,N,p> N 7‘ <S,M,p>. .

@) ¢ (). Let A = .?3“ <S,M,N,P,p>. From the definition of
A, it follows that ker A= 7*s,N,p> N 7*¢S,M,p>, which gives
an equivalence between conditions (ad and <b)>. =

A pointed differential =~ square is said to be
7%0>-couniversal if it satisfies at léast one of the
equivalent. conditions of Theorem 2.6.

The following example shows that. there are
J‘*(O)-couniversal pointed differential squaresA which are not
J=couniversal. .

2.7. Example. Let S be the Euclidean space . R" & = D
regarded as a differential space under the natural sbructure..
We define the following differential subspaces of S: M=
{xc—:S:xnzo}, N={xes:xn$0} and P-{xeS:xn-O}
whgre X = (xz,...,xn). Let us consider the pointed
differential ~ square o = (S,M,N,P,0> where o = (0,.0) e RrR".
It is seen that o¢ =satisfies condition <(b> of Theorem 2.‘6,'
which means that it is 7*c0>-couniversal. Moreover, note that

o is not J-couniversal because J(S|M,0> = J(S|N,0> = 7¢S,03
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but. .7'(S|P,o) is a proper linear subspace of J¢S,0)> of
codimension 1, and so, condition (b)Y of Theorem 2.2 evident,‘ly
does not satisfy. = .
The next example shows that there are J-couniversal
pointed differential squares which are not .’T“(O)—couniversal.

2.8. Example. Let ém = ¢S MNP 0> be the pointed
differential square defined in Example 25, where o = <0,0D.
As we know %0 is J-couniversal. On the other hand, note that
TS |M,0> + F(S|N,0> = F(S|P,0d = J(S,0d. Hence and from
condition (b> of Theorem 2.6 it follows that ¢ 'is  not
J‘*(O)-c;ouniversal. " l e

2.9. Theorem Let o be a pointed differential square. Then
the following conditions are equivalent:

(ad o is JI-couniversal and 7‘*(0)—couniversal,

(b> Diagram .7’.7"*(0) is couniversal.

Proof. ad = (b). Let us set o = (S,M,N,P,p‘) and A =
.?.7"*(0). Since o is J"*(O)-couniversal, "we have ker A# = 0.
Thus, it remains to show that A, is surjective. Suppose to the

. #
contrary that A#(J‘*(S,p)) is a proper linear subspace of

7*M,p> ®, 7*N,p>. This implies that there is a non-zero
linear functional ¢ on T*(M,p) ®, J‘*(N,p) such that
"
2.4 A#(J‘ S,PY < ker ¢ and t(dM’pa,dN,pfi) = 0
for some a € (M) and 3 € 8(ND such that dP pa = dp p{?.
. > > .
On the other hand, since J'*(M,p) GA .7‘*(N,p) is a linear

subspace of \7"*(M,p) -] J'*(N,p), there is a linear extension ¢
of ¢ defined on 7*M,p> ® 7"(N,p>. This implies that there are
v € FM,pd) and w € J(N,pd> such that
25> Id,, N > = vdd,, A\ + wdd >
M,p ,dNth M M,p N)Py

for any A € 8M> and u € 8N). In particular, for any p e 8(5>
we have

&d, « > + wdd >=0

» M’Pr’dN:py) =V M’pr N’pr .
because A#(.T ¢S,pd> < ker ¢4 Thus, if we set v~ = JdOv and
wry = TC(JOw, then u~r + w«-)(ds’py) = v(dM’py) + w(dN,py) = 0,
and so, v~ + w~ = 0. Hence (v,~w) € T(M,;p> &L FC(N,p> where
' = £7C. Since, by condition (ad, diagram [ is couniversal,

it follows that there is u € J¢(P,pd such that JF¢jidu = v and
FC¢i!>u = -w. Hence and from 25> we get
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“dM,pa’dN,pﬂ) = VCd'M,pa) + WCdN,pB) =
u(dp’pa) - u(dp,pfi) = UCdP,pa - dp,pﬁ) = 0

because dP,pa = d'P,pﬁ’ which contradicts (2.4). Consquent.ly,
our hypothesis is false, and so, diagram A is couniversal.

(> » (ad. Clearly, o is 7*c0>-couniversal. To prove that
o is J’-couniversal, observe that by Lemlﬁa 21 2> and
Theorem 2.2 (b) it remains to show the inclusion
2.6> J"(SlM,p) ] J’(SIN,p) < J‘(SlP,p).
Let us take u.e J(S|M,p> N JCS|N,p>. This implies that there
are v € FMM,p> and w € FWN,pd> such that u = FQ@Ov = T(GOw.
Hence, for any y € 8(S), we have
Q.7> UCdS,p7> = VCdM,P;V) = w(dN,pr). . .

Now,A if & e B(S,P), then CdM,pé’(’) e T IM,p> ®, F <N,p)d.
Since the map A# is surjective, it follows that there is
A € (8> such that A, d. A = (dM,p)\,dN,pk) = (dM,pé’O)' ie.

# S,p
d A= dM S and d A = 0. Hence and from (2.7) we obtain
P P

M, N,p
u(ds,pé) = v(dM,pé) = v(dM’p)\) =
u(dS,p)\.) = w(dN,pA) = wd0d> = 0.

This means that J‘*(S,P,p) < ker u, and so0, u e J‘(S'P,p) b)'/
Lemma 1.4. We have thus proved inclusion (2.6>. m

A pointed differential square is said to be J‘*—céuniversal
if it satisfies at least one of the equivalent conditions of
Theorem 2.9. This theorem implies i'mmediat,ely‘

2.10. Corollary.. A pointed dif ferential square is
J‘*—couniversal if and only if it 1is J-couniversal and
f*(O)—couniversal. ] .

Clearly, the peointed differential squares from
Examples 2.7 and 2.8 are not .7'*—couniversal. . _

211. Example. Let m 20, 1 >0 and n 2 0 be integers.
Clearly, the Cartesian product R™ X R X R" can be canonically
identified with [Rm+l+n. Let GS = (0,..,00 stands for the zero
element. of R°. Define the following subsets of Rm+l+n: M=
{0t xR xR, NeR™ xR x{6} S=MUN and P=MnN
These sets we shall regard as differential spaces under the
natural structures induced from [R"H'H'". Note that for any

peP we get a pointed differential square o = <S,M,N,P,pJ.
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The vector space J(S,p> can be regarded as a vector subspace
m+l+n

of IR ,p> via the differential 7°¢i> where i: S « RTI'?
is the inclusion map. In turn, there is the canonical
isomorphism between J‘([Rm+l+n,p) and the 'vector space [Rm+l+n_

Consequently, J7'(S,p> can be regarded as a vector subspace of
m+l+n ) m+l+n

R . It is' easy to see that I(S,pd> = R » .T(SlM,p) =
1

ot xR x R?,  7¢s|Np> = R™ x R x {6,} and Fs|Pp> =

{em} boe [Rl poe {en } This implies that condition (b> of

Theorem 2.2 and condition (b)> of Theorem 2.6 are fulfilled for
o. Thus, by the definit.io_ns, we infer that o is J-couniversal
and ' J"*(O)-couniversal, and so, it is J‘*—couniversal . by
Corollary 2.10. =

Let o = (S,M,N,P,p> be a pointed differential square such
that dim 7(S,p> < w. In this case we define the index of o to
be the integer ind o = dim 7(S,pd> - dim FM,pd> - dim FN,p> +
dim 7(P,p>. From Theorems 2.2 and 2.6 and from Corollary 2.10
it follows

2.12. Corollary. Let o = (S,M,N,P,p> be a pointed
differential squ‘are such that dim 7(S,p) < w.

A If o is .7‘—counivct~rsal, then ind ¢ 2 0,

2> If o is J‘“‘(O)—couniuersal, then ind o = 0,

@ If o is \’l"*-couniversal, then ind o = 0. »

The following example shows that there are pointed
differential squares a. such that.l ind o = 0 and they are not.
J‘-cduniversal and not T*(O)-qouniversal, simultaneously.

2.43. Example. Let us take (a ,.,a)) € s and define

the following subsets of R ¢ = 1
M =S", N={dta,.ta )t R}
S=MUN P=MnNnN= {(1,0,...,0)}.
Consider the pointed differential square o = S,M,N,P,p> where
S, M, N, P are -differential spaces under the natural structure
induced from R™*¥ and p = (1,0,..,0>. One can see that
dim 7CS,p> = dim FM,p> + dim 7°CN,p> = dim F<P,p),
that is, ind c = 0. On the other h;md, note that we have the
following inclusions: -
- FES|P,pd> < FTCS|NP> < TS |Mp> c TCS,pd

where the first and the last inclusion are essential. This
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implies that. condition (b> of Theorem 2.2 and condition (b> of
Theorem 2.6 do not satisfy. Thus, by the definitions, ¢ is not

. s * :
I-couniversal and not. 7 (0)-couniversal. ®»

3. Gluings of pointed differential pairs. Let M,A> and
(N,B> be differential pairs such that there is a

diffeomorphism h: A — B. Denote by M n, N the gluing of sets

M and N via h. Moreover, let. mh: M —> M u‘h N and

n,: N—-M u, N, be the canonical injections. By the

dif ferential space gluing of M and N via h we mean the set
M u N regarded as a differential space under  the structure

h
coinduced via maps m and n that is, 8M u, N) consists of

h h’ h
all real functions y» on M uh N such that m;y e 8(M> and
n:}' € 8C(N>. Obviously, the canonical injections my and n, are

smooth maps.

The following example shows that. the canonical injections
my, and nh need not. be smooth embeddings.

3.14. Example. Let M = 10,201 and N = s' be the closed
interval and t.he unit circle, respectively, regarded as
differential spaces under natural structures. Let A = (0,2
be the differential subspace of M. We set h(t) = (cos ‘t,sin t)>
for t € A. Let B = h(Ad = S* \ {(1,0)} be the differential
subspace of N. It is seen that h: A — B is a diffeomorphism. .
Consider the dif’férent,ial space M u, N. One can see that if
a € BM u, N, then cx(mh(O)) = a(mh(ZTO) = aln, (1,00). This

h h

implies that the differential space M 1, N is non-Hausdorff as

well as the differential subspace mh(M) of it. But the

differential space M is Hausdorff, and so, mh is not a smooth
(topological) embedding. =

If (M,AD and (<N,B> are differential pairs and h: A — B is
a diffeomorphism, we define the differential square gluing of

(M,A> and C(N,B> via h to be the differential square

M u, N, Mh’ Nh’ Mh g] Nh)
also denoted by (M,AD Gh (N,B>, where Mh = mh(M), Nh = nth)

and Mh N Nh are regarded as differential subspaces of M uh N.
Obviously, this differential’ square is glued.
Now, let (M,A,pd> and (N,B,q0 be pointed. differential pairs
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such that there is a diffeomorphism h: CA,p> — B,q>. The
pointed differential space gluing of (ﬁ,A,p) and <N,B,q@> wvia h
is defined to be the pointed differential space
M u, N, p u, q> where p nm q= mh(p) =nh(q). By the pointed
differential square gluing of MA,pd and (NB,qd via h we
mean the pointed differential square
M uh, N, Mh’ Nh’ Mh N Nh’ P uh q

which will be also denoted by (M,A,p> o, <N,B,q.

Let (SM,N,P> and <R,K,L,Q> be differential squares. We
say that f: (S,M,N,P> — (R,K,L,Q> is a smooth . map of
dif ferential squares if f1 S —5 R is a smooth map of
differential spaces such that FfM) < K, F(N> c L and fP> < Q.
If now (SMNP,p> and (R)K,L,Q,q> are pointed differential
squares, then by a smooth map f: (SMNP,p> — (R,K,L,Q,q> of
poinfed differential squares we mean a smooth map
f: (S,M,N,P> — (R,K,L,QD of differential squares such that
f<p> = q. We have thus defined the category of differential
squares and the category of pointed differential sguares. By a
diffeomorphism of differential squares or pointed differential
squares we shall mean an isomorphism in the corresponding
category.

3.2. Example. Let o, = (Sr’Mr’Nr’Pr’O) be the pointed
differential square defined in Example 25 where o = (0,0).
For any c¢ > 0 consider the linegr diffeomorphism w_ of R?
defined by mc(x,y) = 4fcx,y). it is seen _t.hat, “_'_c defines
diffeomorphisms from Fr onto F'rc and from Fr ont,o,l:‘rc, for any
r > 0. From the definitions of oL and e it follows that wm
determines a diffeomorphism from oL onto LA In particular,
m. determines a diffeomorphism m;: o — oy defined by the
assignments (see, Example 2.5)

(x,¢1(x)) - (rx,¢r<rx)) and (x,—¢1(x)) [ (rx,—¢r(rx))
where x € R. Thus, all pointed differential squares on are
diffeomorphic. = L )

Differential spaces M and N are called overlapping if
Pm=MNnN==© and the differential -structures on P induced
from M and N are coincided. Let M and N are such spaces and

h = idp. Then (M,P> and CN,P> are differential pairs and h is
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a diffeomorphism of P. The differential space gluing of M and
N over P is defined to be the differential space M u, N =
M.uh N. We define the differential square gluing of M and N
over P to be the gluing M,P> Op N,PY = M,PD o, CN,P>. One‘
can see that if o = (SM,N,P)> is a glued differential square,
then M and N are overlapping differential spaces, M N N =P
P <CN,P).

Let o = (SM,N,P,pd> be a pointed differential square. By a

and ¢ is diffeomorphic to (M,P> o

(differentiald) subsquare of o we mean a pointed differential
square p = (R,K;L,Q,q) such that R, K, L, Q are differential
subspaces of S, M, N, P, respectively, and q = p. We say that
o is an open subsguare of o if it is a subsquare of o such
that R, K, L and Q are open subspaces of S, M, N and P,
respectively. A pointed differential square o is called
O(xd~glued if there is an open subsquare of o which is glued.
Obviously, every glued pointed differential square is
O(xd-glued. We say that. a pointed diff erent.iél square
o = (S,M,N,P,p> is G{x)-glued if diagram ~+g(od) is couniversal.
This means that. the following condition holds: .

B> If a; e BM,p>, ﬁ; e gWN,p> and a;IP = B;|P, then
there is a germ y; € €¢S,pd> such that ;v;lM = a; and r;|N = [?;.

One can prove

3.3. Proposition. Every OGd-glued pointed di_fferentiﬁl‘
square is G(xd)-glued. m

Since every glued pointed differential square is
O(*>-glued, this proposition implies

3.4. Corollary. Every glued pointed di_fferentidl square is
G*d)~glued. m

Let <(M,A,p> be a pointed differential pair. Call A a local
smooth retract of M at p if there are an open neighbourhood U
of p in M and a smooth retraction from U onto U N A.

3.5. Theorem. Let o = (SMN,P,pd be a Gx)-glued pointed
differential square. If P is a local smooth retract of M or N
at p, then o is .T‘*—couniversal. .

Proof. First, we prove that o is J-couniversal. Indeed,
let us put GESMpd= {a; € 9¢S,p>: a;|M =0}, GS,Np>=
{a; e ¥¢s,p: a;[N = 0} and $CS,P,p> = {a; € ¥¢S,p>: ot;]P = of.
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It is seen that these sets are ideals of the algebra €<, pd.
Clearly, we have g(S,M,p> + ¥(S,N,pd < 4C(S,P,p>. Since o ' is
G(x>-glued, it follows from condition (G(*>> that. for any
" e 9CGS,P,p> there are germs ; ,(3" e §CGS,pd> such that
|M =y |M o IN = 0 -and (3 |M = 0, {? IN = y |N, which implies
t,hat. rp = Olp + fi where ap e %S, M,p) and ﬁp € %CS,N,pd.
Consequently, we get $<S,M,p> + $CS,N,p> = €CS,P,pd. This
involves that. condition (a) of Theorem 22 is fulfilled, and
so, ¢ is J-couniversal.

By Corollary 2.10 we conclude that. it remains to show that
o is- ‘7‘*(0)—couniversal. By the definition this is equivalent
to -t.he following condition
a1 7*esMp> n 7SN = 0
(see,‘Theorem 2.6 (ad.

We can assume that P is a local smooth retract of M at p.
Then there are an open neighbourhood U of p in M and a smooth

retraction r: U — UNP. Let us take o € 8(S) such that

dS pa = 7*(S,M,p) n J"*(S,N,p). By Lemma 1.3 we can assume that
»

a € BC(S,MD. Since d. pa e J‘*(S,N,p), it follows that

. -y .

dN pot = 0, which means t.hat there are ﬁ:.‘, y!: e B(N,p>
2

@ = 1,.,n) such that alN = Z (3

Let us set (i = (? or, ;vi = yl:cr and note t,hat,
B?, yU = B(U,p) Let us set P=PnU It is seen that rs |15
= rs |l5 and y, |ﬁ =7, |15 which implies that c(; > [15 = <r3 > |f—"
and (yu) B = <« ) |l?' On the other hand, there are
ﬂ:._d, ‘,VT e 8(M,p) such that. ((2 ) = (ﬁ b IU and (yu); =, ) |U
Consequently, we have

GNP = @DSIP and &PTIP = o] ool
lSince o isM G(»xd)-glued, therNe are (?1, v; € ecs,p>M fUCh t,l:at.
q?.)"LM = (rzi>;, <3i>;|N = (Bi); and (yi);IM = @O0 <yi>p|u
= (ri);

Consider the function A = X (3, i € '8(S,p) We shall prove
that A" = o”. Clearly, this is equivalent to the conditions
)\;-lM - aA|M i and A" |N = o |N Indeed, we have )\;|M =
< (ﬂi);(y i)">|M = z q? UpcyM) ) whehce

A" |U =3 ({3 »* (y LR (fi °")p(}’ er)pp = (aor)p
because aIN = T ﬁ i But. o e 8S,M, and so, ‘a|rdd =0
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or, equivalently, oer = 0. Thus (aar); = 0 and since X;IU -

Caord”, we get A;lU = 0, which implies that )\;|M = 0. Hence

k;IM = a;|M because o|M = 0. In turn, we have )\;|N =

@ PPJr PPN = = (Bl:);(y':); = a5|N. To sum up, we infer

that A" = oF, which implies that d_ X\ = d_ ‘a. Since
P, P S,p S,p

A € 8(S,pd7, it follows that d a=d A = 0.

S,p S,p

Finally, notice that we have thus proved condition (3.1),
which completes the proof of our theorem. m

Clearly, this theorem and Corollary 3.4 imply

3.6. Corollary. Let o = (SM,N,P,pd be a glued pointed
dif ferential square. If P is a local smooth retract of M or N
at p, then o is T*—couniversal. [ ]

Let M,p> and N, be pointed differential spaces.
Consider the pointed differential pairs M,<{p>,p> and
(N,{q>»,q>. There is a wunique map +: {p> — {g>. We define the
pointed differential square gluing of M,p> and (N,@> to be
the gluing M, {(p>,p> o, (N,{q*,q> which will be also denoted
by M,p> o, (N,q>. Thus we have the differential square
Mu N M, N, & = Mpd>o, Ng where * = pu, .q
Since the constant maps M — (*> and N — (%) are smooth
retractions, from Corollary 3.6 we get

3.7. Corollary. Every pointed differential square gluing
of pointed differential spaces is J‘*—coun‘ipersal. ]

By a pointed differential E-pair we shall mean a
differential pair (M,A) such that. the restriction homomorphisr
i B(M> — €CA) is surjective. For example, let M be a
paracompact. smooth manifold regarded as a differential space.
Let A be a non-empty closed subset of M. It is known that
every smooth function on A can be extended to a real smooth
function on M. Thus the restriction homomorphism
i*: B(M> —» BCA> is surjective, so M,A> 1is a differential
E-pair. It is easy to verify

3.8. Lemma. Let (M,AY and (N,B> be differential pairs such
that there 1is a diffeomorphism h: A — B. If MA) is a
dif_ferential' E-pair, the the canonical injection
n,: N—- M u, M is a smooth embedding. =

This lemma and Corollary 3.6 imply
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3.9. Proposition. Let M,A,p> and CN,B,q> be pointed
differential pairs such that there 1is a di_ffeomorphis;n
h: CA,p> — B,d. If M,A> is a differential E-pair and if B
is a local smooth retract of N at q,. then the gluing
- CMLA,p> nh (N,B,q)‘ is f’—couniversal. [ ]

By a differential manifold pair we shall mean a
differential pair W,A) where M is .a paracompact. smooth
manifold <{of finite dimension) regarded as a differential
space and A is a closed regular submanifold of M. This means
that. the differential structure on A induced from MA is the
differential structure associated with the atlas of all chart;s
of A. Clearly, if M,A,pd> is a pointed differential manifold
pair, then M,A> is a differential E-pair and A is a local
smooth retract of M at p. Thus Proposition 3.9 and Lemma 3.8
imply

3.10. Corollary. Let M,A,p> and <N,B,q> be pointed
dif ferential mani fold pairs such that there is a
diffeomorphism = h: (A,pd — (B,. Then the gluing
M,A,pD o, (N,B,q> 1is T*—couniversal. Moreover, the canonical
injections m,: M- M u, N and n: N—- M , N are smooth
embeddings. m

Proposition 3.9, Corollary 2.12 and Lemma 3.8 imply

3.11. Proposition. Let M,A,p> and (N,B,q> be pointeq‘
differential E-pairs such that there 1is a diffeomorphism
h: CA,p> — (B,q). Let A ‘be a  local smooth retract .of M at p.
If dim FM,pd> and dim 7(N,q> are finite, then
dim M u, N, p 1, = dim FM,pd + dim FN,@> - dim JC(A,pd. =

This proposition implies the following corollaries.

3.12. Corollary. Let M,A,p> and CN,B,q> be pointed
differential mani fold pairs such that there is a
diffeomorphism h: CA,p> — B,. If m = dim M, n = dim N and
k=dimA=dimB.thendim.?‘(MuhN,pnhq)-A=m"'n'k-l

3.13. Corollary. Let (Mp> and (N be  pointed
differential spaces such that dim. I'M,p> and dim JN,@> are
finite. Then dim M u_ N, p u, @ = dim J(M,p> + dim FN,>.m

For any pointed differential pair M,A,p), ‘we can -regard
tfhe gluing (M,A,p> CN M,A,p> = (MA,pd> O, (M,A,p> where h =
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idA. One can ask the following question. If M,A,pd> is a
differential E-pair, is it true that W,A,p> =N M,A,pd> is
7*-couniversal? It turns out that there is a negative answer,
even, if M is a smooth paracompact manifold regarded as a
differential space and A is a closed differential subspace of
M. The corresponding counter-example (Proposition 3.14> is
defined as follows. Let R® be the differential space under the
natural structure C%R®. Let K = {OLy> e R? xy = 0} be a

closed differential subspace of RZ.

We have a pointed
differential pair (IT<‘2,D<,0) where o = (0,0>. One can prove

3.14. Proposition. The gluing ([Rz,l'K,o) a (IRZ,[K,O) is

K

* 3
not 7 -couniversal. R

The author knows that the gluing R? e RrR?

is diffeomori)hic
to the differential subspace {<(x,y,2) e R xyz - z° = 0} of
R?, which implies that dim 7(R? Iy R%*,0> = 3.

Note that Propositions 3.14 and 3.9 imply

3.15. Corollary. The set K is not a local smooth retract
of R? at o. =m

It turns out that this corollary has no analogy in the
topological sense. More precisely, one can see that K is a
topological retract of [Rz, and so, it is a local topological

retract of R? at o.
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