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The Penrose Transform for Dirac equation

J. Bures V. Souéek

1 Introduction

The presented paper is a continuation of the paper ([3]) where the Penrose trans-
form for solutions of the Laplace equation was described by means of Clifford
analysis. Here we discuss the Penrose transform for solutions of the Dirac equa-
tion.

The description of the Penrose transform in a general situation can be found
in the book by R.Baston and M.Eastwood ([5]). We shall discuss here the special
case corresponding to the orthogonal group in even dimensions. The Penrose
transform maps elements of a certain cohomology group to solutions of (complex)
Dirac equation in this case. We are presenting here a simple approach to it
using the Dolbeault realization of the cohomology groups, the construction of the
Penrose transform and the inverse transform is quite explicit.

Contrary to the case of the Laplace equation treated in [3], to describe the Pen-
rose transform in terms of a simple calculus with differential forms, it is necessary
to make all calculations on the complex Spin groups instead of Stiefel manifolds.
Advanced and sophisticated tools (such as B-G-G resolution, hypercohomology
or spectral sequences) are avoided.

The presented paper contains a summary of the results, the full version ([4])
with all proofs will be published elsewhere.

2 The Penrose transform for complex Dirac e-
quation

2.1 Basic twistor diagram

The Penrose transform is based on a diagram of homogeneous spaces (see [2] arfd
[5]). In our case (i.e. for the description of solutions of the Dirac equation in
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higher even dimensions), we shall need the following homogeneous spaces of the
group SO(2n + 2,C).
Let us consider the quadratic form

n+1
Q2)=)_22},2=2,2"2',2" € C""
1

on the vector space C?"*2. The corresponding bilinear form will be denoted by
(, ). We shall need the following type of flag manifolds:

IG"I'".'.'J;Q,,+2“:= {[Lin' . L.'J”L.'l c...C L.'j C C2"+2; QlL;, = 0}.

We shall drop the dimension of the ambient space if it is clear from the context.
In particular we shall use the complex quadric /G; (which can be considered
as the compactification of the complex Minkowski or Euclidean space) and the
spaces [Gn41 and IG) ,41. The last two spaces are not connected, we shall work
always with one of their connected components.

The space IG41 can be interpreted either as the space of all maximal isotropic
subspaces in the quadric IG or as the space of all pure spinors.

Together with the natural forgetting maps, they form the basic diagram

1G1,n+1

VAN

It is always an advantage to have a possibility to describe global objects on
the isotropic Grassmannians in coordinates similar to homogeneous coordinates
on projective spaces. Such a role is played by isotropic Stieffel manifolds for
isotropic Grassmannians. In our case (for Dirac operator), we use also elements
from the group Spin(2n + 2, C) as "homogeneous” coordinates.

The group Spin(2n + 2, C) is not connected, let us denote by Sping(2n; C)the
connected component of the unit element in Spin(2n + 2,C) .

So let us consider the space

ISth =
{Z2=12°...,2"|Z' € C**? rank Z =n + 1,
(Z2,27) =0;4,j=0,...,n}

as a principal fibre bundle over IG,4; with the group G = GL(n + 1,C) acting
from the right. The corresponding projection will be denoted by 7. The same
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space will be considered as a principal fibre bundle over IG; 41
7!', . ISt-,H.l — IG].:,,,.H
with
7'(Z) = [L1, Lnsal, Ly = span{Z°}, Ly, = span{2°,...,2"}.

The group of the fibration consists of all regular matrices having the form
g= (g :),aEC,vtECn,‘yEGL(n,C).

To define the Penrose transform for the Dirac equation, we need to consider
bigger principal fibre bundles over IG,4;.

The isotropic Grassmannian /Gr4; is a homogeneous space of SO(2n +2, C),
i.e. IGp41 ~ SO(2n +2,C)/P,

Pz{(3($*)

Similarly, IGpn41 ~ Sping(2n + 2; C)/ﬁ, where the group P is the preimage of P
in Sping(2n + 2; C).
Now, the group GL(n + 1, C) can be imbedded into SO(2n + 2, C) by

“H(3(£*)

and then, in fact GL(n +1,C) C P C SO(2n +2,C).
We can denote by GL its preimage in Sping(2n + 2; C)and we have

a € GL(n +1,C),(ba')! = —bat} .

GL C P C Spino(2n + 2; C).

Moreover, we have the projections 7 : P +— GL(n +1,C) and 7 : PwaG.
Putting everything together, we have the diagram:

Sping(2n + 2; C)—I—)—’ IG. 1

2:1 =

SO(2n +2,C)

IStn+1 __GI—J_’ IGn+l
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2.2 Line bundles on IG,

Considering the twistor space IG, as a homogenenous space Spino(2~n;C)/15,
then for every one-dimensional representation p of the isotropic group P there is
a line bundle L, on IG,, associated to the representation p.

If the representation p of P is holomorphic, then L, is a holomorphic line
bundle.

There are some interesting one-dimensional representations on P. For exam-
ple, considering the map # : P — GL(n,C) given by the composition of two
projections P — P - GL(n,C), where the last map is defined by

(3 (A?)")*A’

then clearly the map p : p +— det A = det(#(p)) is a homomorphism of P into the
nonzero complex numbers.

We have even more. The group P being a 2 : 1 covering of P, we can construct
a square root of the representation det(#(p)). To this end, let us first recall that if
fiy+vvs fas fiy- -+ fa is a canonical basis in C?*, then the idempotent I = I,...I,,
I; = f;f;, was used for the realization of the spinor space S7, as (A®V" W)I in
Csn, where W = span {fi,..., fa} and C;, is the complex Clifford algebra for
C? (see [7]).

Theorem 2.1 For each p € P there ezists f(p) € C such that I = f(p)I.
Moreover, f(p)* = det#(p), where & : P — GL(n,C) is the projection defined
above and the map f : P — C* = C\ {0} is a one-dimensional holomorphic
representation of P.

Note that the function f defined on P is determined (up to a sign) by
v/det #(p) and that the sign of the square root can be choosen consistently for
points in P. This function will frequently appear in the sequel; we shall denote

it simply by v/det.
Definition 2.1 The function /det is defined on P by the expression

pl = Vdet(p)I. (2)
and by the condition v/det(e) = 1.
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By means of the function v/det, we are now able to define important line
bundles L* on IG, in the following way.

Definition 2.2 The holomorphic line bundles L, k E Z, are defined as the line
bundles associated to the representation (Vdet)F o

The bundle L may be characterized in several other ways (see e.g. [4])

The space IG, of maximal isotropic subspaces can be identified with the
projective space of pure spinors P(SP*¢), SPur¢ C S+. This identification can be
alternatively described using Theorem 2.1.

Indeed, Theorem 2.1 implies that the map from Sping(2n; C) to St given by
the map S : g — gI induces a map from IG, to P(S*). The fact that the image
of the induced map is the projective space of pure spinors and that the map is
injective follows then from the properties of the map S listed in the following
Lemma.

Lemma 2.1 The map S : Sping(2n;C) — S* deﬁned by S(g9) = g1, is a holo-
morphic map satisfying

S(gp) = Vet(5)S(9).
for p € P, g € Sping(2n; C).
Moreover, if Z is a vector in the isotropic subspace 7(g) € IGn, then Z.5(g) =
0 in Cy, (where . denotes the Clifford multiplication).

The properties of the map S are quite important and will be substantially
used below. Notice also that values of the map S belong to the space of pure
spinors; even more, the value at a point g is exactly a pure spinor annihilated by
the vectors in the isotropic subspace corresponding to g. :

Given a pure spinor s € SP"¢, we shall need an explicit formula for the
projection from S* to the one-dimensional subspace generated by s in S*.

Let us denote by 3 the element of Clifford algebra C;, conjugate to s (see [7]).

Lemma 2.2 Let us consider [s] € G, represented by s € Sping(2n; C). Then the
projection T1([s]) onto the line generated by the corresponding pure spinor defined
by

I([s]) = i |2sIs

does not depend on the choice of a representative s.
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2.3 Invariant forms on isotropic Grassmannians

In the treatment of the Penrose transform for solutions of the Dirac equation,
certain invariant forms on the isotropic Grassmanians IG, will be quite useful.

The isotropic Grassmannian IG, is, as we know, a homogeneous space of a
compact group, namely IG, = Spin(2n,R)/U(n,R). So there is a unique left
invariant volume form &, on IG,, normalized by the condition

/ Ko = 1.
IGy :

Moreover, IG, is also compact homogeneous Kaehler manifold with canonical
invariant Kaehler metric g and Kaehler form ¢ (see e.g.[8]).
Using the Kaehler form ¢, we can construct the form

dNA... N\,
N———

n(n-1)/2

which is a form of a top degree on IG,,, invariant with respect to SO(2n,R).

It comes as no suprise that it is a nonzero form (it is true in general that the
top power of the Kaehler form is the volume form, see e.g. [8]) hence it is equal
(up to a normalization) to the volume form «,,.

So we have an explicit formula

Kn=C " "dAN...\¢,
| SRR

n(n-1)/2

where ¢; = 1/(n!2" - vol(IG,)) and vol(IG,) is the volume of IG, with respect
to the Riemannian metric corresponding to the Kahler form.

Let us turn now the attention to another problem concerning invariant forms.
The form &, was characterized as an invariant form of the top degree, an element
of 8((;)'(;))(1Gn). The question is, if it is possible to find also an invariant form
in the space 8((;)’0)(1 G,). Denoting the holomorphic cotangent space of IG,
by T'°*, we know that the top power A(;)(Tl'o') is a line bundle and forms in

E((;)'o)(l G.,) are sections of it. In fact, there is no such invariant form, but we
can find an invariant form of bidegree (('2‘),0) , if we consider such forms with
values in a suitable line bundle, as described in the following theorem.

Theorem 2.2 There ezist a unique (up to a nonzero multiple) holomorphic in-

variant form o, of the bidegree ((;),0) on IG, with values in the line bundle
L2(n-l).
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The conjugated form @y, € 8(0’(:))(1 Gn,fz(n_l)), where L is an anti-holomor-
phic line bundle given by the representation v/detp can be constructed in the
same way. It is an antiholomorphic form of the top degree on IG,.

If now M((2), I C {1,...,2n},|I| = n denotes the determinant of the cor-
responding n X n minor of the matrix Z, we get still another description of
the volume form &, on IG,. Under the substitution (5.1), the determinants are

transforming as My — M det g, hence the form i - lf'fr/;;’)‘l;?"‘” is invariant with
respect to the substitution. So it is a form on IG,,.I

The forms a, and @, are invariant with respect to SO(2n, C) and the denom-
inator is preserved under the action of the group SO(2n,R). As a consequence,
the form (2.3) coincides (after normalization) with the form «,,.

The projection map II defined in the preceeding section has the following

property:

Theorem 2.3 The map given by

/ (s

is a (nonzero) multiple of the identity map on the spinor space S.

Finally we have a naturally defined fibration IG, — $?"~? with fibre G-,
we shall need a form, say 7, on IG,, the degree of which is the (real) dimension
of the fiber such that the integrals over any fiber is equal to 1. This form 7, can
be constructed using the Kaehler form ¢ on IG,, namely

Tm=CpAN...ANP.
———

(n=1)(n-2)
2

2.4 The description of the Penrose transform

Our aim is to describe solutions of the Dirac equation only on subsets of the
(complexified) Minkowski or Euclidean space

CM C IG,,CM := {L = span{Z}|Z € C*™*?, Zn41 #0}.

It is an open dense subset of IG;. So we shall consider nonhomogeneous coordi-
nates (z,y) on CM by the identification

CM = {[z,l,y,—x-y]'lx,y € C"},
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where z -y := 3] zjy;.
The basic twistor diagram will hence be restricted to the double fibration

F
’l, / \ v
T CM
where the spaces involved are defined as

F:= V_I(CM) = {[L],Ln.H”L] € CM},
T := p(F) = {Lnt1|Las1 N CM # 0}.
Consider an open domain 2 C CM and the corresponding domains
QCcF,Q:=v1(Q) and Q" Cc T,Q" := ().

Let P = (P,..., P2,) be holomorphic coordinates on CM, an(! let us consider
the holomorphic form of maximal degree

dP=dP1/\/\dP2n

on CM.
The domain ' is the base of a fibration

2 c —pino— Q.

The holomorphic form of the top degree a, A dP can be lifted to Q' and it
transforms under the substitution s — sp, s € Spin(2n +2,C), p € P as

an AdP s (det (7(p))" 'an A dP.
We shall need the holomorphic section S(s) of L, introduced in Lemma 2.1.
Theorem 2.4 The map

n(n-1)
2

EOZTNQ) o Enm((y

B —» S-BANa, ANdP

induces a well-defined map

HOMFO(@Q" L) o B (@, S).
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Definition 2.1 If[8] € H(O'ﬁnz__ll)(ﬂ”, L'-2"), then the form
Vu(S B A a, NdP)

is a closed holomorphic form of top degree on CM, with values in S, hence can
be written in the form ®(P)dP, ®(P) € S on Q. The map v, is the integration
along fibers, i.e.
<I>(P)dP=/ S:-BANa, AdP.
v-1(P)
The function ® defined in such a way will be called the Penrose transform of
B and it will be denoted by P(p).

Theorem 2.5 The Penrose transform ®(P) = P(B)(P) is a holomorphic func-
tion on the domain Q and it satisfies the (complez) Dirac equation there.

2.5 Integral formulae

We shall need to use a special type of integral formulae for an inverse Penrose
transform for solutions of (complex) Dirac equation.

Using them, it is possible to express the value of a solution in a point P €
CM using its value (and the values of its derivatives) on a suitable contour of
integration inside the complex null cone CNp of the point P.

These integral formulae are deduced from integral formulae used in Clifford
analysis for solutions of Dirac equation ([2],[9]). The description of the Leray
residue and Leray cobord can be found, e.g., in [10].

Theorem 2.6 Let ® be a solution of the (complez) Dirac equation on a null-
convez domain @ C CM and let P € Q. Let us suppose that the space CM
is imbedded into the Clifford algebra C,, and let us consider a Clifford algebra
valued form DQ = z?;'l(~1)i+le;dQ1 A NdQiA .. ANdQ2n.

The form

w=w(P,Q;®) =
- 1 [ Q=P .
- g v}

where A; denotes the area of I-dimensional sphere, is a well-defined spinor valued
(2n — 2)-form on Q\ CNp.
Then for every (2n — 1)-dimensional cycle v in CNp NN we have the formula

Inds, P - ®(P) = 21ri/Resw, (4)

~
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where Resw denotes the Leray residue of the form w and §v is the Leray cobord
of the cycle ~.

2.6 Surjectivity
Let 2 C CM and
M :={[P,Q] € 2 x Q||P - Q|* = 0}

To get back the twistor form representing the field ® and to prove that the Penrose
transform is surjective, we have to choose a map

Y:Q x ISt,— (M\ A) x ISt,.
It has the following geometrical meaning: for any point
Z=12%2",...,Z" € Q x ISt,

we want to choose a point Z° # Z° Z° € Q) in the a-plane spanned by vectors
{Z°...,Z"}. So we are looking for a map ¥ satisfying the following conditions:

W(Z) =[2°2°2,...,2"

such that Z9 € span{Z°,..., Zm}, Z° # Z°, 29 € Q. Such a map always exists.

Given a solution ® of the complex Dirac equation on  C CM, we can
reconstruct the corresponding form on the twistor space Q.”

We shall first consider b the form w (given by the Cauchy integral formula,
see section 2.5) and its Leray residuum Resw, which is a (4n —2)-form on M\ A.

If 7 denotes the natural projection from (M \ A) x ISt, onto (M \ A) and
IT denotes the projection to the corresponding pure spinors, defined in Sect.2.2,
then the form Il o ¢* 7*(Resw) A 7, represents a well-defined cohomology class
in the (de Rham) cohomology group HB(}'{H) (ﬁ’,S ) (the form 7, was defined in
Sect.2.3.) . The cohomology class does not depend on the choice of the map ¥
with the properties described above.

To show that the Penrose transform is onto, it is necessary to impose some
restriction to the domain 0. More details on these restrictions will be found in
[4](see also [5]) We shall call a domain Q2 satisfying these restrictions an admissible
domain. For example, CM and Lie balls in CM are admissible domains.

Theorem 2.7 Let 8 C CM be an admissible domain, then there ezists a map
¥ such that the form Il o Y*n*(Resw) A 7, belongs to the image of the map

H(o'ﬂne__ll)(T, L(-") into HB(,;'“)(F,C) induced by the correspondence
B Su*BAa, AdP.
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* Moreover, if B represents the preimage of the form Il'o p*1*(Resw) A 7., then
P([8]) = @.
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