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ON THE NATURAL OPERATORS
TRANSFORMING VECTOR FIELDS
TO THE r—-TH TENSOR POWER

IvaN KOLAR

We determine explicitely all natural operators transforming vector fields on a manifold M
T
into vector fields on the r-th tensor power QT M of its tangent bundle and we outline how

-
the result is modified when replacing @TM by a natural subbundle.

All manifolds and maps are assumed to be infinitely differentiable.

1. In [5] we determined all natural operators transforming vector fields on m-dimensional
manifolds into vector fields on an arbitrary Weil bundle over m-manifolds. According to (3]
or [6], the Weil bundles coincide with the product preserving bundle functors on the category
Mf of all smooth manifolds and all smooth maps. The problem of determining all natural
operators transforming vector fields to the vector fields on the bundle functor of r-th order
tangent vectors, which does not preserve products for r > 1, was solved by Mikulski, [7].
In the present paper we study the same problem for another non-product-preserving functor

.
QT of the r-th tensor power of the tangent bundle. The list of all such operators is deduced

T

in item 7. Then we outline how this result can be modified to the natural subbundles of @T.

2. Denote by C*°TM the set of all vector fields on a manifold M. Let F be an arbitrary
natural bundle over m-manifolds, [8], and A : T — TF be a natural operator transforming
vector fields on m-manifolds into vector fields on the natural bundle F, [5]. In other words,
A is a system of maps Ay : C°TM — C°T(FM) commuting with diffeomorphisms and
satisfying two simple additional conditions of locality and regularity, [5]. The following lemma
is a direct consequence of the well-known fact that for every vector field X € C°TM with
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X(a) #0, a € M, there exists a neighbourhood U of a and a coordinate system on U such
that X|U coincides with the vector field 8, = dz!, [5], [7].

Lemma 1. If two natural operators A, A:T > TF satisfy Arm(01)|FoR™ =
= Arn(81)|FoR™, then A = A.

One general example of a natural operator A : T — TF is the flow operator F defined by
9
Fm(X) = | F(exptX)
ot

where exp tX means the flow of a vector field X € C>°TM.
A natural operator A : T — T'F will be called vertical, if ApX is a vertical vector field on
FM for every m-manifold M and all X € C*°TM.

3. The r-th tensor power QT is a bundle functor defined on the category of all smooth
manifolds and all smooth maps. Its restriction to the subcategory of all m-dimensional
manifolds and their local diffeomorphisms is a natural bundle over m-manifolds. Consider

- !

an arbitrary natural operator A : T — TQT. For every vector field X on M, we take the
r

restriction of the vector field ApX to the zero section Oy : M — @TM and project it

by Tpa into TM, where py : @TM — M is the bundle projection. This yields a natural
operator A : T — T transforming vector fields on m-manifolds into vector fields on m-
manifolds, A%,(X) = Tpm o (AMX) o Opm. By [5], all natural operators T — T are of the
form X — kX, k € R. Hence A defines a real number A4 by A3,(X) = AaX. Then the

r T
constant multiple A4@7T of the flow operator @7 is naturally determined by A.
The first step to solving our main problem is the following assertion.

r r
Lemma 2. For every natural operator A : T — TQT, the difference A—AA@7T isa vertical
operator.

Since a similar phenomenon also appears in some other cases (e.g. for all Weil bundles, [5],
and for the bundle of r-th order tangent vectors, [7]), we shall not prove Lemma 2 directly,
but we deduce a general result of such a type.

4. Consider an r-th order natural bundle F' over m-manifolds determined by a left action
o of the group G7, of all invertible r-jets from R™ into itself with source and target zero on a
manifold S. Hence FM is the fiber bundle associated with the r-th order frame bundle P"M
of M with standard fiber S, [6]. Let ¢ € S be a fixed point of p. Then (u,q) € PIM x S
determines the same equivalence class for all u € PIM, = € M, 1.e. the same point of Fx M.
This yields a natural section of Fyx M, which will be denoted by gp : M — FM and called
the g-section of F'M. In particular, if FM is a natural vector bundle and q is the zero vector
of its standard fiber, then gas is the zero section of FM.

In such a situation, every natural operator A : T — TF determines a natural operator

. A%:T — T by A}(X) = Tpk;0(AmX)ogm, where p§; : FM — M is the bundle projection.
This yields a real number A4 such that A}, (X) = A4X. We are going to deduce a sufficient
condition for A — A4 F to be a vertical operator, where F is the flow operator of F. Consider
the canonical injection ¢ : GL(m,R) — G, transforming each matrix into the r-jet at 0 of
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the corresponding linear map R™ — R™ and write g(k,w) = p(¢(kE),w),0# k€ R, w € §,
provided E means the unit matrix.

Definition 1. A G7,-space S is said to be naturally contractible to a fixed point g, if

@) lim o(k,w)=gqforallw € S,

(ii) ea.ch curve 7y : R = S, 7u(t) = g(t w) for ¢ # 0 and v,(0) = ¢, w € S, is smooth and
the induced map o : § — T, S, o(w) = %/, 7w(t) is also smooth.

Proposition 1. If the standard fiber S of a natural bundle F over m-manifolds is naturally
contractible to g, then, for every natural operator A : T — TF, the difference A — ApF is a
vertical operator.

Proof. Write B = A — Mg F and define amap h: R x S = Th,R™ = R™ by
h(t,w) = Tpkm(Brn(t1)(w)), tER, weS.

Since B is natural, h is equivariant with respect to the homotheties in GL(m R). This yields

the relation
kh(t, w) = h(kt, 6(k,w)), 0AkER.

Differentiating with respect to k and letting k¥ — 0, the conditions from Definition 1 imply
h(t,w) =vt+ H(o(w)), veR™, H € Lin(T,S,R™),

where Lin denotes the space of all linear maps. By definjtion, h(0,w) is the restriction of
the value of Brm on the zero vector field on R™. This corresponds to the so-called absolute
operator determined by B, [5], and every absolute operator is vertical by Lemma 4 from [5].
Consequently, H o ¢ = 0. Furthermore, for ¢ = 1 we obtain h(1l,w) = k(1,0) = v, which
vanishes by the definition of A4. Hence B is vertical by Lemma 1 and by naturality.

Clearly, the standard fiber of @T, which is a vector space, is naturally contractible to the
zero vector. Thus, Lemma 2 follows from Proposition 1.

We remark that the standard fiber of every Weil bundle is naturally contractible to its
canonical zero point, that corresponds to the generalized jet of the constant map, [5]. Hence
Proposition 1 holds for every Weil bundle. This could be observed from the list of all natural
operators transforming vector fields to the Weil bundles in [5], but now we have proved it
geometrically. On the other hand, the standard fiber of the cotangent bundle T* is not
naturally contractible to its zero vector, since g(k,w) = k~!w in this case. The list of all
natural operators T — TT* from [3] shows that Proposition 1 does not hold in the case of
the cotangent bundle.

r r
5. Consider a vertical natural operator B : T — TQ®T. Since @QTM is a vector bundle,
r r r
its vertical tangent bundle V(QTM) coincides with the Whitney sum @TM & QTM and
the second projection prz o By X o Op of the restriction of By X to the zero sectxon OMm

of ®TM defines a natural operator transforming vector fields on M into sections of ®TM
Hence we can apply the following general result by Mikulski, [7]. Let G be any bundle functor
on Mf.
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Lemma 3. The natural operators T — G transforming vector fields on manifolds into the
sections of bundle functor G are in bijection with the elements of the fiber GoR.

r r
In our case, we have @ToR = R, so that the natural operators T — QT form a one-
parameter family. Obviously, the rule X — k(X ® ---® X), k € R, X € C®°TM, is a
one-paremeter family of such operators. Thus, Lemma 3 implies that every natural operator

T— éT belongs into this family.

The section X ®@---® X of éTM induces, by means of the translations into the individual
fibers of éTM , a vertical vector field Vi X on éTM . This yields a natural operator
V:T— TéT.

6. If we take the value Bp(O1m) of a vertical operator B:T— TéT at the zero vector
field-O7p on M, then the second pro_]ectlon of ®TM @ ®TM defines a map ®TM ®TM

This yields a natural transformation ®T - ®T All natural transformations ®T are
determined in Section 24 of [6]. Let S, denote the permutatlon group of r letters. Every

s € Sy defines a permutation of indices Py, : ®TM — ®TM Item 24.7 of [6] implies
directly

r T
Lemma 4. All natural transformations QT — QT are linearly generated by the permuta-
tions of indices, i.e. they are of the form

Y kP, k€R.
S€ES,

r r
On every @TM, the vector field L}, tangent to the curve (id (QTM) + kPy;), k € R, at
k = 0 will be called the Liouville vector field of type s, s € Sy.
7. Now we can prove the main result of the paper.

Theorem. All natural operators T — T@T form the following (2 + r!) parameter family

r
QT +kV + Y kL, s€S;,
with arbitrary ki, k2, ks € R.

,
Proof. Having a natural operator A : T — TQT, we first construct the vertical operator
r r

= A - AaQ7. By item 5, B determines a natural operator T — @T of the form

r r r
X — pa@®X, pa € R. By item 6, B defines a natural transformation @T — @T of the
form Y kAP, k2 € R. Write
SES,

E:A—)\A®T—;MV— > siLe

s€o,
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By Lemma 2 and by construction, 4 is a vertical operator. We are going to > prove A= 0 By
Lemma 1 it suﬂices to deduce Agm (61)|®T0R"‘ = 0. Taking into account ®T0R"‘ ®R’"
we define g : R X ®R"‘ - ®R"’ by

g(t,w) = Arm(td)(w), tER, we @R™.

Since A is natural, the equivariancy with respect to the homotheties in GL(m,R) yields a
homogeneity condition
k"g(t,w) = g(kt,k"w) , 0 £k €R..

By the homogeneous function theorem, [6], g is a polynomial of degree r in t and is linear in
w, i.e.

g(t,w)=vt"+C(w), vE ®R’" , Ce Lin(®R’",»®R"’) .

,
For t = 1 and w = 0, we obtain the value of the operator A — A4a@7 — p4V, which is zero
by the construction of p4. Hence v = 0. After that, for ¢ = 0 we obtain the value of the
absolute operator associated with A. By the construction of k24, this is zero. Hence C =0,
which completes the proof.

8. Finally we remark that one can study the natural subbundles of @T in the same
way. Let us start with the r-th symmetric tensor power STTM. Since the values of the map
X XQ:---®X,X € C®TM, are sections of ST"T M, the only modification of the previous
procedure should be-done in item 6. By [6], all natural transformations S™T' — S™T are
the vector bundle homotheties, so that we only have one Liouville vector field Las on each
ST™TM. This implies

Proposition 2. All natural operators transforming vector fields on manifolds into vector
fields on the r-th symmetric tensor power of the tangent bundles form the following 3-
parameter family

k1S™T + koV + k3L s kl,kg,ka eER.

From the theory of Young diagrams, [2], and from the fact that the action of GL(m,R)

,
on @R™ is completely reducible, [1], it follows that we have a quite similar situation for an
r

arbitrary natural subbundle of @QT. By the complete reducibility, the section X ® --- ® X,
X € C°TM, can be naturally projected into the natural subbundle in question, which gives
a single operator V in each case. On the other hand, the number of the Liouville vector fields
depends on the natural subbundle in question.
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