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DRESSING TRANSFORMATION ON QUANTUM COMPACT GROUPS+ 

B. Jurčo, P. Šťovíček 

0. INTRODUCTION 

Recently, a remarkable attention was paid to the simple complex 

quantum groups considered over reals [9] as well as to the 

corresponding enveloping algebras [1]. This means that one takes 

into account not only "holomorphic" but also "antiholomorphic" 

quantum functions on a complex group. Trying to understand this 

structure one is naturally lead to recalling the notion of quantum 

double [5]. This is in full accordance with the classical case where 

the Iwasawa decomposition plays an important role A similar 

situation takes place also on the dual level. The first goal of this 

paper is to make clear the structure of the dual quantum double 

concealed in the construction presented in [1]. We also note that in 

the literature one can find deep applications of methods envoiving 

double group to a quantum analogue of Gauss decomposition [3,12]. 

On the other hand, quantum double is intimely related to quantum 

dressing transformation [11]. This transformation can be described 

in terms of algebras of quantum functions as well as in terms of 

deformed enveloping algebras. Both descriptions are naturally dual. 

Dressing orbits on quantum compact groups were considered in detail 

in [5]. Some necessary facts are briefly recalled in Sec. 3. But 

here we are concentrating on the dual form of the dressing 

transformation. So the second goal of this paper is to present a 

simple formula for the dual dressing transformation as well as for 

-I- This paper is in final form and no version of it will be submitted 

for publication elsewhere. 
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its restriction to dressing orbits. In fact, this is possible owing 

to a more profound formula for multiplication in the dual quantum 

double presented here in a coordinate - independent form. The 

coordinate - dependent form is given for example in [12, (2.24)1. 

1. QUANTUM DOUBLE AND ITS DUAL 

The definition of the quantum double goes back to Drinfeld [2]. 

In the case of compact groups, an alternative description exploiting 

the representation theory was given in [101. Let 9t be a * - Hopf 
c 

algebra, U be the dual * - Hopf algebra and 9t be another * -
c d 

Hopf algebra identical to U as an algebra and opposite to U as 
a coalgebra. It is worth of noting that here and everywhere in what 

follows the word "identical" should be thought as being put into 

inverted commas for all the vector spaces are infinite-dimensional 

and the topological background is not satisfactorily established 

yet. If U is the * - Hopf algebra dual to 9t than it is 
d d 

opposite to 9t as an algebra and identical to si as a coalgebra. 

Thus the pairing <.,.>: 9t V9t —-> C fulfills 
d c 

<uv,c> = <u<&v,«Mc)> , <A(u),c<8>d> = <u,dc> 

and the pairing <.,.>: U &U —• € fulfills 
c d 

<X,Y Y > = <AX,Y ®Y > , <X <8>X ,AY> = <X X , Y> . 
1 2 2 1 1 2 1 2 

We use the standard notation m (resp. " . " ) , A , S and e for 

multiplication, comultiplication, antipode and counite both in the 

original space as well as in the dual one. 

Let 

Q - J x « a 

be the canonical element in at &9t with <x > and <a > being 
d C 8 8 

dual basis in 9t and 9t , respectively. The quantum double 2) is 
d c 

a * - Hopf algbera which coincides with 9t ®9t as a * - algebra but 
c d 

the comultiplication is defined by 

where 

Д_ = ( i d в Ф в i d ) ( Д ®Д ) 
uJ c d 

&:9t®9t • 9t &9t , *(C<»U) = Q(U&C)Q , 
c d d c 

(the subscripts will be omitted if not necessary). Denote by S> 
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•li­
t h e * - H o p f a l g e b r a d u a l t o S> . T h e n 3> c o i n c i d e s w i t h U &U 

c d 

a coalgebra but the multiplication is given by 

v 
m _ * = ( m <8>m ) (id<8>4> <8>id) , 

JD C d 

is the mapping dual to * . wheгe Ф
V
: u &u — • 

d c 

u vu 
c d 

L mma 1. It holds 

*V(Y<8>X) = ( < . , .><8>id<8><S. , . > ) (id®A)A(X<8>Y) , ( 1 ) 

(the pairing <.,.> i s defined on U &U ) . 
c d

 * 

Proof. To get the proof it is enough to take into account that Q = 

Q'± = (id<s>S)e and the relations 

<YttX,e(u<8>c)> = ( < . , .><8><. ,c<8>u>)A(X<8>Y) , 

<Y<8>X, (u<8>c)p*> = ( < . ,c<8>u><8><S. , . >)A(X<8>Y) . D 

T h e m u l t i p l i c a t i o n i s t h e n d e t e r m i n e d b y 

m((X<8>l)<8>(l<8>Y)) = X<8>Y , 

m((l<8>Y)<8>(X<8>l)) = *V(Y<8>X) . 

The left dressing transformation of $4, on $4 is the * 
d c 

a l g e b r a m o r p h l s m 
L : = *<. : . * —• ** <8>*t , ( 2 ) 

c c d c 

where t : s4 —• & <&et is the natural embedding. L fulfills 
c c c d 

(e <8>id)L = i d , 
d 

( i d « > L ) L = ( A <8>id)L . 
d 

Besides, every two-sided ideal 9 in s*. is L-invariant, i.e., 
c 

H9>) c s& <8>̂  , 
d 

and thus one can define the factor action 
L

A
 : s4 /9 • sd <8>( s* /9) . 

y c d c 

The mapping dual to L is called here the dual left dressing 

transfromation and it is a coalgebra morphism, 

L
V
 := (id<8>e: )<|>

V
: U VU —• U . (3) 

d d c c 
It fulfills 

L
V
(1<8>X) = X , 

L
V
(Y <8>L

V
(Y <8>X)) = L

V
(Y Y <8>X) . 

1 2 1 2 
As an immediate consequence of Lemma 1 one gets 

Proposition 2. It holds 

L
V
(Y<»X)) = J <X*S(xf),Y> X* , (4) 
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where 
(id®A)AX = £ X1**2**3 . 

**V V V V 

2. COMPLEX QUANTUM GROUPS OVER REALS 

Let si = si (K) and si = si (AN) where G = K.AN is the Iwasawa 
c q d q 

decomposition of a complex simple Lie group G into its compact and 

solvable parts. Assuming that R = R is the underlying quantum R 

- matrix [4,12] satisfying the Yang-Baxter equation and U and A 

are the vector representations of the groups K and AN , 

respectively, we have the relations [5] 

<A ; u > = R _ i , <A*',U > = R _ i . 
1 2 21 1 2 12 

RU U = U U R , U* = U"1 , 
1 2 2 1 

RA A = A A R , A*R_iA = A R_iA* , 
1 2 2 1 1 2 2 1 

A is upper triangle, TT A.. = 1 . 

The quantum double 2) can be identified with the * - Hopf algebra 

consisting of quantum functions on the complex group G The 

fundamental representation T = U®A satisfies 
RT T = T T R , T *R_iT = T R_iT * . (5) 

1 2 2 1 1 2 2 1 

The second relation in (5) was derived by Podles [9]. On the 

other hand, the authors of [1] took (5) as the starting point in 

their description of the corresponding enveloping algebra. They 

managed to rewrite (5) into one huge RTT - equation and then made 

use of the L - matrices following the general ideas of F-R-T [3,12]. 

Though this approach makes it possible to write down all formulas in 

a single compact form the structure of the quantum double remains 

concealed. The dual quantum double £> should be identified with 
R HR 

the deformed enveloping algebra U (g ) where g means g taken 

over reals and then again complexified. The * - Hopf algebra U is 

in fact the deformed enveloping algebra U (g) for the 

complexification of the compact subalgebra f- = g and, similarly, 

U = U (atV) is the deformed enveloping algebra for the 

complexified solvable part an^ . Let us supply this scheme with 

some details. 

The * - algebra U (g) is generated by the entries of matrices 
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L , L w h i c h f u l f i l l 

<L ,U > = R , <L * , U > = R 
Cl 2 21 Cl 2 12 

AL = L <»L , e(L ) = 1 , SL = L - 1 , 
C C C C c c 

R L L = L L R , L R L * = L * R L 
21 Cl C2 C2 Cl 21 C2 12 Cl Cl 12 C2 

In fact, L and L coincide with the matrices L + and L~ 
C c 

described in [3,12]. Identifying U with si as a vector space 
c d 

dual to si we have L « A~ 
C C 

The » - algebra U (cm_) is generated by entries of the matrix 

L which fulfill 
<L ,A > = R - 1 , <L ,A *> = R _ 1 , 

d l 2 12 d l 2 21 
AL . = L <8>L , etL ) = 1 , SL = L " £ , 

d d d d d d 
R L L = L L R 

21 d l d 2 d 2 d l 21 

Identifying U and si as vector spaces dual to si we have 
d c d 

L • U . 
d 

The pairing between U and U follows directly from the the 
c d 

pairing between si and si and so 
d c 

<L , L > = R , <L * , L > = R ( 6 ) 
c l d 2 21 c l d 2 12 

P r o p o s i t i o n 3 . It holds 

R L L = L L R ( 7 ) 
21 c l d 2 d 2 c l 21 

Proof.The relation (7) is equivalent to 

*V(L ®L ) = R (L ®L )R _1 . 
d2 cl 21 cl d2 21 

As the pairing (6) is known explicitly this equality can be shown 

with the help of Lemma 1. a 

3. QUANTUM DRESSING ORBITS ON COMPACT GROUPS 

Before considering the dual dressing transformation we recall 

some necessary facts about quantum dressing orbits on compact 

groups. Below we are using now more or less standard notation: X , 

H for quantum Chevalley generators corresponding to simple roots 

and satisfying deformed commutation relations as well as q-Serre 

relations ( we retain notation from [5]) . Besides, we assume that 
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q = e"h € (0,1) , the quantum integer [k] = (qk - q~k)/(q - q"1) 

and set X = q - q"1 . Further, U (9) designates a completion of 
h v U (9) by the quantum Veyl elements w introduced in [6,7] and 

also by elements of the maximal torus M c K in accordance with the 

rules 
<t ,U> = t , At = t<8>t . 

Note that to each t e M there corresponds a one-dimensional 

representation T of (A. (K) , r(f) := <t,f> . 
q * 

Let £ be a * - algebra generated by the elements z and z 
which obey the commutation relation 

* -2 * ~ * .. 

1 + zz = q (1 + zz) 
It follows that each element f € z can be normally ordered, 

f = Z E fJk <2Vz
k . tik * c , 

(we allow also infinite formal power series). Besides, one can 

define a (vacuum value) functional e on JS by 
V 

e (f) = f . 
v 00 

The dual space X becomes a coalgebra and is spanned by quantum 

differential operators on Z . The differential calculus follows 

unambiguously from the rules 
2 * 2 * <? z = 1 + q zd , a z = q z 3 , 

z z z z 

3-z = q~2z<9- , 3-z = 1 + q~2z 3- , 
z z z z 

and consequently 3-3 = q 3 3- . The pairing <. ,.>: XQ>£ —• C is 
z z z z 

then defined by 

<£,f> = eJZ.f) . 
It holds 

00 --s(s+l) , N % a j k _ _ _ _ 

«..V-.!.<" SB-.Li. MCI 
v(k-v)-cr(j-cr)-2(j-cr+e )i> a

 v*~a-a&3 *-v
9_l-&+-

z z z z 

£ should be viewed as the * - algbera of quantum functions living 

on that dressing orbit in SU (2) corresponding to the Weyl element 
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w . The " r e s t r i c t i o n " morphism of * - a l g e b r a s \p : si (SU(2)) 

i s de f ined by 

V (U) 

4л . *
ч
- l / 2 đ л , *

%
-l/2 

( 1 + Z Z ) Z ( І + Z Z ) 

-q (1 + zz ) z ( l + z z ) 

The dual coalgebra morphism y : X —• ^
K
( S X ( 2 ) ) was described 

explicitly in [5]. Particularly, 
Һ 

V (1) = w . 
V 

In the general case, to each Weyl element with a reduced 

decomposition 

w = W...W 
t t 
1 k 

and to each element t e M there corresponds a quantum dressing 

orbit 

£ = Z «>. . . <»£ 
vt t t 

1 k 

with the " r e s t r i c t i o n " homomorphism 

V : = (y «. . .«¥> ®T)A : si (K) —-• £ 9 r v t * i * l k+1 q v t 
I k M 

where A : si (K) —• si (K)9. ..&«€ (K) is iterated comultiplication, 
k+l q q q 

y/ := y °<P : a* (K) —• £ and t h e mapping <p : si (K) —> o€ ( S U ( 2 ) ) 
t v t q t ^ t q q 

is dual to the embedding <p : fci (st(2)) —• ̂  (9) corresponding to 
th t h h 

the i simple root. 

Let us make a short digression noting that knowledge of the 

morphisms y/ enables one a very simple construction of all 

irreducible * - representations of si (K) [5] Relate to each 

element f c JS the holomorphic part of its symbol, 

ғ
f
(п) = ľ f10 п

J 

where n = (r^,...,^) e C
k
 , j = (J , ...,J > «- HiJ' . Provided this 

power series is convergent then it can be regarded as a holomorphic 

function on the classical dressing orbit «£cl 2 €k The 
vt 

representation n is then defined by 
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"vt(C) Ff - *> (Of • 

vt 

One can also introduce a scalar product to get a * - representation, 

<Ff(r?) |F (r?)> = <l>f*g> • 

Of course, one has to restrict n to the Hilbert space consisting 

of holomorphic functions on £cl with finite norms. 

vt 

4. DUAL DRESSING TRANSFORMATION 

In the case of g = st(2,C) set y (£) = y(£)w . The linear 

mapping y/: X —> U (sl(2)) was calculated in [5]. Letting 

Y* = exp(±hH/2) X* 

we have 

8 =0 

2(k-r) hH 
. Ґ q- e " - 1 1 

r=iL q - 1 J 

(Y
+
)

k
"

в
(Y )

j
" 

Clearly, ,yt is injective. Let now T 

be the automorphism of the algebra U (g) given by 

Y\ 

V V -4 

T (X) = w X w 
These automorphisms were introduced in [8] and investigated in 

v 
detail in [61. In the general case the morphism y/ can be written 
as 

*vt«.> = y ( ? i ) r 5 ( ? 2 ) . . . r r ...r 5 «, > St . 
1 1 2 1 2 k-1 k 

The results of [6] imply that the elements 

m m I j I _ j 
H £. . .H n (Y* ) *(Y" ) V ((Y* ) 2 ( Y : ) * ) . . . 

1 n t I t t t 
1 1 1 2 2 

• l k - Jk 

. . . TiTi . . .T t ( (Y t ) k (Y t ) *) 
1 2 k-1 k k 

are linearly independent, m e QM n ( n = rank d ) , l,j e IN .As a 
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corollary of this* assertion we get 
v 

Proposition 4. The morphism y/ is injective. 

If L is the factor-action corresponding to the two-sided 
vt v 

ideal 9 : = Ker w in si (K) and L is the dual action then 
vt vt q vt 

we have a commutative diagram 
1? 

U ®X — • X 
d v t v t 

v 
id®w 

vt 
V 
r v t 

u &u > u 
d c c 

L 

Propositions 2 and 4 combined with this diagram lead immediately to 

Proposition 5. 7* holds 

where 

C<»?> = zv < L ( 0 s ^ v t
( 0' z > «ý • <8) 

(id®д)дç = Ev ZІ*ZІ*>ZІ 
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