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NATURAL TRANSFORMATIONS 

OF AFFINORS INTO LINEAR FORMS 

Jacek Dçbeclrï 

An affinor on a manifold M is a tensor field of type (1,1) on M and a linear form 

on M is a tensor field of type (0,1) on M. 

In this paper we give a characterisation of the natural transformations of afnnors 

into linear forms satisfying the regularity condition. In Section 2 we prove that these 

natural transformations are of the form 

-"-(') = E I > M < ) ««(<))•<»(«.(<))•«"-' 
where /,-,- are smooth functions on Rn and ai(t),...,a»(i) denote the coefficients of the 
characteristic polynomial of the linear endomorphism t. 

In the proof of this theorem we will use a classification of the natural transforma­
tions of afnnors into tensor fields of type (2,2) which we give in Section 1. 

All manifolds and maps are assumed to be infinitely differentiable. 

1. Natural transformations of arHnors into tensor fields of type (2,2). 
Let n,p,g,r,« be nonnegative integers. Let M be an n-dimensional manifold. We 

denote by X*M the space of tensor fields of type (p, q) on M. 

Definition 1.1. A family of maps TM : X\M —• X\M is called a natural 

transformation of tensor fields of type (p,q) into tensors fields of type (r,s) if for 

any n-dimensional manifolds M, N, for t € X*Mt u € X*N and for any injective 

immersion <p : M —• N the commutativity of the diagram 

M —?—+ N 

T>M • TJN 

°Thii paper is in final form and no version of it will be submitted for publication elsewhere. 



50 JACEK DÇBECKI 

implies the commutativity of the diagram 

M —^-— N 

Tм(t) TN(u) »1 i-
TIM • TTN 

T^ 

If t is an affinor on M then ai(f),..., an(t) : M —• R denote the coefficients of the 

characteristic polynomial det(A • idTM - 1 ) = An + J^-i a,(<) • An"» and tk = t o... o t 

(k times) where t is interpreted as a linear endomorphism of XQM. 

If t is tensor of type (2,2) then we define the following four operations by the 

formulas: 

«i)й=J(<if,+<i.+<;ì+<.i) 

(*!i)a=j(*ifi+*ii-<{i-*fi) 

« ^ = ̂ -<i ' ,+<;i-<ii) 

(ti)ii,=\(tii,-^,-^+^) 
Theorem 1.2. There is a one-to-one correspondence between natural transfor­

mations of affinors into tensor fields of type (2,2) and all system of 2n2 — n smooth 

functions 

a,7 : Rn —• R for 0 < i < j < n - 1 

fiij : Rn —• R for 0 < i < j < n - 1 

70- : Rn — R /or 0 < i < ; < n - 1 

fy : Rn —• R for 0 < i < j < n - 2 

The natural transformation T corresponding to the system of functions (1) is defined 

h 

Tu(t)= £ a,7(«l(0,...,«„(<)).(<'®.')i 
0<i<;<n-l 

+ £ A,M<),-,<»n(<))-(<''«<>')$ 
(2) 0< .<i<n-l 

+ £ 7«(ai(<),...,«„(<)).(<'®<J')^ 
0<i<i<n-l 

+ £ *,M<), -,««(<)) •(<*'®<,')i 
0<i<j<n-2 
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for any n-dimtnsional manifold M, t € X}M. 

The group GL(n, R) acts on ®* Rn <g> ®* Rn* on the right in the standard way. 

In the paper [1] it is shown that the above theorem is equivalent to the following: 

Lemma 1.3. Thtrt is a ont-to-ont corrcspondtncc bttwttn all systtms o/2n2 — n 

smooth functions (1) and maps E:Rn® Rn* —• R n <g> R n <g> Rn* ® Rn* such that 

(S) E(t • A) = E(t) • A for t € R n ® Rn*, A € GL(n, R), 

(4) for tvtry smooth map f : Rn —• R n ® Rn* tht composition Eo f is smooth. 

If tht map E corresponds to tht systtm of functions (1) thtn E(t) is tqual to tht 

right hand sidt of tht tquality (2) for tvtry t € R n ® Rn*. 

Proof: It is clear that for every system of smooth functions (1) the right hand side 

of (2) defines a map E such that the conditions (3) and (4) hold. At first we prove 

that for every map E there exists at most one system of functions (1) such that E(t) 

is equal to the right hand side of (2). 

Let E(t) is equal to the right hand side of (2). We denote 

R : Rn Э x —f 

-xn 

0 1 

- * 2 - * 1 J 

€ Rn ® Rn 

If we compute (E(R(x))g)l\ for p, q such that 1 < p < q < n then we obtain 

(5) 
ř (Я(Д(*))S),l

+1.+1 ifr = , 
, W 1 2(S(Д(*))š)ì+1,+i * ' < • 

for r, J such that 0 < r < * < n — 1. 

If we compute (E(R(x)) J)JJ for p, q such that 1 < p < q < n then we obtain 

(e) ßrЛ*) = г(E(R(*ШЛг.+i 

for r, s such that 0 < r < # < n — 1. Analogously, for 

5 : R n Э x 
' ' . 0 - « 2 

1 - í Ц 

л /о 1>п* € Rn ® R' 

we obtain 

(7) >.(•)=-<-j(s(»))íí)'iř Л\r+1*+1 
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for r, s such that 0 < r < s < n - 1. If we compute (E(R(x))^)^ for p, q such that 

1 < P < 0 < n t n e n w e obtain 

(8) 

for s = l,...,n — 2, 

(9) 

for r = 1,..., n — 2, 

(10) 

r 2(£(ii(*))í)ll.+J 
M')-U.5(JK.))áyi«i+1 

, , J 2(J?(*(*))2)»ln 

*- ,w-\4(.«(JK.))l)í.i t f í 

if* = 0 

if j ^ O 

if r = n - 2 

if r ^ n - 2 

" W l 4(«JI(.))á)Jili+1 +6.-! ,+1(.) 
ifr = * 

i f r ^ í 

for r, « such that l < r < # < n — 3. We can compute the functions 6r, for r, * such 

that 0 < r < # < n — 2 from the formulas (8)—(10) by induction on min{r, n — s — 2}. 

From the formulas (5)—(10) we conclude that for every map E there exists at most 

one system of functions (1) such that E(t) is equal to the right hand side of (2). 

Let now E be a map satisfying (3) and (4). We define the system of functions (1) 

by the formulas (5)—(10). These functions are smooth because if R and 5 are smooth 

then from (4) the compositions E o R and E o S are smooth. It is sufficient to show 

that for these functions the right hand side of equality (2) is equal to E(t). 

At first we consider the'case of a matrix t € Rn ® Rn* with n different complex 

eigenvalues. In this case Jordan's theorem ensures that there exists A € GL(n,R) 

such that t = J • A, where 

J = 

* i 

[ Qi - < T i l 

<ri Qi \ 

{': ?]Ј 
Let Y C R n ® R n ® Rn* ® Rn* be the vector space consisting of all tensors F(J) for 

F : R n ® Rn* —• R n $ R n $ Rn* ® Rn* which satisfy the conditions (3) and (4). 

We define the map e : {1,..., n} —• {1, ...,p + q} by the formula 

«(«•) -{>. m 
i f í < p 

if i > p 
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Let ar = p + 2r — 1, 6r = p + 2r. We define two maps £r * {1, ... n} —• {1,..., n} by 

the formula 

{ br if ť = ar 

ar if ť = 6r 

ť ìîiфaГfiфbr 

and rjr : {l,...,n}4 —• {0, ...,4} such that nr(t,i,.fe, /) is the number of terms of the 

sequence (t, j , k, /) which are equal to ar. 

A standard computation shows that Y C Z where Z C R n 0 R n 0 Rn* 0 Rn* is a 

vector space consisting of all tensors u such that for i, j , k, / = 1,..., n, r = 1,..., q 

ui^0if{e(i)ye(i)}^{e(k)1e(l)} 

MCr(0Cr(i) _ / lV»r(»',j,JM) . J i 
"c-oioc-a)""^ l j M" 

/^S^arttr _ tM-^^ttrar 
t..S\ar»r _ yUs)arar KuS)brbr 
\uS)arbr - 2 

(4)Zt: = -(»i)'a± 

It is easy to compute that dimZ = 2n2 — n. 

Repeated the argument demonstrating that the functions (1) are unique gives that 

the tensors 

(J* <S> J;')f for 0 < t < i < n - 1 

(J* ® J;')A for 0 < i < ; < n - 1 

(J* <g> J;')^ for 0 < i < i < n - 1 

(J1' <g> J')2 for 0 < t < j < n - 2 

are linearly independent. Hence the tensors (11) form a basis of the vector space Z 

and K(J) is a linear combination of the tensors (11). From this we conclude that E(t) 

is equal to the right hand side of (2). 

We now turn to the general case. Let u be an arbitrary matrix and let v be a matrix 

which has n different complex eigenvalues. Let P be an n-dimensional afnne subspace 

in the R n ® Rn* such that u, v € P. Suppose that D(w) denotes the discriminant 

of characteristic polynomial of matrix w € Rn 0 Rn*. Then D is a polynomial and 

D(w) 7-- 0 if and only if w has n different complex eigenvalues. We have D|P ?- 0 

because D(v) £ 0. Hence Q = {w € P\D(w) ^ 0} is a dence subset of P. We 

know that E\Q = F\Q where F(t) is equal to the right hand side of equality (2). 

Suppose G denotes an afnne parametrization of P. From (4) E o G is smooth and 

E\P = E o G o G"1 is smooth too. If two smooth maps are equal on a dense set then 

these maps are equal. In particular E(u) = F(u). This ends the proof. 
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2. Natural transformations of affinors into linear forms. 

Definition 2.1. A natural transformation T of itnsor fitlds of typt (p,q) into 

tensor fields of typt (r, $) satisfies tht rtgularity condition if for a manifold M, an 

n-dimtnsional manifold N and smooth map M x N 9 (a, x) —• ta(x) € T?N such 

that ta € X\N for tvtry a € M, tht map M x N 9 (a,x) —• TN(ta)(x) € TJN t'j 
smooth. 

We can now formulate our main result. 

Theorem 2.2. Thtrt is a ont-to-ont corrtspondtnct bttwttn natural transforma­

tions of affinors into lintar forms satisfying tht regularity condition and all systems 

of n2 smooth functions /,;- : Rn —• R for %,j = 1,..., n. 

The natural transformations T corresponding to the functions /t;- is defined by 

rMW = EEyii(«i(0,..Ma»(0)^MO)o<n-i 

i = l j = l 

for any n-dimensional manifold M, t € X\M. 

Let L^° be the group of infinite jets of local diffeomorphism of R n with source and 

target 0 € R n . The group L~ acts on J£°(Rn, ® ' Rn ® ®* Rn*) on the right in the 

following way: if Jxy denotes the Jacobi matrix of <p at x then j^t • j J V is equal to 

the infinite jet at 0 of Rn 9 a; —• t(x) • Jx<p € <gr° Rn ® ®* Rn*. 

From Krupka's theorem (see [3]) we conclude that Theorem 2.2. is equivalent to 

the following: 

Lemma 2.3. There is a one-to-one correspondence between all systems of n2 

smooth functions fa : Rn —• R for ij = 1,..., n and maps E : J§0(Rn,Rn <g> Rn*) 

—• Rn* such that 

(12) E(fft • ;0~V>) = E(fft) • J0<p for j?t € J0°°(Rn, Rn ® Rn ' ) , j<?V € I ~ , 

(13) for smooth map R* x Rn 9 (a, a) —• ta(x) € Rn ® Rn* the map R* 9 a 

—• Eti^ta) € Rn* s* smooth. 

The map corresponding to the system of functions fij is defined by 

(H) E{jg>t) = J2 £ /</(«-(<), - *«(<)) • *(«•(*)) o *r ; ' 
i = l ; = 1 

Proof: It is clear that for every system of smooth functions fa the formula (14) 

defines a map E such that the conditions (12) and (13) hold. 

At first we prove that for every map E there exists at most one system of functions 
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fil such that the equality (14) holds. We denote for t = 1,..., n 

r 0 1 

Ri :Rn x Rn B(ot,x) —• 
0 1 

ßn • . . ßl ßl 

€ Rn ® Rn 

where 

ß. 
l -ctj 

—a,- — x i if j = i 

If we compute E(ffRpa)q for p, g = 1,..., n then we obtain 

(15) /„(<*) = ЃO'^^..),.-^! 

for r,« = l,...,n. From the formula (15) we conclude that for every map E there 

exists at most one system of functions /,/ such that the equality (14) is true. 

Let now E be a map satisfying (12) and (13). We define the functions /|;- by the 

formula (15). From (13) it follows that these functions are smooth. It is sufficient to 

show that for these functions the equality (14) holds. 

For c € R \ {0} we define the homothety KC : Rn 9 x —• \x € Rn. A trivial 

verification shows that for a tensor field t of type (1,1) on Rn 

g*(«~<)j-
&.>*»...ð**» 

(0) = c* 
«9*.j 

дx l...дx^n (0) 

where k = ki+...+kn and for a tensor t of type (0,1) on R n t-JoKc = c-t. From (12) we 

have EtifPfac+t)) = c-Ed^t) and we know that the condition (13) is satisfied. Hence 

the theorem about homogeneous functions ensures that there exist smooth functions 

G$ : R n ® Rn* —• R for i, j , Jfe, / = 1,..., n such that 

(16) E(Jo~t)k = G%(t(0))^(0) 

An easy computation shows that 

(17) ($0(0) • J*) = S£(0)£(0)Gtf m)^(0)^i0) 
(18) -Gtf (.)<«, - Gti(t)ti, + 0«,(<)«f + <(<).? = 0 

Since the equality (17) is true, Lemma 1.3. now shows that there exist a system of 

2n* — n smooth functions (1) such that G(t) is equal to the right hand side of (2) for 

t € R n ® R n * . 
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It is easy to show that if we put either G(t) = (tp $ t«)f or G(t) = («» ® <«)£ 

then the equality (18) has a form ((<* <g> <*+1)J - (*'+l 0 <f)J)Jf, = 0. If we put 

either G(t) = (<* <g> t9)^ or G(i) = (t* <g> *«)£ then the equality (18) has a form 

((fP $ *«+l)f - (p+i $ <«)f )'fc> = 0. Using these formulas and the equalities tn = 

" E"-i * W ' *""' > (*f ® <P)I = (*P ® <f)s. (*f ® *' )A = -(<P ® *f)5 w * can represent 
the left hand side of the equality (18) for G such that G(t) is equal to the right hand 
side of (2) as a linear combination of 

(i*®^)* for0<t<j<n-l 

(<•" ® * i ) l for 0 < • < i < n — 1 

(*' $ f')£ for 0 < i < j < n - 1 

(*,'®<i)2 for0<i<j < n - 2 

We know that the coefficients of this linear combination are unique. Therefore these 

coefficients are equal to zero. If we compute these coefficients and denote 

*«(*) =- . iMO MO) 
&;(<) =flj(a1( .),.. . ,an( .)) 

7..(.) = 7.;(ai(<),...,an(<)) 

M<) = M»t(0.-.an(.)) 
then we obtain the following system of linear equations: 

for n = 2 

2doo - ai^oi + 2a2dn + 2?oo = 0 

-<*2(.-3oi+7oi) = 0 

-« i (0o i+7o i ) = O 

- 0oi - 7oi = 0, 

(19) 

for n = 3 

2âoo — a2âoi + asâi2 + 25oo = 0 

âoi — aiâo2 + ôi = 0 

- »02 + 2ân — aiâi2 + 2a2â22 + 2Ôn = 0 

- M & 2 +" 7o2) = 0 

(20) - a2,502 - «3012 - <*2702 - «3712 = 0 

0oi — <*10O2 + Toi — «i702 = 0 

- 012 - 712 = 0 

- 001 - Û2012 — 7oi - «2Ť12 = 0 

- 002 — ai0i2 — 702 — <-l7ï2 = 0, 
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for n = 4 

2ãoo — oзãoг + a^âiз + 2Íoo = 0 

ÖQI — a2ãoз + 04Ö2з + íoi = 0 

õ;02 — oiöoз + 204Ö33 + Í02 = 0 

- Ö13 + 2Ö22 — 01Ö28 + 202ÖЗЗ + 2^22 = 0 

- Ő02 + 2 ã ц — aгõiз + ûзõгз — ̂ 02 + 25ц = 0 

ãi2 — ©oз — o i ö i з + 2a3õзз + S12 = 0 

- a4(Д>з - 7oз) = 0 

- aзД>з — a^Âз — aз7oз — 04713 = 0 

Äю — йißoz + 702 — 01703 = 0 

Ди — o2^oз — O4Д23 + 7oi - Oг7oз - 04723 = 0 

- faz - 723 = 0 

- Д>1 - 03Д13 - 7oi - 03713 = 0 

- Д 2 ~ 02^23 - ^12 - 02723 = 0 

- ßiz - *\&гz - 7iз - 01723 = 0 

- Д>2 - ^гЛ з - *Z&2Z - 702 - 02713 - a3723 = 0 

ß\2 - ßoz- aißis + 712 - 7oз - aľӯiз = 0, 

foг 5 < n 

(22) 2ãoo - On-iõon-2 + o „ ã i n - i + 2Ąx> = 0 

(23) ãon-2 - o i ö o n - i + 2 a n ã л - i n - i + £>n-2 = 0 

(24) ãop- i - a n _ p ã 0 n - i + a n ã p n - i + í 0 p - i = 0 f o г 2 < p < n - 2 

— ö n _ 3 n _ i + 2 ã n _ 2 n _ 2 — o iã n _2 П _ i + 2 o 2 ã n _ i n _ i 

+ 2Ín_2n-2 = 0 

— őp_ip+i + 2ãpp — an_p_iãp П _i + an_pãp+i n _ i 

— íp- ip+i + 26pp = 0 f o г l < p < n - 3 

õipn-2 — ã p _ i n _ i — Oiõpn-i + 2 a n - p ö n - i n - i 

+ ípn-2 = 0 f o г l < p < n - 3 

— öp- ig + ã p í _ i — o n - f â p n - i + o n - p ã Í П - i 

- Ą > - i f + Ą > f - i = 0foг 1 < p , p + 2 < g < n - 2 
(29) - o n ( Д 0 n - i + 7 o n - i ) = 0 

(30) — a n _ i Д ) П - i - o n Д i n _ i - a n _i7on- i — a n 7 i n - i = 0 

(25) 

(26) 

(27) 

(28) 
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(32) 

(31) ßon-2 - лiÃ)n-i + 7on-2 - a i7on- i = 0 

ßop-\ — йn-pßon-l — <*nßpn-\ 

+ 7 o p - i - a n _ p 7 o n - i - a n 7 „ n _ i = 0 f o г 2 < p < n - 2 

(33) -ßn-2n-l-ӯn-2n-l=0 

(34) ßp-ip - an-pßpn-i - 7p-ip - a n - p 7 p П - i = 0 f o r l < p < n - 2 

(35) — /9 n -з n _i — ai/?n_2n-i — 7n-зn-i — a i7 n _2n- i = 0 

— ßp-lp+l — Qn-p-lßpn-l — Ьn-pßp+\n-l 

- 7 p - i p + i - a n - p - i 7 p n - i - a n - p 7 p + i n _ i = 0 f o г l < p < n - 3 

ßpn-2 — Pp- ln-1 — <*\ßpn-\ 

+ 7 p n - 2 - 7 p - i n - i - a i 7 p я _ i = 0 f o г l < p < n - 3 

— ßp-\q + ßpq-\ — ^n-qßpn-\ — a n _g^ ç n _i — 7p- i g + 7 p ç - i 

- a n _ ? 7 p n - i - a n _ p 7 ð n _ i = 0 f o г l < p , p + 2 < g < n - 2 

(36) 

(37) 

(38) 

An trivial verification shows that there are n2 —n linearly independent equations 

in each of the systems (19), (20), (21). We now prove that there are n2 — n linearly 

independent equations in the system of linear equations (22)-(38). 

We can compute £oo from (22), ^on-2 from (23), 6og for 1 < s < n — 3 from (24) 

for p = B + 1, £n_2n-2 from (25), £ r n _ 2 for 1 < r < n - 3 from (27) for p = r. We 

next can compute 6rg for 1 < r < B < n — 3 by induction on r. Namely if r = $ then 

we compute 6rg from (26) for p — r, if r + 1 < s then we compute 6rg from (28) for 

p = r, q = # + 1. 

We can compute ^ n _ 2 n - i from (33), ^ n _ s n _ 2 from (34) for p = n — 2, ,!3n_3n_i 

from (35), / 5 n _ 4 n - 3 from (34) forp = n - 3 , £ n - 4 n - 2 from (36) forp = n - 3 , $n-4n-\ 

from (37) for p = n — 3. We next can compute flrg for r < n — 5 and 0 < r < * < n — 1 

by induction on n — r — 4. Namely if r + 1 = s then we compute J3rg from (34) for 

p = r + l , i f r + 2 = « then we compute /5r, from (36) forp = r + l , i f j = n — 1 then 

we compute $rg from (37) forp = r + l , i f r + 3 < « and s < n — 2 then we compute 

J3rg from (38) for p = r + 1, g = B. 

Therefore the equations (22)—(28) and (33)—(38) are linearly independent. 

Let M be a set consisting of all smooth maps H : Rn<g)Rn* — • R n ® R n ® R n * ® R n * 

such that H(t • A) = H(t) • A for t € R n <S>Rn*, .A € G I ( n , R) . It is obvious that M is 

an R-module where R is a ring consisting of all smooth functions F : R n ® Rn* — • R 

such that F(t • A) = F(<). Lemma 1.3. ensures that dimAf = 2n2 - n. Let N be a 
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submodule of M consisting of all maps of the form 

*(«)- £ *«(«)• («*®*')S+ £ A,(0-(«'®.J)i 
0 < » < ; < n - l 0 < » < ; < n - l 

+ £ 7.7 («) •(*'««')# + £ «.;«)• «''®<i)i 
0 < » < ; < n - l 0<»<;<n-2 

where a,;*, A / , 7J;-, 6i ; denote arbitrary elements of R such that the system of linear 

equations (19) if n = 2, (20) if n = 3, (21) if n = 4, (22)-(38) if 5 < n holds. We see 

thatdimN = ( 2 n 2 - n ) - ( n 2 - n ) = n2. Let Kt; :Rn<g>Rn —• Rn ® Rn ® Rn* ® Rn* 

be maps such that 

(d0(aiot)otr,)k = K{j(t(0))a
k^(0) 

for j?t € J0
x>(Rn,Rn ® Rn*). It is evident that the maps K|;- are elements of N. 

Repeating the argument proving that the functions fy are unique give that the maps 

K{j, for itj = 1, ...,n, are linearly independent. Hence these maps form a basis of 

the P-module N. Consequently G € N is a linear combination of K;;- and it follows 

immediately that the equality (14) is true. This finished the proof. 
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