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NATURAL TRANSFORMATIONS
OF AFFINORS INTO LINEAR FORMS

Jacek Debecki

An affinor on a manifold M is a tensor field of type (1,1) on M and a linear form
on M is a tensor field of type (0,1) on M.

In this paper we give a characterisation of the natural transformations of affinors
into linear forms satisfying the regularity condition. In Section 2 we prove that these
natural transformations are of the form

n n
Te(®) = 33 £ii(@1(8), s an(8)) - d(ait)) 0 *
i=1j=1
where f;; are smooth functions on R™ and a;(2),...,an(t) denote the coefficients of the
characteristic polynomial of the linear endomorphism ¢.

In the proof of this theorem we will use a classification of the natural transforma-
tions of affinors into tensor fields of type (2,2) which we give in Section 1.

All manifolds and maps are assumed to be infinitely differentiable.

1. Natural transformations of affinors into tensor fields of type (2,2).

Let n,p, g, r, s be nonnegative integers. Let M be an n-dimensional manifold. We
denote by X7 M the space of tensor fields of type (p,q) on M.

Definition 1.1. A family of maps Tn : X2 M — X[ M is called a natural
transformation of tensor fields of type (p,q) into tensors fields of type (v,8) if for
any n-dimensional manifolds M, N, fort € AT M, u € X! N and for any injective
immersion ¢ : M — N the commautativily of the diagram

M—va

| |

T;M —_— T:N
Tle
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tmplies the commutativity of the diagram

M 24 N
Tu(‘)l 1TN(“)
M —— T;N
T;e

If t is an affinor on M then ay(2),...,an(t) : M — R denote the coefficients of the
characteristic polynomial det(A-idray —t) = A" + 31, ai(t)- A"~ and t* =to...0t
(k times) where t is interpreted as a linear endomorphism of X} M.

If t is tensor of type (2,2) then we define the following four operations by the

formulas:
(3= L e e
() = 7+ e - - )
(1) = 36 -t + 4l - )
(= L - - )
Theorem 1.2. There is a one-10-one correspondence belween natural transfor-

mations of affinors into tensor fields of type (2,2) and all system of 2n? — n smooth
functions

a; :R" —Rfor0<i<j<n-1
Bij:R*" — R for0<i<j<n-1
Y% :R* — R for0<i<j<n-1
§;:R"—Rfor0<i<j<n-2

1)

The natural transformation T corresponding to the sysiem of functions (1) is defined
by
TM(') = E aij (al(t)v seey an(t)) : (t‘ ® tj)g
0<i<j<n—-1
+ Y Bii(au(t),ea(t) - (F @ )]
0<igj<n~-1
+ Y wilat), e aa(t) - (F @F)S
0<i<j<n~1

+ Z §ij(a1(1), .naa(t)) - (F @ )4

0<i<j<n-2

(2)
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for any n-dimensional manifold M, t € X! M.

The group GL(n, R) acts on @" R® ® @7 R™* on the right in the standard way.

In the paper [1] it is shown that the above theorem is equivalent to the following:

Lemma 1.3. There is a one-to-one correspondence between all systems of 2n%2 ~n
smoothk functions (1) and maps E: R" @ R** — R"® R" @ R"* @ R™* such that

(3) E(t-A)=E(t)-A fort e R" @ R™, A € GL(n,R),

(4) for every smooth map f: R® — R™ @ R™* the composition E o f is smooth.

If the map E corresponds to the system of functions (1) then E(t) is equal to the
right hand side of the equality (2) for everyt € R® @ R™.

Proof: It is clear that for every system of smooth functions (1) the right hand side
of (2) defines a map E such that the conditions (3) and (4) hold. At first we prove
that for every map E there exists at most one system of functions (1) such that E(t)
is equal to the right hand side of (2).

Let E(t) is equal to the right hand side of (2). We denote

0 1
RZR"QE—’ 0 ) GR"@R’”
—®n .. =23 =21

If we compute (E(R(z))$)}; for p, g such that 1 < p < g < n then we obtain

(E(R(z))g)ﬂ-! 41 ifr=s

® ans(e) = { AB(RE)S) 10y, fr<s

for r, s suchthat 0 <r<s<n-1.
If we compute (E(R(z))i)}} for p, ¢ such that 1 < p < ¢ < n then we obtain

O) Bre(2) = 2(E(R(2))3)1 31001

for r, s such that 0 < r < s < n — 1. Analogously, for

0 -z
S:R"3z— |1 T ‘| eRr"oR™

v 0 -2,

1 -2

we obtain

(M Yre(2) = 2(E(S(z))‘;);i“ H
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for r, s such that 0 < r < s < n — 1. If we compute (E(R(2))4)}3 for p, g such that
1 < p < ¢ < n then we obtain

2AE(R(=2)AN42 Ha=0

© )= { rtmanitin, oso

fors=1,..,n-2,

AE(R(@=)4)5. fr=n-2

©) bns) = { i g2

forr=1,..,n-2,

2(E(R(3)):)}3.1 g2t %5 —1s41(2) ifr=s
4 E(R(2))4)r31 42 + br=1041(2) ifr#s

for r, s such that 1 < r < s < n — 3. We can compute the functions §,, for r, s such
that 0 < r < s < n—2 from the formulas (8)—(10) by induction on min{r, n — s —2}.
From the formulas (5)—(10) we conclude that for every map E there exists at most
one system of functions (1) such that E(t) is equal to the right hand side of (2).

Let now E be a map satisfying (3) and (4). We define the system of functions (1)
by the formulas (5)—(10). These functions are smooth because if R and S are smooth

(10) fe) = {

then from (4) the compositions £ o R and E o S are smooth. It is sufficient to show
that for these functions the right hand side of equality (2) is equal to E(t).

At first we consider the case of a matrix t € R" ® R"* with n different complex
eingenvalues. In this case Jordan’s theorem ensures that there exists A € GL(n,R)
such that ¢t = J - A, where

xy
. .
J= [01 -0 ]
o 0
o
L o, 0g ]
Let Y C R* @ R" ® R™ ® R"™* be the vector space consisting of all tensors F(J) for

F:R"@R™ — R"” ® R” ® R™ ® R"* which satisfy the conditions (3) and (4).
We define the map ¢ : {1,...,n} — {1,...,p + ¢} by the formula

fi<p

E(")={i[it§il] ifi>p
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Let a, = p+2r -1, b, = p+ 2r. We define two maps ¢, : {1,..n} — {1,...,n} by
the formula

b ifi=a,
¢((@)={ a ifi=0b,
i ifita,,i#b,
and #, : {1,...,n}* — {0,...,4} such that n,(¢,j, k1) is the number of terms of the
sequence (1, j, k, [) which are equal to a,.
A standard computation shows that Y C Z where ZC R"@R"®@R"™ Q@R isa
vector space consisting of all tensors u such that for 1,4, k,1=1,...,n,r=1,...,q

ully = 0if {e(i), e(j)} # {e(k), (D)}

S5 = e

(u)s: — ()i

(“g):::: = arGyr 5 beby
s Svanb
(ug)ars; = —(us)ara,

It is easy to compute that dimZ = 2n% — n.
Repeated the argument demonstrating that the functions (1) are unique gives that
the tensors :

(JeJ)Efor0<i<j<n-—-1
(JPeJi)ifor0<i<j<n-1
(J@Ji)for0<i<j<n-1
(J'@J)sfor0<i<j<n-2

(1)

are linearly independent. Hence the tensors (11) form a basis of the vector space Z
and E(J) is a linear combination of the tensors (11). From this we conclude that E(t)
is equal to the right hand side of (2).

We now turn to the general case. Let u be an arbitrary matrix and let v be a matrix
which has n different complex eingenvalues. Let P be an n-dimensional affine subspace
in the R"® ® R™ such that u,v € P. Suppose that D(w) denotes the discriminant
of characteristic polynomial of matrix w € R @ R"*. Then D is a polynomial and
D(w) # 0 if and only if w has n different complex eingenvalues. We have D|P # 0
because D(v) # 0. Hence Q = {w € P|D(w) # 0} is a dence subset of P. We
know that E|Q = F|Q where F(t) is equal to the right hand side of equality (2).
Suppose G denotes an affine parametrization of P. From (4) E o G is smooth and
E|P = EoGoG™! is smooth too. If two smooth maps are equal on a dense set then
these maps are equal. In particular E(u) = F(u). This ends the proof.
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2. Natural transformations of affinors into linear forms.

Definition 2.1. A natural transformation T of tensor fields of type (p,q) into
tensor fields of type (r,s) satisfies the regularity condition if for a manifold M, an
n-dimensional manifold N and smooth map M x N 3 (a,z) — ts(2z) € TIN such
that to € XPN for every a € M, the map M x N 3 (a,z) — Tn(ta)(z) €T, N s
smooth.

We can now formulate our main result.

Theorem 2.2. There is a one-to-one correspondence between natural iransforma-
tions of affinors into linear forms satisfying the regularity condition and all systems
of n? smooth functions f;; : R® — R fori,j =1,...,n.

The natural transformations T corresponding 1o the functions f;; is defined by

Tu(t) =) £ii(a1(t), - an(t)) - d(ai(t)) 0 4"~

i=1j=1

for any n-dimensional manifold M, t € X} M.

Let L be the group of infinite jets of local diffeomorphism of R™ with source and
target 0 € R”. The group LY acts on JP(R®, @’ R™ @ @’ R"*) on the right in the
following way: if J,¢ denotes the Jacobi matrix of ¢ at 2 then j§°t - j§°¢ is equal to
the infinite jet at 0 of R 32 — #(2) - Jo» € @’ R* @ @' R™*.

From Krupka’s theorem (see [3]) we conclude that Theorem 2.2. is equivalent to
the following:

Lemma 2.3. There s a one-to-one correspondence detween all systems of n?
smooth functions f;; : R® — R fori,j =1,..,n and maps E : J(R",R" ® R™*)
— R"™ such that

(12) EG@t- i°9) = BGRY) - Jop for it € J&(R, R @ R™), jp € L,

(18) for smooth map R* x R™ 3 (a,2) — ta(z) € R® @ R™ the map R* 3 o
— E(j°ta) € R™ is smooth.

The map corresponding to the system of functions f;; is defined by

(14) EGE) =Y fii(ar(t), - an(1)) - do(ai(t)) o £~

i=1j=1

Proof : 1t is clear that for every system of smooth functions f;; the formula (14)
defines a map F such that the conditions (12)-and (13) hold.

At first we prove that for every map E there exists at most one system of functions
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[i; such that the equality (14) holds. We denote fori =1,...,n

0 1

Ri:R" x R" 3 (a,2) — 0 .| €R"oR™

ﬂn coe /32 ﬂl
h
where ﬂ'_{_%._.a,1 fj=1
M fj#6
If we compute E(j§° Rpa)q for p,g = 1,...,n then we obtain

(15) fn(a) E(JgoRra)n-a+1

for r,s = 1,...,n. From the formula (15) we conclude that for every map E there
exists at most one system of functions f;; such that the equality (14) is true.

Let now E be a map satisfying (12) and (13). We define the functions f;; by the
formula (15). From (13) it follows that these functions are smooth. It is sufficient to
show that for these functions the equality (14) holds.

For ¢ € R\ {0} we define the homothety x. : R* > 2 — 1z € R™. A trivial
verification shows that for a tensor field ¢ of type (1,1) on R"

8”(::,1), 8"1‘
Szkr 02”"(0) " dzF1, az"n( )

where k = k1 +...+k, and for a tensor t of type (0,1) on R" t-Jor, = c-t. From (12) we
have E(j&°(xcst)) = - E(3$°t) and we know that the condition (13) is satisfied. Hence
the theorem about homogeneous functions ensures that there exist smooth functions
G";’; :R*"®R"™ — R fori,j,k,1=1,...,n such that

(16) E(j&th = G32(#(0)) 2 ,,(0)

An easy computation shows that

; i j - -15
) GO Je) = 2 O350 02 o)
(18) - Gl ()t — GE )t + Gl (e + G, (1)t =0

Since the equality (17) is true, Lemma 1.3. now shows that there exist a system of
2n? — n smooth functions (1) such that G(t) is equal to the right hand side of (2) for
teR"®R™.
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It is easy to show that if we put either G(t) = (#* ® t9)§ or G(t) = (t* ® )4
then the equality (18) has a form ((t? ® t*+!)§ — (t**' ® t‘)i);?, = 0. If we put
either G(t) = (t# ® t9)5 or G(t) = (1 ® t9)4 then the equality (18) has a form
((t* ® t9¥1)$ — (141 @ 19)§)i) = 0. Using these formulas and the equalities t* =
=Y haai(t) 1, (19 e)F = (1P @19)F, (19 ®@1P)5 = —(t? @19)5 we can represent
the left hand side of the equality (18) for G such that G(t) is equal to the right hand
side of (2) as a linear combination of

(t@t)for0<i<j<n-1
(t@t)5for0<i<j<n—1
(Fothifor0<i<j<n-1
(t@t)Afor0<i<j<n-2
We know that the coefficients of this linear combination are unique. Therefore these
coefficients are equal to zero. If we compute these coefficients and denote

a;j(t) = aij(a1(t), ..., an(t))
Bii (8) = Bij(a1(t), ..., an(t))
% (t) = % (as(t), ..., an(t))
§i; () = 8i(a1(2), ... an(t))

then we obtain the following system of linear equations:

forn=2
25’00 - a100; + 282&11 + 2500 =0
(19) —a3(Bo1 + 1) =0
- a1(Bor + 701) =0
= Bor — 301 =0,
forn=3

2800 — 8201 + asd12 + 2800 = 0
o1 — 61802 + 81 =0
— @z + 2811 — a1812 + 282822 + 261, =0
— a3(Boz + Y02) =0
(20) — a2f02 — asP12 — 6202 — ash2 =0
o1 — a1Boz + o1 — 61702 = 0
—Pr12—M2=0
= Bor = a2B12 — Yo — 62712 =0

= Poz — 81P12 — Fo2 — 81712 =0,
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forn=4
2&00 — G3&02 + 4813 + 2600 = 0
@01 — 82803 + a4d23 + o =0
@0z — G1G03 + 284833 + bp2 =0
— G13 + 2837 — 61 &28 + 202833 + 2852 = 0
— G0z + 2a11 — G2@13 + 6323 — B0z + 2611 =0
13 —Wio3 — 61613 + 2a3d33 + 815 =
~ a4(Bos — J03) = 0
(1) - asPos _— a4P1s — asos — a4Tis =0
Boz — a1P0s + Foz2 — @1703 = 0
Bor — a2Bos — a4Pas + Jo1 — a270s — G423 = 0
—Pas — Y23 =0
- Bor — asPis — o1 — asT1s =0
= P12 — a2B2s — M12 — 42723 = 0
—Bis —a1B23 — 13 — G1723 = 0
— Boz — a2B1 3 — asP23 — Yoz — 2713 — G3¥23 =0
Pr2 — Bos — a1B1s + 12 — Yos — 61713 = 0,
for5<n
(22) 2800 = Gp-180n-2 + nd1n-1 + 2600 = 0
(23) 80n-2 — 8180n-1 +28nGn-1n-1+ Son-2 =0
(24) @0p-1 — Gn—p&0on~1 + AnGpn-1 + so;;-l =0for2<p<n-2
(25) = On_3n-1+20n_2n-2 — 818n_2n-1+ 2820n-1n-1
+28p_2n-2=0
(26) - o:’p-lr+l + 2?» ~On_p-10pn-1+Gn_p@pt1n-1
—bp—1p41+20pp =0for1<p<n-3
7) 5;1:—2 = 8&p_1pn-1—0818pn-1+28,_pOn_1n-1
+6ppn-2=0for1<p<n-3
(28) —Qpa1g+ Apga1 —Gn-gOpn-1 + Bnoplgn-1

=819 +8q-1=0for1<p,p+2<g<n-2
(29) - au(BOn—l + Yon-1)=0

(30) —an-1Pon-1 = @nPin-1 = Gn-170n-1 — Gn1n-1 =0
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(31) Bon-2 — 81Bon-1 + Fon-2 = 8170n-1 =0
(82) 50;—1 - an-yﬂo'.-l - au.Bpn—l

+ J0p-1 — Gn-pTon-1 — Gn¥pn-1 =0for2<p<n—2
(33) ~Bn-2n-1 = Fn-20-1=0

(34) Ep-lp - an-papn—l — Yp=1p — Gn-pTpn-1 =0 fori<p<n-2

(35) —Bn-3n-1—061Pn-2n-1— In-3n-1— 819n=2n-1 =0
(36) - Bp—lp-}-l - an—p—lap n-1"—" an—p5p+l n-1
— Yp=1p4+1 = Onep-1Tpn-1 = On-pTp4in-1 =0for 1< p<n-3
(37) 5pn-2 -5p-1n-1 —alﬁpn-l
+ Ypn-2 = Yp-in-1—61%n-1 =0for1<p<n-3
(38) - Bp—lq +ﬂ_p g-1— an-qlgpn—l - an—qun—l = Yp-1¢+Vpg-1

—8n—g¥pn-1—0n—pTgn-1 =0 for1<p,p+2<qg<n-2

An trivial verification shows that there are n? — n linearly independent equations
in each of the systems (19), (20), (21). We now prove that there are n? — n linearly
independent equations in the system of linear equations (22)-(38).

We can compute 8o from (22), 8on—2 from (23), &, for 1 < s < n — 3 from (24)
for p= 2841, §p_2n-2 from (25), &, n—2 for 1 < r < n — 3 from (27) for p = r. We
next can compute 3,, for 1 < » < s < n — 3 by induction on r. Namely if » = s then
we compute §,, from (26) for p = r, if » + 1 < s then we compute §,, from (28) for
p=r,q=s8+1.

We can compute Bp—2n-1 from (33), Bn—sn-2 from (34) for p = n — 2, Ba_sn-1
from (35), Bn—-4n-3 from (34) for p = n—3, Br—_4n—2 from (36) for p = n—3, Bn_4n-1
from (37) for p = n—3. We next can compute ,, forr <n—-5and 0<r<s<n-1
by induction on n — r — 4. Namely if r + 1 = s then we compute 3;, from (34) for
p=r+1,if r+2 = s then we compute §,, from (36) forp=r +1, if s =n —1 then
we compute f,, from (37) forp=r+1,if r+3 < s and s < n — 2 then we compute
Brs from (38) forp=r+1,9=2s.

Therefore the equations (22)—(28) and (33)—(38) are linearly independent.

Let M be a set consisting of all smooth maps H : R*@R"™ — R"QR"®R™QR"™*
such that H(t-A) = H(t)-Afort e R®*®R", A € GL(n,R). It is obvious that M is
an R-module where R is a ring consisting of all smooth functions F': R*®@ R™ — R
such that F(t - A) = F(t). Lemma 1.3. ensures that dimM = 2n? —n. Let N be a
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submodule of M consisting of all maps of the form

Hy= Y &0)-(Fet)i+ Y B (o)

0<i<i<n—1 0gi<j<n-1
+ Y w-EFet)E+ Y &@)-(Fet)i
0<i<j<n~-1 0<i<j<n-2

where &;j, B; i Tij & ;j denote arbitrary elements of R such that the system of linear
equations (19) if n = 2, (20) if n = 3, (21) if n = 4, (22)-(38) if 5 < n holds. We see
that dimN = (2n2 —n) —(n2 —n) = n2. Let K;; : R"®@R®* — R"QR"QR™ QR"*
be maps such that
(dofai 0 1) 045 s = K (HO))F2 et (0)

for j°t € JP(R™, R™ ® R™*). It is evident that the maps K;; are elements of N.
Repeating the argument proving that the functions f;; are unique give that the maps
K;j, for i,j = 1,...,n, are linearly independent. Hence these maps form a basis of
the R-module N. Consequently G € N is a linear combination of K;; and it follows
immediately that the equality (14) is true. This finished the pmof.
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