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F-FOLIATIONS AND WEIL PROLONGATIONS

Zdzislaw Pogoda

In the paper we present a construction of the prolongation of a I'- foliation on a
manifold X to X4 - the Weil prolongation (the A- prolongation of the manifold X).
Moreover, using the construction of Bott- Haefliger of the characteristic classes for
I-foliations, we study relationships between the characteristic classes of I'-foliations

on X and the characteristic classes of Weil prolongations.

1. Basic remarks about Weil prolongations.

Let A be an algebra with 1 over R. We say that A is loal if it is associative.
commutative and of finite dimension over R. Furthemore. in A there exists the unique
maximal ideal m such that:

a) dimA4/m = 1,

b) there exists a number h € N for which m*+! = 0.

The smallest such h will be called the height of A. One can prove ([6]) that any
local algebra is of the form R[p]/a. where R[p] = R[X}, ..., X}] is the algebra of all

formal power series of p indeterminantes and a an ideal of R[p] such that
dimR(p]/a < oo

Let A be a local algebra with the maximal ideal m and C°°(M) be the space of C*
functions on a manifold M. Let ¢ and ¥ be two C*® maps from R? to M. We say
that these maps are A-equivalent if

§a(r(fop)) =8a(r(foy))  forany f € C(M)

OThis paper is in final form and no version of it will be submitted for publication elsewhere.
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where 7 = 7, is a map of the form

7:C*(R?) — R|[p]

o)=Y SDal(0)x”
vENP

and £, is the canonical projection of R[p] on A. The equivalence class of ¢ in this
relation we denote by [p]4. By M4 we denote the set of all equivalence classes of C*
maps ¢ : R? — M. We have the natural projection 7 : M4 — M defined by

Tal[e]a) = ¢(0)
The structure of a manifold on a M4 we introduce in a natural way ([5], [6]). If
F: M — N is a C*-map,, then we define F4 : M4 — N4 by the formula

FA([pla)=[Fopla  for [p]a € M*

The correspondence M — M4 is a functor which has many important properties
(see [3]. (6]-

The following proposition gives a topological relation between a manifold M and
its A-prolongation M4,

Proposition. 1. If A is a local algebra, then M and M* have the same homotopy
type.

Proof. Denote by i the canonical imbedding of M in M4 defined by the formula
i(z) = [yz]a where v, : R? — M, ~,(t) = 2 for each t € R?. Now we define a map

F:M*xR— M4

F([¢]a.8) = [pi]a
where [p,] € M4 is represented by a map ¢, and

@s(t) = o((1 — 8)t) for t € R?

The map F is. ofcourse, continuous, and

Flppaxqoy = idpga Flpax) =iomy .
Q.E.D.

Immediately, we have the folloving
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Corollary. 1. If A is a local algebra, then the de Rham cokomology complezes
H*(M) and H*(M4) are canonically isomorphic.

2. A-prolongations of pseudogroups and foliations.

Let T be a pseudogroup of local diffeomorphisms of a manifold M. For any g € T
we denote by O, a family of local diffeomorphisms of M#, which cover g. Then the

‘r=Jo,
ger

set

ia a pseudogroup of local diffeomorphisms of M4.

Before we define the A-prolongation of a foliation, we recall, a definition of a foli-
ation, which we shall use. Let M be a differentiable manifold and I' a pseudogroup
of diffeomorphisms acting transitively on M. Suppose, that 4T is a transitive Lie
pseudogroup.

Actually we shall consider M = R and T a pseudogroup of local diffeomorphisms
of R™.

To define a I'-foliation on a manifold .X' we need the following data:

1) an open covering {U; }ier of X.

2) a family F of submersions (”local projections”) f; : U; — M,

3) a family of local diffeomorphisms g;; € I such that
gij : f;(Uinl;) — fi(U; nUj)

and

gij © filviov; = filvinv,

A map f: X — X is transverse to F if the maps f; o f are submersions. In this
case the maps f; o f are local projections of a I-foliation on X'. This foliation is called
the inverse image f~!F of F via f. The map f is a morphism from f~! to F. We can
say that I'-foliations form a category Fol(T).

Now we shall construct the A-prolongation of a I'-foliation F.

Proposition. 2. Let F be a I'-foliation on X. There ezists canonically defined

a AT-foliation F4 such that the correspondence F — FA is a contravariant functor

from Fol(T) to Fol(AT).

Proof. Let {U;}ier be an open covering of X, and {f;}ies a family of submersions
defining the foliation F.
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The family
(U = 3" (U): Ui € {Uskier}

is an open covering of X4. Now we shall define the prolongation F4 of F. As the
family of submersions for 4 we can take the family {fA} where fA : UA — M4
The compatibility condition is fulfilled. Q.E.D.

If f : X! — X is aregular map transversal to ¥, then f4: X 'A _. X4 is transversal
to F4 and

(F1 R = A7

Thus we can give the following definition:

Definition. 1. Let F be a [-foliation on X. The AT-foliation FA on X* we call
the A-prolongation or the Weil prolongation of F.

Now we shall define a homotopy of foliations. Let o and F; be two I'-foliations
on .X. We denote by
'.t : X — XxR

2z (z,1)

the canonical inclusion. Two [-foliations are homotopic if there exists a I'-foliation F

on X x R such that {5 and 4, are transversal to F and

i'\F=F i'F=A

The homotopy relation is in natural way, an equivalence relation. Denote by
Htpp(X) the set of homotopy classes of I'-foliations on X. If f : X/ — X is a morphism
in Fol(T'), then we obtain the induced map

Htp(f) : Htpr(X) — Hitpr(X')

It is easy to prove that Hipr(e) is a contravariant functor.

We still have some remarks about homotopy of foliations.

Proposition. 3. Let A be a local algebra. If Fy and F, are two homotopic
T-foliations on X, then ¥§ and F{* are homotopic. ’

"The proof is easy consequence of definitions and properties of the Weil functor.
On the other hand we can define
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Definition. 2. Let A be a local algebra. Two foliations Fo and Fy are A-homotopic
if their A-prolongations ¥ and F{* are homotopic.

This relation is an equivalence relation. Let Htpfi(X) be the family of A-homotopy
classes. As previously, Hipf(e) is a contravariant functor. The following simple

proposition is true.

Proposition. 4. Let fo, fi : X' = X be two homotopic maps. Then for a local
algebra A, the maps f§ and f{* are homotopic.

3. Characteristic classes of I'-foliations and their prolongations.

Now we recall briefly the Bott-Haefliger construction of characteristic classes of
[-foliations ([2], [4]). Let ' be a Lie pseudogroup acting transitively on M. A vector
field on M is called a I'-field, if its local one parameter group consists of elements of
I'. Let 0 € M be afixed point in M. The set of k-jets at o of [-fields is a vector space
denoted by I* i.e.

¥ = {jkv: v € ¥r(M)}
where Xr(M) is the space of [-fields on M.
Now [ = li_m[k is a Lie algebra called the Lie algebra of formal I'-fields.
Let us denote by A(L) the inductive limit of the algebras A(L*) of multilinear

antysymetric forms on [*. The bracket on T induces a differential on A(L). and we
obtain the cohomology groups H*(L).
Let

JE(T) = {jbp: v €T}
and
I§ = {j§ € J§(T): ¢(0) = 0}

T4 acts on the right on J¥(T), and J&(T) is a principal fibre bundle with base M
and structure group ['4. Take

J§°(T) = limJ5(T)

On J§°(I') we can introduce a structure of a differentiable manifold: the map
f: X — J§°(T) is regular i.e. C™ if for any k, 7 o f is regular, where

m 2 J§°(T) — Jg(T)

is the canonical projection.
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J§(T') has a structure of a principal fibre bundle with the structure group I'S®. Let
A(J§(T) be an algebra of differential forms on J§°(I') defined as
fim A(J4(T)
Then we have the following

Proposition. 5. A(L) is canonically isomorphic to the algebra of differential
forms on J§°(T), which are invariant the action of . This isomorphism comutes with

the differential operator ([{]).

Now, let K" be a maximal compact subgroup in '§ and let
K =limK*
am

Then A(L, K) is a subcomplex of K-basic forms in .A(T'), and its cohomology group
we denote by H*(L. K).

The following theorem is true

Theorem. 1. Let F be a I'-foliation on X. There exists a homomorphism of
algebras o : H*(L, K) — H*(X) such that if f: X' — X is transversal to F then

ffeor=9;1x

Definition. 3. The set impr is called the set of characteristic classes of a foliation
F.

Proposition. 6. If 7y and F, are homotopic I'-foliations on X, then

imor, = impzr,

Now we can formulate the main theorem of this paper.

Theorem. 2. Let A be a local algebra and Fo, Fy two I'-foliations on X. If Fo
and F, are A-homotopic, then

imps, = imesr,

This theorem is the generalisation of the analogous theorem due to L. A. Cordero

in [3]. It is a consequence of the following theorem
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Theorem. 3. Let F be a I'-foliation on X, and A a local algebra, then
imer =" impra
wher {* = 1% is the tsomorhism induced by the inclusion

it X —Xx4

To prove this theorem we use the following technical Lemma:

Lemma. 1. Let A be a local algebra, F a T-foliation on X and FA that of its
A-prolongation, then

a) there ezists a canonical homomorphism
o: H*(L,K) — H*(*L* K)

such that the diagram

PrA

H'("L,A K) H‘(‘\’A)
ot Lix
H*(L, K) H*(X)

1s commautative,

b) there ezists a canonical homomorphism
T H*(*L* K) — H*(L, K)

such that the diagram

pf‘

H*(ALAK) H*(X4)
T ‘ T(ma)”
H*(L, K) ’z H*(X)

ts commultative
c)

TOO = id}!'(LK)

Proof. Let ipr(0) =0 € MA. For any k > 0 take

o : JE(AT) — JH(T)
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defined in the following way: if j‘-’:-(‘f) € J;"("I‘), where 4 is an element of AT, which
cover one f, then we put
aw(EAS) = i4(f)
. It is easy to prove, that o, is well defined. This map induces a homomorphism of
Lie groups
Ok :A I‘% —_— l‘f

and further we have the morphism of fibre bundles

Tk

JE(AT) JH(T)
. !
MA z M

For any 4 f €4 T such that 4 f € Oy, let Aa; and A; be differential transformations
of J;"( AT) and J(T') respectively, defined by the left action of A f and f respectively.
The following equality is true

/\f OO0 =a’y,O/\A!

Further. the induced homomorphism of algebras of differential forms we denote also
b)' Ok
ox : A(JA(T)) — A(JA(*T))

which invariant forms under the action I' sends to forms invariant under the action

AT, and consequently we have got
o A(J°(T)) — A(JS(4T))
which induces (by proposition 5)
o A(L) — A(“L)
The mapping ¢ defines two new homomorphisms, denoted also by .
o: AL K) = A(*L* K)

and

o: H([,K) = H*(*L*K)

For the proof of the commutativity of hte diagram, it suffice to prove commutativity

of the following diagram
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ATEAT) T APHFANgs 2 AWA)
o 1 Lig
AGET) = APHA) S AD)
where U is an open set in X, P*(F)|y and P*(F4)|y 4 are restrictions to U/ and U4,
respectively the fibre bundles of k-jets of lokal projections of F and F#, respectively,
p and “p are the homomorphisms induced by local inclusions, and, at last, n and 49
are the maps induced by the identification of J¥(I') and J-:.‘("I‘) with P*(F)|y and
P-f(f A)|u 4 respectively. .
The inclusion
ju U= PYF)lu
we can define in the following way: if fir : /' — M is a local submersion of F. then
for each € U/
julz) = js(g™" e fr)
where g € I' and g(0) = fy(z). The map jira we define in the analogous way.
Let w € J¥(I), thus

p(n(w))lz = n(w)jrg-r0p0) = @ljr ()
If 7 =iy (z) then
g (*p(*n(or(@)))e =* p(*n(or(w))); =
= mlorDljzipnrtoss =
= or(@ljziga) = Wiz

This finishes the proof of the point a).

b) In this case we construct the map 7. For £ > 0 the map
s JE(T) — J;"-(AF)

is defined by the equality

(St () = 2(f4)
for f € T, where t is the order of the natural bundle X — X4. It is easy to prove
that 74 is well defined. This 7; induces a homomorphism denoted also by 7:

7 2 A(JE(AT)) — A(JF (L))

77
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Passing to limit, we get

7 A(JS(AT)) — A(J2(D))

Analogously as previously 7 sends forms invariant under the action of AT into forms

invariant under the action of I' because

/\fA O Tg =1’kOA!

The map 7 defines a homomorphism
A(“L) - A(D)

denoted for convenience also by 7 and 7}, defines a morphism of principal fibre bundles

JHT) = JAAT)
L !

M

M — M*

Finally we take

7 H*(*L K) — H"(L, K)

The proof of comutativity of the diagram is analogous as in the case of the morphism
o.
c) To prove that
700 = tdy.(ar,k)

it suffices to remark that the map pj = 7 0 0% induces the identity if k# — co. This is
the consequence of definitions of 7, and o;. Q.E.D.
Now we can prove the Theorem 3. From the first diagram of the lemma we have

ix(impra) D impyr

From the second

itmpra C (714) (imera

because 7 is a surjection. Since
i} O1I':‘ = idﬂn(x)

we have

impr = iyimpra

Q.E.D.
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