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DEFORMATION THEORY VIA DEVIATIONS

Martin Markl, James D. Stasheff

Introduction

The present paper was inspired by Drinfel’d’s introduction and study of quasi-Hopf algebras
in [2] and [3].

His proof of the existence of a quasi-triangular quasi-Hopf algebra starting with initial ‘classi-
cal’ data was reminiscent of arguments in the ordinary deformation theory of algebras, but there
was noticeably lacking an appropriate complex controlling an appropriate deformation theory.

Given an algebra (in the most general sense for which it makes sense to talk about structure
constants), there always exists a cohomology theory which controls the deformations, which is
canonical (in some sense) and defined in all degrees. To construct it, take the affine coordinate
ring k[M] of the variety M of structure constants and construct a resolution (A.,d) — (k[M],d=
0) with A, a graded commutative algebra A(X). on a graded vector space X = @5, X; and a
differential satisfying d(X;) C A(X)i—1 and Hi(A(X),d) =0, i > 1. Let L* = Der(A.,k) and let
§ be the differential on L* induced by d. Then H*(L,8) “captures the deformations”.

The above is too general to be useful for practical computation. The relevant part of (L*,§)
is L9 5 L' 4 L2, The first two pieces are easy to describe: L° is related to coordinates for the
variety of structure constants and L?! is related to relations among the coordinates related with
the axioms of our algebra. But L? reflects the “relations among relations” — the 2nd syzygy, an
ultimate mystery.

In the case of quasi-Hopf algebras, there is a natural and fairly obvious proto-complex, but
it fails to be a complex: §2 # 0. Our approach to the problem is to realize that the failure is a
result of a relevant non-linearity. Our deviation calculus gives a way to capture these “relations
among relations” using two-dimensional diagrams or at least to understand where these relations
came from.

1. Basic principles

In this section we introduce the notion of a deviation and prove the main principle — the
additivity of deviations. Everything will be formulated for square diagrams only, but it will be
obvious how to generalize our results and definitions for diagrams of more general forms.
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Let us introduce first some notation. For a fixed field k, denote as usual by k[[t]] the ring
of formal power series over k. For a k-module A, denote by A; the k[[t]]-module A ®y k[[t]].
Notice that every t-adically complete flat k[[t]]-module is of the form A, for some k-module A
and clearly A = A,/(tA,).

Definition 1.1 Let A, B,C and D be k-modules and consider the following diagram of k[[t]]:
modules and their maps:

a—r ¢,
1) Ifl ’ A
. s
Bt Dt

Suppose that this diagram is commutative modulo t"*'. The deviation of (1) is then the map
¥ : B — C defined by
" = foba— Bfi mod t"t2.

The fact that U is the deviation of (1) will be sometimeé expressed as

i

We hope that it is easy to understand what we mean by

[ ‘I’\i is the same as i RN

For a k[[t]]-linear map g : Uy — Vi let (9)o: U = V, U := Up/(tU,) and V := V;/(tV,), denote
the map defined by (g)o(v mod tU;) = g(u) mod tV, (the “absolute” part of g). We need this
notation in the formulation of the following main principle of our “deviation calculus”. It is as
simple as:

Proposition 1.2 (Additivity principle) Suppose that the diagrams

A, C co— ' . E,
’fl lfz and ‘fz 'fa
B—2 .p, D,

F

commute mod t"*! and let ¥y : B — C resp. ¥, : D — E be the corresponding deviations. Then
the “big” diagram
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A—1°F g,
‘fl fsl
B, foa F,

commutes again mod t™*! (this is trivial) and the corresponding deviation ¥ can be computed as

¥ = (1)1 + ¥2(a)o.
Proof. By definition, we have the relations
fra = Bf1 + "1, mod t**! and f36 =+f; + t"*l}llg mod ¢"+1,

Using these, we get the following equality mod t"+2:
faba =y fra 4+ "1 = 481 + "0, 4+ 1" 1,0,

i.e. faba—~Bfi =" (y¥; + ¥2a) mod t*+? which means exactly ¥ = (7)o¥; + ¥2(a)o. ]

2. Classical examples

Associative algebras. By an associative algebra we mean a couple A = (V, u), where V sa
k-linear space and p : V@ V — V a bilinear map satisfying the associativity relation (1 = the
identity map) :
() ppel)—ulep) =0

Before reviewing some classical results about deformations of these objects, recall briefly the
definition of Hochschild cohomology of A with coefficients in an A-bimodule M.

For two k-vector spaces X and Y, let Hom(X,Y) be the space of k-linear maps f : X =Y.
The differential dyoa, : Hom(V®* M) — Hom(V®*1 M) is, for f € Hom(V®"*, M), defined as

3) dnoan()=m1(18f)+ Y (-1)* (I @u@1"1) +(~1)"'1y(f @ 1),
0<i<n—1

where 1 : AQM — M and v, : M @ A —» M are the left and right actions, respec-
tively. The Hochshild cohomology H};,4,(A; M) is then defined as the cohomology of the complex
(Hom(V®’,M),dH°d.).

Deformations of the algebra A as above are related with the Hochshild cohomology of A with
coefficients in A considered in an obvious way as an A-bimodule (i.e. v; = v; = p). For the
convenience of the reader, we write explicitly the formulas for dyoch in relevant degrees:

diocn(f) = (1 @ f) — f(p) + p(f @ 1),
diocn(9) = p(1®9) —g(p® 1) +9(1 @ p) — (¢ ®1) and .
droan(¥) = (1@ %) —Y(p@1*) + (1@ u® 1) — (1’ @ p) + p(¥ ® 1),
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where f € Hom(V, V), g € Hom(V®?,V) and 4 € Hom(V®?, V).

By a deformation of A = (V,p) we mean an associative k[[t]]-algebra A, = (V;, u;), where
V: = V @Kk|[t]] and A:/(tA:) = A. In other words, a deformation is given by a sequence of maps
pi: VOV = V,i>1,suchthat py:=p+tp + 2+ -+ : ; @ V; = V,, satisfy (2) over k][¢]].

One of the basic problems of deformation theory is the following integrability problem: given a
“partial” deformation T = p+tuy + - + t"p, satisfying (2) mod t"*+!, is it possible to construct
an honest deformation p; of 4 with y; = 7 mod ¢"+!?

Recall now the classical approach to the construction of an obstruction theory related with
the possibility of a step-by-step integration of y; as above. First, suppose we had some pn41 :
V®V — V such that fi:= p+tpy + -+ + t"pn + " gy (= B+ 1 ppy1) satisfy (2) mod
t"+? i.e. that

B+ " ) (E+ " 1) @ 1) = (B + " pna)(1 ® (B + " png1)) = 0 mod ¢+,

An easy degrée check shows that the last equation is equivalent to

(L ® 1) = ingr (6 ® 1) + pinga (1 @ 1) — i(ptnss ® 1) = 9,

where p : V@V ®V — V is defined by z(z® 1) — #(1 ® &) = t"*'¢ mod ¢"*2, which can easily
be rewritten as

¥ = dHoch(#n+1)-

Now 1 is defined from i without using gn4+1. Suppose for the moment that we already know
(4) dHoch("/’) =0.

Then we have the following theorem (see, for example [4]).

Theorem 2.1 The primary obstruction to the integrability of a partial deformation & is an
element [] € H3 4(A; A).

The equality (4) is indeed always true. The classical proof of this statement [4, Proposition 3,
page 69] uses the graded pre-Lie ring structure on the Hochschild cochain complex, invoking an
inductive argument. We show that this formula (and, more generally, formulas of the same type)
is a consequence of some combinatorial property of a 2-dimensional polyhedron which is formally
described by what we call the deviation calculus.

The first step is to interpret 1 as the deviation of some diagram. This is very easy; ¢ is, by
definition, the deviation of
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Vi 1 Vi

(5) ‘ 71 @) ‘ AFe 1)

3

VieVvioVi——~V.eVaV

The next step is to apply to (5) all operations which occur in the formula for dyocu(¥). We
get in turn:

Applying B(1 ® *):

Vi Ve

AN
F1em)(1*en) F1em(1eEe1)
l‘

®4
Vi

v

where ¥; = p(1 ® ). The composition of (5) with (1 ®@Z® 1) is

Vi Vi

‘ snenmeser) U2 ‘F(F®l)(l®i®l)

14

®4
Vi

®4
Vi

where ¥ = 9(1 ® ¢ ® 1). The application of zZ(* ® 1) gives

Vi Vi
A
AER1)(1QEQ1) (Ee1)(EQ1?)
Ve ¢ e

with ¥3 = (¢ @ 1). Composing (5) with (£ ® 12?) we get
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Vi Vi

A
1M (ER1?) 1| sEen(Ee1?)
l‘

®4
Vi

v
where ¥4 = ¢(p ® 12) and, finally, composing (5) with (12 ® &) we obtain

v, v
VAN

' F1@m(1?en)

‘ wEe1)(1207)
l‘

Vt®4

v
with U5 = ¥(1 ® p).

Noticing that Z(Z ® 1)(12 @ ) = z(z ® &) = £(1 ® &)(# ® 12), we can piece the diagrams
above together into the following object:

(6)

where o denotes V; and e denotes V;®*. Consider the following subdiagrams of (6):
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0 ~ ' QX

"

3

Clearly ; = Q3 = 0. By Proposition 1.2, Q; = —(¥;+¥2+¥3) and Q4 = ¥4+ ¥s (notice that all
horizontal maps in (6) are identities). Again by Proposition 1.2 we get also that ; = Q2+Q3+4.
Combining these equations we get ¥y + ¥y + W3 = ¥4 + U5 which is exactly dhoen (%) = 0.

Loosely speaking, our arguments above were based on the following principle. The “deviation
diagram” (6) is topologically a 2-sphere which has no boundary. This means that the sum of the
“partial deviations” must be zero, which is exactly the equation dgoen(¥0) = 0. But, as we will
see in the case of quasi-Hopf algebras, we must be very careful when applying this principle.

Bialgebras. By an (associative and coassociative) bialgebra we mean an object A = (V, u, A)
where V is a k-vector space, p: V®V — V and A: V - V ®V (the product resp. coproduct)
are linear maps and the following conditions are satisfied:

(7 p(p@l)—p(l@p) = 0, (associativity)
(8) (A®1)A-(1QA)A = 0, (coassociativity)
9) (k@u)(S)A®A) = Ap, (compatibility)

where S is defined by S(z1Qz2823Qc4) = 218¢3Q728z4. Deformations of these objects are related
with bialgebra cohomology, introduced in [6] (see also [5]). Recall the necessary definitions. For
any ¢ > 0, V® has a natural structure of (V, u)-bimodule induced from p. This means that the
formula (3) defines, for any p > 1, the differential .

dhoch © Hom(V®”, V®°) — Hom(V®’+l, VG"’).

Similarly, V®? has, for any p > 0, a natural structure of (V, A)-bicomodule (induced from A).
This enables one to define dually the coHochschild differential ’

deon : Hom(V®?,V®) Hom(V®, V&1,
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Consider the following hypercomplex

Hom(V®4,V) —Hom(V®*, V82— Hom(V®, V&) Hom(V®4, V&4)—

dHoch

Hom(V®3,V) ——Hom(V®3,V®2)—+Hom(V®?, V&)—Hom(V®3,V&)——

dHoch

Hom(V®?,V) ——Hom(V®?,V®2)——Hom(V®?2, V®)——Hom(V®?, V®)——

dioch

dcoH

dcoH

dcoH

dHoch

dioch

dHoch

dcoH

dcoH

dcoH

dHoch

doch

dHoch

MARTIN MARKL - JAMES D. STASHEFF

dcoH

dcoH

dcoH

Hom(V,V) —— Hom(V,V®?) —— Hom(V,V®) —— Hom(V,V®!) ——

and let (Cy(A; A), D) be the associated total complex with the degree convention that
Ct(A; A) = Hom(V, V®") @ Hom(V®?,Ve"1) @ - - - @ Hom(V®*~, V®?) @ Hom(V®", V).

The (restricted) bialgebra cohomology of A with coefficients in A is then defined as Hy(A;A) =
H*(C¢(A; A), D). For the convenience of the reader we again write down explicitly the differ-

entials of the bicomplex above in degrees relevant for our discussion: for ¥, € Hom(V®3,V),
¥y € Hom(V'®?2,V®?) and 43 € Hom(V, V&%) we have

diocn(¥1) = p(1 @) —¥1(p® 1)+ (1@ p®1) — 1 (12 @ p) + p(¥1 ® 1),
deon(t1) = (L1 @p) @) X)ABAB®A) — A+ (1 @ p(k ®1))(X)(AB®ARA),

dHon(¥2) = (1 ® u)(Z)(A®%2) — halp ® 1) + (1 ® ) — (4 ® p)(Z)(v2 ® A),
deoti(P2) = (L@ Y)(Z)(AQA)— (AR L)(2) + (1 @A) (%2) — (Y2 @ pu)(Z) (AR A),

dioan(¥3) = (@ pE)(Y)A(L®A)®¥s) —9s(k) + (k@ p® p)(Y)(¥: ® A(AB 1)),
deoi(¥3) = (1®@%3)A— (A®1%)(¥s) + (1@ A®1)(¥3) — (12® A)(¥s) + (Y3 @ 1)4,

where Z(z1®2:023Q%4) = 21073022Q%4, X(2102:02307482:Q76) = 71023QT502:824®T6
and Y(z:02,073024Q25Q7¢) = 71740728 75@ 3@z Notice also the “self-duality” of the

conditions above.

Suppose we have a “partial” deformation (%, A) = (u+- -+t fa, A+---t"A,) satisfying (7),
(8) and (9) modulo ¢"*! and look for some pn41 € Hom(V®2 V) and A,y € Hom(V, V8?) such
that (&, A) := (T + t" oy, & + t**1A,4,) would satisfy (7), (8) and (9) modulo ¢*+2. Define

%1 € Hom(V®3,V), 1, € Hom(V®2,V®?) and 3 € Hom(V, V®3) by the following equations:

EEel)-E1en) = t"*'¢; modulo t"*?
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Ap—(E®E)(Z)A®A) = t"*'¢; modulo t*+?,
A®1)A-(1Q®A)A = t"*'4¥; modulo t*+2.

As in the case of associative algebras, we can show that (gn41,Ant1) and (¥1,%2,%3) would be
related by
D(l"ﬂ+lv Aﬂ-}-l) = (“/’1) 1/’27 !1’3)’

where we consider (fn41,An41) in the evident sense as an element of CZ(A; A) and (¥1,%2,¥3)
as an element of C3(A; A). Then the condition

(10) D(1,92,93) =0
would imply the following theorem.

Theorem 2.2. The primary obstruction to the integrability of a partial deformation (&, A) is an
element [(¥1, ¥2,¥3)] € H3(A; A).

We prove (10) using our “deviation calculus”. Notice that Theorem 2.2 is already known
(see [6]) but the authors have never seen an explicit proof of (10) anywhere.

Notice first that (10) is, by the definition of the differential of the total complex, equivalent
to the following four conditions:

(11) dhoan(1) = 0,

(12) deoti(1) = doen(¥2),
(13) deoni(¥2) = dhon(¥s) and
(14) deon(¥3) = 0.

The equation (11) has already been proven in the first part of this paragraph while (14) is just
its dual. It is enough to prove (12) only, because (13) is again only the dual of (12).

As usual, start with interpreting 1; and 1; as deviations of some diagrams (for ¥, it was
already done in the first part of this paragraph):

v, N
(1) E(187) Y mEen)

3
Vi@ Vi@ V———— Vig Vi® Vi
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2

VoV, V.oV

(16) @om(2)deR) Y| ap
2

V.oV = V.oV,

The next step will again be to apply to (15) and (16) operations which occur in dcon(3%1) and
diocn(¥2)- Applying (E(1 ® 7) ® +)(X)(A ® A ® A) to (15), we get

12
VoV Vi®V;

Fem(10Ee18A)(X)(E8ARE) 91\

FeMARERER1)(X)(ERB®A)
13
VieVioV V.eVieV

with @ = (L1 @ p) Q1) (X)(ARARA) = (p(p® 1) ® 1)(X)(A ® A®A) (p is associative
but 7 need not be). The application of A to (15) gives

1? .
VoV V.oV
aren) nz\
AE(EO 1)
13

V.o VeV — V.eVi® V.

with Q; = At;. The composition of (15) with (* @ Z(Z® 1))(X)(A ® A® A) is

12
Vi® Vi eV

(FOR10FeFe1)(X)BeE6E) Qs\

(FRMEOL1RER1)(X)(A®ARA)
Ils
VieVv:eV, VeV

with 03 = (1 ® (g ® 1))(X)(A ® A® A). Applying (E® )(Z)(A ® *) to (16), we get
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12
VoV V@V
(FeR(1®F®18A)(X)E8AQA) I, \
N
(FeB)(2)(B®B) (18 7)
]13
VieVi®V: VieV.eV

where T'; = (1 ® 1)(Z)(A ® 12); here we use the relation
EeE(2) (A8 FEeR)(Z2)(A0D)=EeR(18E018R(X)(A®ARA).

Composing (16) with (1 ® %) from the right we get

12
ViV, V:eV,
FeM(2)(EeB)107) I, N
Au(1 Q)
13
VieVieV; VooV,

with I'2 = 4,(1 ® p). The composition of (16) with (Z ® 1) from the right is

12
ViV, V:®V;
@ON(2)EeB)Fe1) T, N
AE(E®1)
13
VioVi®V: VieoVvieV,

with T's = ¢,(u ® 1) and, finally, applying (7 ® %)(Z)(* ® A) to (16) we get

12
Vie Vi VeV
(FOE)(E®18E81)(X) (A2 ®A) T, \
(F®E)(2)(B@B3)(Fe 1)
13
VieVioV VeV

where I'y = (4 ® p)(Z)(1)2 ® A) and we use the relation

EFm(Z2)(EeR(2)(ARA)®A)=EORFEOLOE®L)(X)(A®ARQA).

Now we can easily form the following object:

107
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=~ AS
. - £

=k

>

Topologically, this is again a 2-sphere and by the same arguments as in the case of associative

algebras, we can infer from this that the (oriented) sum of deviations must be zero, i.e. that
D+ QB+ +T3=0+T 4T,
which is exactly (12).

3. Drinfel'd algebras

Following [2] and [3], by a Drinfel’d algebra (or a quasi-bialgebra in the terminology of [5])
we mean an object of the form A = (V,u, A, ®), where V is a k-linear space, p : VQV = V
(the product) and A : V — V @ V (the coproduct) are linear maps and ® € V® V ® V is an
invertible (in the natural product structure induced on V ® V ® V by u) element. Moreover, p
is supposed to satisfy the associativity condition (7), 4 and A should satisfy the compatibility
condition (9) and we also assume that the product p has an unit 1 € V and that A(1) =1Q®1.
The coassociativity condition on A is in the Drinfel’d case replaced by

(17) (1®A)A-&=0.(AR1)A
and, moreover, the validity of the following “pentagon” condition is supposed:
(18) (1’0 A)(®)- (AR1*(®)=(109) - (1QAR1L)(D)-(2®1).

In both equations above - denotes the multiplication induced by u. Notice that our definition
of a Drinfel’d algebra is the same as the definition of a quasi-Hopf algebra given in [2] and [3],
except that we do not require the existence of an antipode. Notice also that an (associative and
coassociative) bialgebra A = (V, 4, A) can be in a canonical way considered as a Drinfel’d algebra
-put & =1.

A suitable cohomology theory which captures deformations of (associative and coassociative)
bialgebras in the category of Drinfel’d algebras is already known - see (8], [11], [5] or [13].

As the first step toward a cohomology theory capturing deformations of a general Drinfel’d
algebra, we describe a cohomology theory related to Drinfel’d deformations of A = (V,u, A, ®)
(no additional restrictions on ® or A) leaving A and p fixed. The program is then completed
in [9].

It can be expected that, as in [2], the cobar construction over the coalgebra (V,A) will
play the central réle in our computation. The standard definitions still make sense even for
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noncoassociative A, but the condition d?, = 0 may be violated. We aim to give a suitable
generalization of the cobar construction for coalgebras for which the coassociativity is replaced by -
the pentagon condition (18). The construction is rather sophisticated and involves the following
objects.

Let F* = @,,, F" be the free unitary nonassociative algebra on the vector space V' and
let * denote the product in F*. As a vector space, F" is isomorphic with the direct sum of
copies of V®" indexed by various bracketings of n indeterminates, F° = k, F! = V, F? = V8?2,

3 _ 83 ®3 4 _ /94 ®4 ®4 Q4 ®4
=V, @ ‘/(oo)o’ Fi= ‘/o(o('o)) ©® V((oo)n)o & ‘/(oo)(oo) ® ‘/o((oo)o) & ‘/(o(oo))o"“ .

o(o0)

Notice first that F* admits a natural left action of the algebra (V,p), (a,f) — ae f € F*,
given by the following two rules:

1. fOIf€F1=Vya.f=/“(a$f)’

2. ae(f*g) = Y (A'(a) o f) % (A"(a) ® g) where we use the standard notation A(a) =
3 A'(a) ® A"(a). :

The right action (f,b) — f e b is defined by similar rules.

It is easy to verify that these operations define on F* the structure of a (V, #)-bimodule, i.e.
that ae (be f) =(a-b)e f,ae(feb)=(ae f)eband (fea)eb= fe(a-b)fora,be V and
f€F.

Having in mind future applications, we give a more explicit description of the e-action. To
this end, let B, denotes, for n > 1, the set of all bracketings of n nonassociative indeterminates
(the disjoint union [] B, with the evident multiplication is exactly the free magma [10, 1.4.§1]
on one element). For b € B, and 1 < ¢ < n, let by € Bnyy denote the bracketing obtained from
b by the replacement e — (ee) at the i-th place. Notice that any bracketing can be obtained
from the “trivial bracketing” () € B; by a successive application of this operation (for example,
(e0)e = ((®))ua)s *(*®) = ((®)1)))2)s--)- The following two conditions clearly define, for any
b€ B,, amap A} : V - yon,

1. A} =1 and
2. At} = (11 A @ 1"¥)(Al}) for be B, and 1 < i < n.

We have the following lemma.
Lemma 3.1 Fora €V and f € V,, b € B,, we have
aef=2a0a)-f,

where - denotes the usual multiplication induced by u. A similar formula holds also for the right
e-action.

Proof. The proof is based on the formula

A (A“) ® A{“) A, beB;, ¥ eB;,
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(where the “multiplication” bb’ € B;4; has an obvious meaning) which immediately follows from
an easy inductive argument. The rest is a consequence of the very definition of the opera-

tion e. |

Let ~ be the relation, x-multiplicatively generated on F* by expressions of the form
(19) De(ax(ynz)) = (cxy)x2)e®, z,4,2€ F",

where ® o (z % (y * z)) means, expanding ® as (¥, ® P, ® D3), simply > (P, 0 z) % ((Pz0y)
(®3 ® z)), the meaning of the right-hand expression being similar. Finally, let M* be the graded
k-module F*/ ~.

Proposition 3.2

1. The left and right actions e of (V,p) on F* induce on M* the structure (denoted again by
o) of a graded (V, p)-bimodule.

2. The (nonassociative) multiplication x on F* induces on M* a (nonassociative) multiplica-
tion © satisfying :
(20) 2epo(g0r)=[lPoOg)Or]e?,
where again @ o [p® (¢ O )] abbreviates Y (@1 0p) O (P2 0 q) © (P30 1)) and similarly for
the second expression.

Proof a). We shall show that the left e-action is compatible with (19), i.e that
(21) ae[Pe(zx(y*xz2))]=ae[((zxy)xz)ed].

We have, by definition, ae[®e(zx(y*z))] = 3 ae[(D10z)x((Ds0y)*(P302))] = Y (A'(a)e(P; @ z))x
(A"(a) o ((220y)*(2302))) = 3 (A'(a) o (@1 02))x((A'A"(a) o (D2 0y)) % (A"A"(a) o (D302))) =
2((A'(a)-@1)e2)x(((A'A"(a)- ;) 0y)* ((A"A"(a)- B3) 02))) = (1@ A)A(a)- D] e (z(y*2)) =
[@-(AQ1L)A(a)] e (z*(y*z)) =P e [(A'A(a) e z)* ((A"A'(a) e y) x (A"(a) ® 2))] so, summing
up, )

(22) ae[®e(zx(yxz))]=De[(A'A(a) e z)x((A"A'(a) @ y) x (A"(a) » 2))].

On the other hand, a e [((z*xy)x2) e ®] = [a @ ((x *x y) * z)]  ® and from the definition of the
e-action we get

(23)  ael((zxy)*z)e ] = [(A'A'(a) s 2) % (A"A'(a) o y)) % (A"(a) 0 )] o @

and (21) is an easy consequence of (22), (23) and (19). The argument for the right action is
similar.

Proof b). The fact that © is well defined follows from the very definition of ~. The relation (20)
is then simply the projection of (19). n
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Proposition 3.3 There erists a unique isomorphism J : M* — V& satisfying the following
condition:

Let z € M™ and let v € V(?_ff(")_._.).). and w € V.?."(,,,.(")_")) be two representatives of x. Then
(24) J(z)=A-v=w-B for some invertible A,B € V®".

Here - denotes, as usual, the multiplication induced by p.

Proof. Recall that we denoted by B, the set of all bracketings of n nonassociative variables.
The existence of an isomorphism M* = V&* follows from the following conditions:

25 if b,b' € B, and v € V;®* then v ~ v for some v’ € V,g",
b b

(26) ' if v,v' € V® then v~ ifanonlyifv="v"

The condition (25) is an easy consequence of the definition of ~. The condition (26) is trivial for
n < 3. For n = 4, it is a consequence (in fact, it is equivalent) to the pentagon condition (18) (a
nice exercise). For n > 4, it follows from the celebrated Mac Lane coherence theorem [7] which,
loosely speaking, says that “there are no unexpected relations provided the pentagonal condition
is satisfied”. ’

We show that there exists a unique J satisfying (24). By (25) and (26), J|umn is uniquely deter-
mined by a choice of an isomorphism ";?."(....(..).,.)) = V®" 5o suppose directly that J(z) = A-v
for some invertible element A of V®" and for z and v as in (24). If w is a representative of
z in V(?ff(“)_._.).). then clearly v = X - w - Y for some invertible X,Y € yer and, of course,
J(z)=A-X-w-Y. We see now that (24) is fulfilled with A= X! and B=Y. ]

We state without proof (as we will not need it) the following lemma.

Lemma 3.4 If J is the map from Proposition 3.3, b € B, and v € V®" is a representative of
some x € M™, then J(z) = K -v- L, where K and L are invertible elements of VO™ created from

® by applications of A and tensoring by the identity (no inverses involved).

Example 3.5 We would like to write down explicit formulas for J : M™ — V®" for small n. To
this end, it is good to have in mind the following picture (which also illustrates the omnipresence
of the associahedra K., introduced in [12]).

Forn > 2 and 0 < i < n—2, let B,; be the set of all (meaningful) insertions of ¢ pairs
of brackets between n nonassociative indeterminates. Clearly Bnn—2 = Bn, the set of all (full)
bracketings introduced above. Denote also, for n > 3, &, = B, .—3 and for n = 2 put & = 0. Let
L, be, for n > 2, the graph whose vertices are in one-to-one correspondence with the elements of
B, and whose edges are indexed by the elements of £,. The incidence relations in L, are defined
by the rule that b € B, is an endpoint of e € &, if and only if b can be obtained from e by
inserting one more pair of brackets. It is clear from this description that L., is the 1-skeleton of
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the associahedron K, (see [12] or [1, 1.2] for the definition of K,). Another way to describe the
edges of L, is the following:
Let n,, rlz, nz and k be positive natural numbers, £ < n and ny+n2+n3+k =
- n+1. Let b€ By and b; € By, 1 =1,2,3. Let b be the bracketing obtained
(27) from b by the replacement @ — (b1b;)bs at the j-th place and let b € B,

be obtained from b by the replacement e — b;(byb3) at the same j-th place,
1 < j < k. Then the vertices b’ and b” are endpoints of an edge of L,,.

1t is easily seen that the relation b’ < 5" induces on L,, the structure of an oriented graph.

By definition, the components of the space F™ are in one-to-one correspondence with the
vertices of L, while the edges of L, correspond to the defining relations of M™. More precisely,
let ¥’ and b" be as in (27) and let e € &, denote the edge of L, corresponding to the pair (¥, b").
Then we identify v € V2" with Cq, (v) € V2", where Cq, : v — (2.)-v+ ()" is the conjugation
by Q. = 1971 @ Alh}(@,) @ A2} (9,) @ Alls}(®3) @ 17, Here & = 3 &; ® &, ® 3 and we use
the description of the e-action given in Lemma 3.1.

The computation of the map J is based on the following scheme. Let v € V(?_'f(“)_._.).). be a
representative for ¢ € M™, let b € B, and let w € Vb®" be another representative of z. Choose
a path, say e = eje;- - - ey, joining ((---(ee):---e)e)e with bin L,. Then w = 9, - v- Q]! with
Qe =, ey o7 Q., and we moreover know that.J(z) = A-v = X -w-Y for some invertible

em—1

elements A, X,Y € V®" (see Proposition 3.1 and its proof). From this we obtain easily
(28) X1.A=Q.=Y.

In the special case when b = e(e(e---(e0)--+)), Proposition 3.1 says that X = 1", therefore
(29) A = Qy for a path f joining ((---(ee):--e)e)e and e(e(e---(ee)---)) in L,.

Plugging this value back into (28) enables us to carry out the computation for an arbitrary
be B,.

We give the explicit formulas for J : M® — V& n < 5. To simplify the notation, we index
the edges of L,’s directly by the corresponding elements 2, € V®". For b € B,, v, € V;2" will
denote a representative of z € M™.

J is the identity (trivial).
L3 is the arrow

(e0)e ) o(o0)

and
J(I) = Ve(oa) - & = D - t(ea)e

L4 is the pentagon
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(s#)(o%)

W@)
1

(Ae1%)(9)

((o0)e)e ®  o(e(e0))

[ 2:3 =1 3
(10AR1)(?)
— =

(o(e0))e o((e0)e)

We obtain the fqllowing description of J:
J(z) = (17 @ A)(®) " Vjoaen) - (A ®1%)(®) = (17 ® A)(2) - (A B 1°)(D) - vi((as)e)e)
= Voge(on)) (12 @ A)(2) - (A®1%)(®) = (1® D) Vs(oa)e)) (LR A®L)(D) - (2®1)
(192) (1®ARL)(®) - vegeee - (2®1).

We use the following projection of Ls (borrowed from [2], for another projection of this
graph see Diagram 38):

113

(o((e0)0))e (18(4@1)AR1)(?) o(((s0)e)e)
(18481)(¢)®1 19(a®1%)(2)
((s(s0))0)e ((104)AR1%)(®) (s(s0))(e0) o((o0)(e0))
A?)(@
(184%)(2) 18(1204)(®)
((e0)e)(o0) *@12
@12
(A®14)(P) ® o(s(s(e9)))
19¢®1 T ((AR1)(A)®1%)(®) (120(1®A)A)(®) 18%®1
(((e0)0)e)e ¢
129
(84@12)(9)81 res (e)(e(e)
(a?@1)(9)
((s0)(00))e (")(f")°) (120(184)A)(2) o(s((v0)e))
(1204)(¢)®1 19(10AQ1)(¢)
(o(e(00)))e (18(184)A81)(2) o((e(e0))e)

The formulas for J are already rather complicated, but we will need them for the description of
the relevant part of the differential in our cohomology. The computation is still straightforward.

We have

J(2)=(1’®(1®A4)A)(?)-(A®1®A)(?)- ((A®L)A®L?)(D)-v(((ss)ejo)e
=(a(oen)- (12B(18A)A)(8)- (AR 1R A)()-(AR1)AR1?)(S)
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=(18(1% ® A)(2))-(10ABA)(?)-(1B®A)A®L?)(R)-v((s(se)e)e (B®1?)
=(12® ) V(s(en)e))' (1’ ®(ART)A)(2)- (AR A®1)(D)-((A®1?)(2)®1)
=(18(1’®A)(®)) va((ea)(ee)) (1OARA)(2)- (18 A)A®1?)(D) (2®1%)
=(12Q9)-(1’Q(AR1L)A)(?)-(ARARL)(D) - v((sa)(eee- (AR 1%)(D)®1)

- =(1’02) (10(1@AR®L)(®)) ve((o(se))s) (1O(LRA)ABL)(D)-

((1?®A4)(2)®1)-((A®1%)(2)®1)
=(19(1’°QA)(®))-(18(A®1?%)(®))-(18(AR®L)ARL)(®)-

“Vie(ea))e (1QAR1L)(2)®1)-(2®1%)
=(I?Q(1®A)A)(2) Uee)(o(en) (ABLRA)(2)-(A®1)A®1?)(2)
=(120(18A))(2)- (AQLBA)(2)-v((es)e)es)' (ART)ARL2)(S)
=(18(1?°0A)(2))- (18 (AR 1?)(®)) ve(((s0)0))(1®(ART)AR1)(®)-

(19AR1L)(P)R1)-(2®1?)
=(1’09)-(10(10AR1L)(?))- (1@ (1QA)A®L)(B) - V(s(s(se)))e

((1?®4)(2)®1)-(A®1%)(2)®1)
=(18(1?°0A)(2))-(1ABA)(2) Vi) ) (18A)ART?)(2)-(281%)
=(1?02)- (1?Q(A®1)A)(2)  Vjee)((e0)s) (AR ABT)(2)- (A®1%)(2) ®1).

The last thing we need before giving the definition of our variant of the cobar construction is
the following notation.

Let x € M™ and let v € V;2" be, for some bracketing b € B,, a representative of z. For
1 < i < n, let di(z) be defined to be an element of M™*! whose representative in V,,ﬁ]"“ is
(1-! ® A ® 1"™)(v); here by € Bny1 is the bracketing obtained from b by- the replacement
¢ & (o0) at the i-th place. The following statement is an easy exercise.

Lemma 3.6 The map d; : M™ — M™*! is well defined, i.e. it does not depend on the particular
choice of the bracketing b € B, and the representative v € V,E".

Now, define an : M™ — M™! by
dga(2) = do(z) = di(2) + -+ - + (=1)"dn(2) + (=1)" dn4a(2),
where dy,...,d, are defined above, do(z) :=1 Oz and dpy1 =2 O 1.
Lemma 3.7 Forz € M",

d:n(z) =[10(10z) - (101)0z] + (-1)*[(102)01 — 160(z01)] + [rO(101) — (z6O1)O1].

Proof will be based on the following formulas

(30) dedi = digpd, 1<E<I<n+1,
(31) dodl = dl+1do, 1 S I S n,
(32) didnyr = dppodi, 1<k<n
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\

Notice that (30)-(32) plus the equations d2 = dydo, dny2do = dodn41 and d2 +1 = dny2dnyy would -
give the usual conditions on coboundary operators in a cosimplicial module.

We discuss (30) first. Let £ € M™ and choose a representative v € V2" of z. Then dj(z)
is, by definition, the class of (1! ® A ® 1"~!)(v) in Vbﬁ]"“ (by) € Bny is defined above), while
didi(z) is the class of

(33) @A™ A @A @I )(v) i VEnel.

Similarly, di41dk(z) is the class of

(34) 1'eA®1" )1 '®AR®1™*)(v) in Vo

For 1 > k we easily get from the equations above that

didi(z) is the class of (1* '@ AQ1'"*" 1 @ A® 1" )(v) in V(?}";)*[":

and that

di41di(z) is the class of (I* '@ A@ 11 ® A® 1" ')(v) in V(f}:];f“l.

Observing that (bm)[_k] =(b))u+1) We see that in this case really did; = dH.ldk_. :

Suppose k = I and prove that didi(z) = diy1di(z). By (33) we have that

didi(z) is the class of (1*! ® (A ® 1)A ® 1" *)(v) in V(?}:'];'[i]

while (34) gives that

d41di(z) is the class of (1¥! @ (1 ® A)A ® 1**)(v) in V&’(:ﬁ'{im.

Recall that, by (17), ®-(AQ1)A = (1QA)A-®. An easy consequence of the defining relation (19)
is that an element u € Wﬁ:}}i] is identified with (1*!@®®1"*)-u-(1*-'@®®1"*)-1 ¢ V(?}:l-;l:u]
from which we get that didx(z) = dx41di(z). Thus (30) is proven.

Prove (31). Let again v € V;®" be a representative for some z € M". Then dodi(z) is’
the class of 1 ® (1" ® A ® 1"")(v) in K?,,':;')’ (the meaning of the notation e(k) for » € B,
being clear) and dj4+1do(z) is the class of (I' @ A ® 1"!)(1 ® v) in V(?(',‘,B:H]. Because clearly
1® (]ll'l RAR® 1"'_‘)('0) = (]ll RAR® 1“-’)(1 ®v) and O(b[q) = (‘(b))[l+1]: dod; = di41d, and we

have (31). The proof of (32) is similar.

Using (30)-(32), we can easily reduce the equation

o= Y (-4 Y (14 .

0<j<n+2 0<i<n+1
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to
d2q = (d} — dido) + (—1)"(dns2do — dodns1) + (diyy — dny2data),

which is exactly the formula in our lemma. |

The following lemma shows that the differential dyq is compatible with the e-action of (V, u)
on M*,

Lemma 3.8 For any a,b €V and z € M*,

dya(a e z) = aedy(z) and dya(z e b) = dya(z) e b.

Proof. To prove the compatibility with the left e-action, it is enough to show that

(35) di(aez)=aedi(z)forallaeV,z€ M*and1<i< n.

Let b € B, and let v € V,®" be a representative for z. Then, by Lemma 3.1 and the definition

of di, (1! ® A ® 1"*)(A{*}(a) - v) is a representative of d;(a ® z) in be]"'“. But

(171 0 Ae1™)AB(E)) = (17 A8 1) (AYE)- (17 8 A0 1))
Ala}a)- (171 @ A @ 1"7)(v),

which is, again by Lemma 3.1 and the definition of d;, a representative of a'e d;(z). We thus have
proved (35). The argument for the right e-action is similar. n

Lemma 3.7 shows that (M*,d4q) is not, generally speaking, a complex, i.e. that d%; # 0
(see also the explicit examples below). However, the next statement says that M* contains a
(nontrivial) subspace Mj C M* such that d2g is zero on Mj.

Proposition 3.9 Define the subspace M} C M* by M} = {z € M";aez—zea=0 foralla €
V}, where o is the action of B = (V,u) on M* (I for “invariant”). Then dya(M}) C M} and
d2q =0 on Mj, in other words, (M}, dqq) is a cochain complex.

Proof. The inclusion dyo(M}) C M} immediately follows from Lemma 3.8. Let us prove that
10(10z)=(101)©O« for any z € M}. By Proposition 3.2 we have

(36) 2e[10(102)=[101)0z]e?.

On the other hand, if @ = > ¢, ® P, @ P35 then 2o [10(10z)] =Y ¢, 0 (P20 P3012) =
T8, 0(0:0z0®;)=[10(10z) e, because &3 o z = z @ &3 from the invariance. Com-
bining it with (36), we obtain that 1 ® (1®z) = (1 ® 1) © z. Similarly, we can show that
10(x01)=(10z)01and 10 (10 x) = (1O 1) Oz, for an arbitrary invariant z. In the light



DEFORMATION THEORY VIA DEVIATIONS ' 117

of Lemma 3.7, this gives our proposition. : |

Explicit formulas| Proposition 3.3 enables us to identify M™ and V®" in a canonical way. This

canonical identification offers the possibility of expressing dyq directly in terms of V®* (i.e. to
compute JdsqJ~!). We give explicit formulas for this presentation of dyq at least in degrees
important for the deformation theory.

eForveV,
dga(v)=1®v—-A(W)+v®1,

i.e. dgq coincides with the usual cobar differential.
e For v € V®?,
dga(v)=(1Qv) -2 - (AR1L)(v)+(1QA)(v)- 2—®-(v®1).
o For v € V&3,
dga(v) = (18v)-(10481)(3)-(381) - (17@4)(2)-(A@1*)(v)
+(199)-(1@A®1)(v)-(281) — (1°@A)(v)-(A®1*)(®)
+(1@®)-(1A®1)(®)-(vel).
o For v € V®,
dga(v) = (18v)-(18(AR1)AR1)(®)-(10AR1)(2)®1) (2®1%)
-1’0 (18A)A)(2)-(A®1%)(v) + (18(1°®A) (D)) (1R A®1%)(v)-(2®1?)
-(1’09)-(1?’0A81)(v)-(A®1%)(2)81) + (1°0A)(v)-(A®1)A®1%)(®)
—-(1’09)-(19(10A®1)(2))-(18(18A)ARL)(D)-(val).
These formulas can be obtained as a combination of the definition of dyq and explicit formulas
for J as given above. We note that in the special case ® = 1, the relation ~ identically identifies
various copies of V&, the map J is the identity and d,q coincides with the usual cobar construc-

tion on (V, A). The following lemma gives a description of M} in terms of V®*; the proof is an
easy exercise.

Lemma 3.10 An element v € V®" is invariant (in other words, J='(v) € M}) if and only if
A" 2@ A)(1"2® A)---(1® A)A(a) - v=v- (AL ?)(A®L"?)---(A ®1)A(a),

for any a € V, where - denotes, as usual, the multiplication induced on VO by u.

We show now how the cohomology of the complex (Mj,dyq) is related to deformations of a

Drinfel’d algebra A = (V, y, A, ®) with p; = p and A, = A.

To this end, suppose that ® = & 4 t®; + --- + t"®,, is a “partial” deformation, i.e. that ®
satisfies (17) and (18) mod t"*!. Notice also that, by Lemma 3.10, (17) means that ®;, when
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considered as an element of V®3, is invariant, 1 < i < n. Look now for some ®,4; € V®3 such
that & := @ + t"H1®,,, satisfies (17) and (18) mod t"*%, which is the same as looking for an
invariant ®n41 € V® such that & above satisfies (18) mod ¢"+2. Plugging & into (18), we see
that this is equivalent to

dga (1) = ¥,

where VU is defined by the following equation:
" = (120 A)(@) - (A® 1)(0)-(199)- (19 A®1)(®)- (P ®1) mod t"+2.
We shall show that dyq(¥) = 0, without assuming ®,4, exists. As usual, first interpret ¥ as

the deviation of some diagram. If we agree to identify elements v of V®* and maps V®* — V&»
given by left multiplication by v, then ¥ is the deviation of

Vtm
(18%)
/ 7
Vt®4 v (x*@a)®)
(37) [(1@A®1)(€) V@
v :

\ (8811
Fo g _

The application of (1 ® *) on (37) gives

_
1289)
/—>
Yo 10 (120 4)(%)
Il@(l@A@l)($) [e]

(=] _
\ 10 (A ®1%)(P)
10%Q®1
(2]

with o = 1@V (the labels [1] - [14] denote different copies of V,®*). The application of (A®13)
on (37) gives

_
(1’e%)
/ v
¥, (A@184)3)
]

I(A@A@l)@) [13

.
\ (a®1)a®1%)(®)
(ae1?)@e1
(12
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with ¥; = (A @ 13)(¥). Applying (1 ® A ® 12) we get

18 (A8 1%)(9) o
/_.
U, (1040 8)(@3)
(2]

](x@(Am)Aen)(&) 2]
5y

\ (x@4a)A01%)(F)
(10ae1)@)01)
B .

with ¥, =(1® A® 1%)(¥). The application of (12 ® A ® 1) on (37) gives

12(10401)%)
/ .
|23 18 (a®1)a)(3)
[z

](1®(l®A)A®l)($) [

[ _
\ (A®AQ1)(%)
1?°4)(@)®1

with ¥3 = (12 ® A ® 1)(¥). The application of (13 ® A) gives

_
19 (1@ A)(y
—
v, (1?9 (194)2)(3)
(e]

I(mA@A)(?S)

%m@m(f)
N
2]

*Q

with ¥, = (13 ® A)(¥) and, finally, tensoring (37) by 1 from the right we get

- [ :
(19%®1)
e -
Yy (12 2)@)®1
@ \ |

I(:@As:)@)m
B .

\ /@ 12)@)e1
@e1?)
(2
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with ¥5 = ¥ ® 1. We can form the following diagram

(38) [ —\J B B
T e/

which is the “associahedron” introduced in [12]. Notice that we already used this object in
Example 3.5. It consists of six pentagonal subdiagrams (whose deviations are discussed above)
and three square diagrams. We claim that these square diagrams are commutative. Look, for

example, at the diagram

1e%®1)

[]

(18(801)A81)(@) (10(1©4)A01)(@)

19%®1)

i

The commutativity of this diagram easily follows from the invariance of ®: if ® = 3-8, ®
D@35, then (190QR1)-(1Q(AR1ARL) (D) = 18,00 (AR 1)A(P;) ® I3 =
TR(IRAAR:) 200 =(1Q(1R®A)AQ1)(P)(1®P ®1). Here we needed the
invariance of @ to have @ - (A ® 1)A(®;) = (1-® A)A(®;) - @. The argument for the remaining

square diagrams is the same.

Notice that (38) is again topologically a 2-sphere. Try to apply the principle saying that in
this case “the oriented sum of all deviations must be zero”. This principle was, in fact, formulated
already in [2], where also the réle of K in the deformation theory of quasi-Hopf algebras was
observed for the first time (however, there is no explicit mention of the deformation theory there).
Applying this principle in our situation, we would get Wo — ¥; + ¥, — U3 + ¥y — U5 =0, i.e.

1V —(A®13)(V)+(1QAR1%)(¥) - (IR AQ1)(¥) +(1°Q A)(¥)—¥®1 =0,

(the usual cobar differential) and this formula is false! The explanation is that in our Proposi-
tion 1.2 not only the bare deviations, but deviations composed with corresponding maps, come
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into play. Notice that in the case discussed in [2] (the case with ¥ = 1) this makes no difference
as all maps in the corresponding diagrams there are 1 mod t.

In order to obtain a correct formula, it is necessary to Begin once again to think in terms
of maps rather than of the deviations alone. First, choose two vertices of (38), a source and a
sink. There are no restrictions on our choice (notice that all maps in (38) are invertible) and
the resulting formula will depend on our choice simply via multiplication by a nonzero element.
However, there is at least a preferred choice: take [12], which corresponds to (((ee)e)e)e, as a
source and [10], corresponding to e(e(e(ee))), as a sink. Consider the following chains of maps

from [12] to [19):

(PR) [12] - [13] — [14] = [19]

(Ps) [12] = [13] —{s] — [¢] —[1g]

(Ps) [z -] =[] =[] =9

(Py) [z =[] -] =[] —[] -9

(Ps) (2 =[] -] -] -G -] —[d
(Ps) f2 =[] -] =[] -] —-[]-[d
(Pr) (2] - [8] »[s] »[3] =[] ~ 9

(Ps) g =[] =[] =[] =9

(Po) [i2] = [8] =[] —[1g = [19]

(Pro) [12] — [13] — [14].- [19]

where P, = Pjo. Their.mutual differences are described by the following diagra,rﬁs (D;,i41 stands
for the difference between P; and Pjyq):

[
_’@/ R‘
N\ /
(oJ— [e]

(Dr2) (2]

[13]
7N\
(D23) (12 B 1
N/
(=]

B

I e u} oM
N /
O— &

(Das) g =[] -[] - E]/ \R‘
N\ /
El—
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(2]
/" \
(Ds,6) 2 -[E]- [ - [ — [
N S

(Do) ] Uy GE~E-0-

(D7) (12 —

(D)  E-E- O o)

(D9,10) @

Now we discuss the contributions of the diagrams D, 3-Dg10 above. The contributions of
D, 3, D56 and Dgg are trivial, because the corresponding square diagrams are commutative.

Try to determine, for example, the contribution of D; 2. By Proposition 1.2 it is given as the
composition of ¥4 and the t%part of [12]— [13], which is ((A ® 1)A ® 12)(®). Therefore, the

contribution of Dy is
Cr:=¥-(A®1)AR1%)(2) = (1@ A)(¥) (A®1)A®1%)(D).
Similarly, the contribution of Dj 4 is
C:=(18(1’0A)(®) ¥:-(201%) = (18(1*®A)(9)- (1A 1%)(¥) - (2@ 1%),
the contribution of Dygis
C: = ¥,-(19(AR1)ARL)(P)-(1AR®IL)(®)®1)- (P ®1?)
= (10¥9)-(1e(A81)AR1)(?) (18AR1)(P)R1)- (281%),
the contribution of Dg7 is (note the minus sign)

Cs: = —(1’00)-(10(10AQ1)(P)- (1®(L®A)ARL)(D)- ¥s
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= —(1’09)-(19(10A31)(2) - (18(1®A)A®1)(?) (¥®1),
the contribution of D74 is
Cs=-(1"®9) ¥ (AQ1*)(2)®1)=-(1’02)- (1’0 A 1)(¥) - (A®1%)(2)®1)
and, finally, the contrikution of Dy ;g is
Co=—(1?Q (18 A)A)(2)- ¥, = —(1’® (1 ® A)A)(D) - (A ® 1°)(¥).
Since P, = Pyo, Ci + C2 + C3+ C4+ Cs + Cs = 0 which is

dga(¥) = 0.

Before formulating the final result of this chapter, we remark the following two things.

First, the computation above enables one to understand the réle of multiplicative factors in
the formula for dyq — they correspond to the “tails” connecting local deviations with the source
and sink. Second, we see that the deviation calculus enables one to derive linear conditions on
the obstruction to the integrability without knowing a priory the cohomology theory into which
everything embeds.

Theorem 3.11 The primary obstruction to the integrability of a partial deformation ® is an
element [¥] € H3(M7*,dy).
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