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DEFORMATIONS AND THE COHERENCE 

Martin Markl 

Introduction 

It is well-known that a good cohomology theory which controls the deformations of 

schemes is the cohomology of the cotangent complex (see [20] or [11]). The aim of this 

paper is to construct a similar object for a category in order to obtain a cohomology 

theory which would control the deformations of objects of this category. The range 

of definition of our construction will be wide enough to cover both classical and new 

examples, see 0.2 and 1.2. 

0.1 Motivations In the majority of classical examples, the experience always.pro­

vides one with a natural candidate for the cohomology controlling the deformations. 

For example, one knows that associative algebras are somehow related with the 

Hochschild cohomology (or Shukla or Mac Lane cohomology, but these are all the 

same if we assume we work over a field of characteristic zero), and it is really true 

that this cohomology captures the deformations of associative algebras (see [8]). In 

the worst case, the deformation cohomology can be constructed as a suitable combi­

nation and modification of classical constructions (again based on the experience), see 

for example the case of bialgebras discussed in [10]. But the recent development of 

quantum group theory confronts one with a lot of natural examples (such as Drinfel'd 

algebras) where this approach fails. We think the failure is substantial as the con­

structions related with the deformation cohomology are sometimes very complicated, 

see for example [25] or [28]. 

So, the first natural question was whether there exists a construction which, when 

blindly applied to an algebraic object, would provide us with a deformation cohomology 

for this object. This question was iimnediately followed with the observation that we 

should first understand what we mean by 'cohomology which controls the deformation'. 
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There already have been some attempts to construct such a 'good deformation co-

homology'. We should quote at least the classical paper of Gerstenhaber [8] and also 

the papers [6], [5] of Fox based on the (co)triple approach. The common drawback is 

the limited range of applications and also very limited possibilities of explicit calcula­

tions. Notice that the 'good deformation cohomology' for associative algebras in the 

sense of Gerstenhaber is isomorphic to the Hochschild cohomology by [8, Theorem 6], 

while the approach of Fox gives the cotriple cohomology which is again isomorphic, 

this time by [1], to the same Hochschild cohomology. In both cases the existence of 

such an isomorphism is a nontrivial fact. 

0.2 Here we explain briefly to which kind of objects our construction applies. By 

an algebra we mean a (in most cases) finite dimensional vector space, say V, together 

with a set of multilinear operations, say {m t } t e / , mt : V®ai —> V®6*, which have to 

satisfy some axioms which are created from {m t} by the composition, tensor product, 

linear combination and the 'switch' S : V®2 —> V®2, S(x(g)y) = y®x. Notice that we 

use the word 'algebra' in a very liberal way, for example, a coalgebra is also an algebra 

in our sense. The variety of such algebras forms then an (algebraic) theory, say A; the 

formal definition is given in 1.2. 

Our definition differs from the classical definition of an algebraic theory of Law-

vere [19], it is, in a sense, more general. It covers all natural examples of algebras (as­

sociative, commutative, Lie, . . .), _4m-algebras, coalgebras, bialgebras, and even such 

exotic objects as Drinfel'd algebras. But this generality has one unpleasant conse­

quence: the forgetful functor (V, {m t}) —> V need not have a left adjoint (example: 

coalgebras). Notice also that there are natural examples where the set of operations, 

as well as the set of axioms, is infinite (example: Aoo-algebras). 

0.3 The basic idea of the construction is the following. Having an algebra A (in the 

sense of 0.2), we can consider A as a point of some variety M of structure constants. A 

deformation of A can be then interpreted as a deformation of the point A in M. Such 

deformations are then related, by [20], with the cotangent cohomology T*(k[JVf]/k,k) 

of the affine coordinate ring k[JVf] of M. The problem is that, if M is 'too special', 

this object need not be isomorphic with the 'good deformation cohomology', for ex­

ample, if _4 = (V,/x), fi : V®2 —> V, is an associative algebra and M the variety of 

associative multiplications on V, then T*(k[JVf]/k,k) is not, in general, isomorphic to 

the Hochschild cohomology (we are indebted for this observation to M. Schlessinger). 

So, the idea is, very roughly speaking, to replace \a[M\ by something like the affine 



DEFORMATIONS AND THE COHERENCE 123 

coordinate ring of the 'universal' variety of structure constants for algebras of the 

theory A, the role of this object being played by a certain strict symmetric monoidal 

category, see 1.2. This, of course, in turn implies the necessity to define the notion 

of the cotangent complex of a category. The possibility of such a definition was made 

possible by the recent development of the theory of monoidal categories, see [14], [15] 

or [30]. Here we point out also the definition of a module over a strict monoidal 

category, given in 1.17. It was only after we realized what the notion of a module is 

(though the definition is very natural, modules are, as usual, abelian group objects in 

a suitable over-category), when the full development of the theory was possible. 

0.4 As for practical computation, it may be already clear from the hints of 0.3 that 

the main problem is related with the description of 'relations among axioms'. One 

way to detect these relations is the 'deviation calculus' described (and also applied 

to some explicit calculations) in [25]. Another way to visualize these relations is the 

'naive' abstract tensor calculus in the sense of [17], this approach will be used in the 

present paper. 

The next problem is, having already found some relations, to prove that they 

generate all relations. This problem is related with a general coherence problem for a 

category as it is presented in [18]. For example, we prove in §4 that, as a nontrivial 

consequence of some arguments used in the proof of the celebrated Mac Lane-Stasheff 

coherence theorem [21], [29], the 'good deformation theory' for associative algebras is 

isomorphic with the Hochschild cohomology. See also the discussion in 4.5. 

All the computations and considerations of the present paper seems to be a shade 

of something like 'a homological algebra of the monoidal category', except that, as far 

as we know, there is nothing like that in the literature; what is usually meant by the 

cohomology of a category or of a theory in the sense of, for example, [26] or [13], seems 

to have nothing to do with our calculations. 

Plan of the paper: 

1. Theories and Modules 

2. Resolutions and the Cohomology 

3. Deformations and the Cohomology 

4. Resolutions and the Coherence (with some open questions) 

1. Theories and Modules 

In this paragraph we introduce the basic technical tools of our theory. We always 
work over a field k of characteristic zero, though we believe that a good deal of the-
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theory makes sense over a field of an arbitrary characteristic. For two maps / and g 

let fg or f(g) denote the usual (i.e. used by human beings) composition g followed by 

/ . We shall sometimes use also the covariant notation g o / for the same composition, 

so one must take into account the switch g o / = fg = /(</). 

1.1 For the convenience of the reader we recall here some more or less classical 

notions. A strict monoidal category is a triple C = (C, <8>,I), where C is a category, 

< 8 > : C x C — > C i s a functor and 7 G C is an object such that 

(A <8> B) <8> C = A <8> (B <8> C) for all _4, £ , C G C (associativity), and 

A <8> / = A and I ® A = A for all A G C (I is the two-sided identity). 

Recall that a strict monoidal category is a special case of a monoidal category (see [22, 

VILI] or [21] for the definition), but we will not need this more complex notion here. 

As usual, the associativity enables us to write multiple products, such as A <8> B <8> C, 

without parentheses. 

Let C be a strict monoidal category as above. By a symmetry on C we mean a 

functorial map S = SA,B :A®B-+B®A given for any two objects .4, B G C, such 

that the diagrams (1 denotes the identity) 

A tśл R 

l SA,B®C 

-4<8>ß<8>C *--8<8>C<8>-4 
Ч jf 

Л09 O 
4 

•*• Л Qs> O 
4f 

SA,B®C 

-4<8>ß<8>C *--8<8>C<8>-4 
Ч jf 

SAЛB \ / SSBJL ™d sл,в®l\ч /ЛЪSлjD 

B<8>-4 B®A®C 

commute. The functoriality of S means that for any two maps / : A —i• A' and 

g : B —> B' the following diagram 

f®9 
A®B *A'®B' 

SA,B SA',B' 

g®f " • 
B <8> A *B' <8> A' 

commutes. Notice that a symmetry on a monoidal category is a special case of a 

braiding, see [14]. By a functor F : C —• V between two strict symmetric monoidal 

categories we always mean a strict symmetric monoidal functor, i.e. a functor which 

respects the strict symmetric monoidal structures on C and D, respectively. 
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A typical example of a strict symmetric monoidal category is the category Vect 

of k-vector spaces. The operation (g) is the usual tensor product over k, the identity 

object I is k itself and the symmetry Suy - U ® V —> V ® U takes u®v onto v ® u. 

1.2 By a theory we mean a strict symmetric monoidal category, say A, such that 

- the objects are indexed by (or identified with) the set N of natural numbers, 

- m ® n = m + n, for any m, n G N = Ob(A) (hence I = 0), and 

- each hom-set A(m, n) carries a structure of a k-vector space and all the operations 

of the category A (the composition o, (g) and S) are compatible with this structure. 

Theories in the sense of the above definition and their (strict symmetric monoidal) 

functors form a category which we denote by Theories. 

By an f\-algebra we mean a (strict symmetric monoidal) functor A : A —i• Vect . 

It is clear that the value .4(1) can be interpreted as the underlying vector space of the 

algebra A. The category of A-algebras will be denoted by A-algebras. Notice that 

there is a resemblance of our definition and the classical definition of Lawvere [19], 

compare also the comments in 0.2. 

1.3 Let Sets denote the category of sets and consider a map X : N ® N —• Sets , X = 

{X(m,n)}m i n>o, we will call such a map a core. Denote by Cotes the corresponding 

category. Using the terminology of [22, II.6] we can define Cotes simply as the category 

(N x N I Sets) of objects under (N x N) G Sets. We have the 'forgetful' functor 

n : Theories —> Cotes defined simply by ignoring the k-vector space structure on the 

sets A(m,7i). Using the same kind of arguments as, for example, in [22, II.7] or [30], 

we can easily show that this functor has a left adjoint T : Cotes -* Theories; it is 

natural to call the object F(X) the free theory on the core X. Let us give a few of 

examples to illustrate this notion. 

1.4 Example : S y m and ^*(0). Let Sm be, for m > 0, the symmetric group on m 

elements and put, by definition, So = { !} . Let us define 

Sym(m,n) = | / ^ 
otherwise. 

It is immediately to see that the usual composition of permutations, linearly ex­

tended over the group ring k[5m] , defines a category with N as the set of object-

s and Sym(m,n) as the hom-sets. We denote this category by Sym. To define 

a symmetric monoidal structure on Sym, we put, for two permutations a G 57n, 
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a : { l , . . . , m } -> { l , . . . , m } and v £ 5 n , u\ { l , . . . , n } -> { l , . . . , n } , 

( to }( \ — / ff(*)' * - * — m ' a n c^ 
* '* ' ~~ | m +- i/(i" — m) for m < i < n +- m. 

Finally, we define the 'switch' 5m,n :m-j-n—>n+-mby 

c / . x J r c + - i f o r l < i < m and 
bmAi) - j j _ m for m < i < m + - n 

It is an easy exercise to prove that the operations defined above (or, more precisely, 
their linear extensions) equip Sym with the structure of a theory (denoted again by 
Sym). 

Let 0 denote the empty core (= the sets X(m, n) are empty for all m,n > 0). Then 

it is more or less clear that Sym is the free theory on the empty core 0, Sym = J7 (9), 

compare the arguments in [14]. 

For an arbitrary core X, there is a natural map 0 —* X which implies the existence 

of an embedding Sym = ^"(0) •-• F(X). The existence of such an embedding enables 

us to consider elements of \&{Sm] in a natural way as elements of F(X)(m,m) for any 

natural m. There is a very easy explicit description of this embedding: let &{ be the 

generator of Sm interchanging i-th and (i +- l)-th elements. Then tr,- is mapped onto 

r'-1<8>sVi®1-n~,'~1-

1.5 In what follows we will use the 'naive' abstract tensor calculus [17, 1.8]. For 
example, the symbol 

/ \ 

will denote a map having two 'imputs' and one 'output', i.e. an element of A(2,1) of 

some theory A. Also the composition will be denoted in a natural way, for instance 

£}mems (A) (A I) - (A) (A ®•) • 
1.6 The following notation will be useful in the sequel. Having an index set J and 

a couple (sj,tj) of natural numbers, given for any j G J , then any sequence { ^ . t , } 

determines a core X with X(m,n) = {&>,*/! Sj = m and tj = n } . For example, the 

one-element sequence { £ n } determines a core with X(l,l) = { £ n } and X(7n,n) = 0 

otherwise. 
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1.7 Example: .F(£ii). We claim that -F(fn)(m,ra) = 0 for m ^ n (this is trivial) 

and that every element of .F(fii)(ra,m) can be written as a k-linear combination of 

elements of the form (£[\ (g) • • • ® £ n )<r, where / i , . . . , lm are natural numbers, a E 5 m , 

and f̂  denotes the composition £n o • • • o £ n (/-times). 

The proof is an easy exercise; it is based on the functoriality property of the switch 

S (see 1.1) which implies that the relation 

and ( y ^ = the switch J 

is satisfied, for i G A(l, 1), in each theory A. 

1.8 Example: ^"(foi)- Let Bn denote, for n > 1, the set of all (full) bracketings of n 

nonassociative indeterminates. The fact that JJ Bn with the evident multiplication is 

the free monoid on one element [27, 1.4] implies that the elements of Bn can be used 

to encode n-fold compositions of £21 • For example, (•) denotes the identity, 

(•,•) denotes i> = &i»((•>•)»•) denotes ( / N A 
, and so on, 

see also [2, Chapt. I] or [29] or 4.3 of this paper. This makes possible to identify the 

elements of Bn with corresponding maps in "̂(̂ 21 )(n, -)• 

Again as a consequence of the functoriality of 5, which implies that 

we get that, for any m > n, every element of f '(£21)(m,n) decomposes as a k-linear 

combination of elements of the form 

(0.1 (3 - - - ® an)<т, (j Є Sm, OLІ Є Bц, U > 1 and J^ U = m> 
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for ??i < n is the set .̂ (£21 )(»?-•-rc)> of course, empty. 

The dual case of ^(£12) can be handled analogically just by 'turning all the argu­

ments upside down'. This is a way in which the duality works in our theory, see also 

the comments in 3.14. 

1.9 In all the examples above we showed that an arbitrary map can be written as a 
k-linear combination of elements either of the form </><J or <r</> (the former one in the 
case of ^"(̂ 12)), where a G Sm for some m > 1 and the map <j> 'does not contain' the 
switch. This is, however, not always true. As an example take the element 

( with A = f21 and \ r = f12 ) 

of ^(621 > £12)- This element will play an important role in the theory of bialgebras, 
see 1.15. 

1.10 The examples of algebras related with free theories are very plain. An ^(£11)-

algebra is nothing but a couple (V,d) of a vector space V and an endomorphism d, an 

^(^2i)-theory is a couple (V,fi) where \L : V®2 —> V is a bilinear map, an ^"(̂ 03)-theory 

is a couple (V, 4>) where $ is an element of V®3, etc. 

1.11 Let A be a theory and J an index set. Suppose we are given a sequence rj G 

A(mj,?ij). Then it is easy to see that there exist a theory f\/(rj\j G J) together with 

a map 7r : A —> l\/(rj\j G J) having the property that, for any theory B and for 

any map / : A —* B such that f(rj) = 0 in B(mj,n;), j € J, there exists a unique 

tj) : f\/(rj\j G J) —> B such that the diagram 

/ 
A B 

A/to;* € J) 

commutes. 

1.12 Example: Complexes. Let A = -F({n)/(ri), where 
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r\ = 

Then an A-algebra is a couple (V, d) of a vector space V and an endomorphism d : 

V -> V such that d2 = 0. 

1.13 Example: Associative algebras. Consider A = -F(&i)/(ri) with 

. i 

/ \ / \ 

Then an A-algebra is a couple (V, fi) of a vector space and an associative multiplication 

(i:V®2-+ V. 

1.14 Example: Commutative associative algebras. Consider A = ^"(f2i)/(ri,r2) with 

7*i as in 1.13 and 

i 1 
r 2 = / \ " 

Then an A-algebra is an associative commutative algebra. 

1.15 Example: Bialgebras. Let A = •F(6i»62)/(n,»'2,^3), where ri is the same as 

in 1.13, 

r 2 

4 

/ v 

and 7*з = 
\y \. 

V т 
/ 

Algebras of the theory A are exactly the bialgebras in the sense of, for example, [25], 

n encodes the associativity, r2 encodes the compatibility of the multiplication and the 

comultiplication and 7*3 encodes the coassociativity. 

1.16 Example: Dridfel'd algebras. As the last examle of this kind we discuss briefly 

Drinfel'd algebras. Following [3] and [4], by a DrinfeVd algebra (or a quasi-bialgebra 

in the terminology of [9]) we mean an object of the form A = (V, /z, A, $), where V is 
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a k-linear space, // : V ® V —• V (the product) and A : V —> V ® V (the coproduct) 

are linear maps and $ G V ® V ® V i s a n invertible (in the natural product structure 

induced on V ® V ® V by fi) element. Moreover, /x is supposed to be associative, \i and 

A are supposed to be compatible (see the relation r2 of 1.15) and we also assume that 

the product fi has an unit 1 G V and that A( l ) = 1 ® 1. The usual coassociativity 

condition on A is in the Drinfel'd case replaced by 

(1) (1 ® A)A - $ = $ . (A <g) 1)A 

and, moreover, the validity of the following 'pentagon' condition is supposed: 

(2) ( l 2 ® A) (* ) • (A ® 1 2)($) = (1 ® • ) • (1 ® A ® 1) (*) • ( • ® 1). 

In both equations above • denotes the multiplication induced by fi. 

If we neglect, for simplicity, the role of the unit, the structure of a Drinfel'd algebra 

is encoded by the theory of the form ,F(£i2,fi2,fq3)/(ri,r2,r3,r4), where r\ and r2 are 

as in 1.15. To describe the condition (1) we put 

rз = 

We leave the relation r4, encoding (2), as an exercise to the reader. The pictures 

based on the abstract tensor calculus are in the case of Drinfel'd algebras already too 

baroque. More appropriate way to handle this case is the deviation calculus of [25]. 

1.17 Let A be a theory. Modules over A are, as usual, abelian group objects in the 

over-category Xf)eoties/A, but we prefer to give the following explicit definition. 

By a module over a theory A we mean a core M = { M ( m , n ) } m j n > 0 such that 

each M(m, n) has, for m, n > 0, a structure of a vector space and there are bilinear 

operations 

0 = 0/ : A(m, n) x M(n, fc) —> M(m, fc), 

o = o r : M(m, n) x A(n, k) —> M(m, fc), 

® = ®/ : A(mi,ni) x M(m 2 ,n 2 ) —> M(mi + m 2 , n i + n 2 ) , 

® = ® r : M(mi ,n i ) x A(m 2,n 2) —> M(mi +m2,n i + n2), 

(left composition) 

(right composition) 

.(left tensoring) 

(right tensoring) 
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for all natural m, n, fc, mi, m2, ni and n2. 

These operations must satisfy the following axioms (notice the shorthand, it gives 

us almost for free the proper axioms for modules, compare also [23]): 

fo{goh) = {fog)oh,fe O^m^n), g G D2(n,fc) and he E3(M), 

where (Di,D2,D3) = (A,A,M), (A,M,A) or (M,A,A), m,n,k,l > 0. To elucidate 

the use of this shorthand, take, for example, (Di, D2, D3) = (A, A, M). Then the above 

axiom reads as 

/ o/ {g o/ h) = {fo g) o/ h 

for / G A(m,n), g G A(n, fc) and h G M(fc,Z). Next, we require 

f®{g®h) = {f®g)®h,f€ •i(mi,ni)9 g G D2(m2,n2) and h G D3(m3,n3), 

where (D^a^Da) = (A,A,M), (A,M, A) or (M,A, A) and mi,ni,m2 ,n2 ,m3 ,n3 > 0. 

The last condition is 

(/1 o f2) 0 {gi 0 g2) = (/1 ® gi) o {f2 ® g2), 

for/i G ni(fci,fc2),/2 G O2(fc2,fc3),0i G n3(/i,Z2)and5f2 G D-if-Vs); ( • l lD 2 >D a iD 4 ) = 
(A,A,A,M), (A,A,M,A), (A,M,A,A) or (M,A,A,A), fci,fc2,fc3,/i,/2,/3 > 0. 

1.18 We denote by A-biMod the category of A-modules in the sense of the above 

definition. It is easy to see that A-biMod is an abelian category. The vocabulary from 

the category of (usual) modules over a (usual) algebra translates 'coordinatewise' in 

an obvious way. For example, for M, N G A-biMod, we say that M is a submodule 

of N if M(m, n) C N(m, n) for all m, n > 0. Similarly, for a map / : M —> N 

we let Ker(/) to be the submodule of M defined by Ker(/)(m,n) = Ker(/|M(m,n) : 

M(m, n) —> N(m, n)), m, n > 0, and so on. Finally, having a module M and a system 

-5 = {sj € M(mj,nj); j G J} , we define the submodule generated by S (in M)" to be 

the intersection of all submodules N of M such that Sj G N(mj,nj) for all j G J. 

1.19 Let A be a theory and let M be an A-module. Let Der(A, M) be the set of all 

sequences 0 = {0Wn}m,n>o of linear maps 0mn : A(m,n) —• M(m,n) such that 

0{fog) = / o ,H(( / )T«( / )o r ( / , / eA(m,n) , ( /GA(n^)and 

0{f®9) = f®iO{g) + 0{f)®rg,fef\{mun1)^ndgef\{m2,n2), 

where m,n,fc,mi,m2,ni and n2 are natural numbers. 
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It is obvious that both Der(A,M) (the set of derivations).and HomA(M,N) (the 

set of A-algebra homomorphisms from M to N) has a natural structure of a vector 

space. 

1.20 Example: Free modules and the 'basic field'. Similarly as in the case of theories, 

there exists a 'forgetful' functor • : A-biMod —> Cores. This functor has again a left 

adjoint which we denote by A(—) : Cotes —> A-biMod. We call f\(X) the free A-

module on the core X. 

Next, let ky be, for a given vector space V, the full subcategory of Vect whose 

objects are tensor powers lf0n, n > 0 (i.e, ky is the subcategory of Vect, (^-generated 

by V). It is obvious that ky inherits from Vect the structure of a strict monoidal 

category. It is equally obvious that the image of an A-algebra A : A —> Vect with 

,4(1) = V belongs to ky and that .4 defines on ky the structure of an A-module. As 

we will see later, the category ky plays in our theory the role of the basic field (this 

is why we choose the ambiguous notation ky for it) and that the algebra A can be 

considered as an 'augmentation' of the theory A. 

2. Resolutions and the Cohomology 

The goal of this paragraph is to define an analog of the 'classical' cotangent coho­

mology functor T'(—; —), i = 0,1,2, which was introduced, for example, in [20], see 

also the discussion in 0.3. Most important for our purpose is the first cohomology, 

which is intimately related with deformations (see Proposition 3.10), therefore all the 

exposition aims toward this object. 

2.1 Let A be a theory. A pre-resolution of A is an object TZ of the form 

(3) . A ^- F(X) ^- F(X)(Y) J- F(X)(Z), 

where X, Y and Z are cores, ir is an epimorphism (i.e. a map such that 7Tmn : 

F(X)(7n,n) 

—> f\(m,n) is epic for all m,n > 0) of theories, a and fi are morphisms of F(X)-

modules, af$ = 0 and Im(a) = Ker(7r). 

2.2 Let % be a pre-resolution as in 2.1 and consider the submodule O C T(X)iy) 

generated by elements 

a(a) oib-dor a(b), a G T(X)(Y)(m,n), b G F(X)(Y)(n,k), m,n,k> 0, and 

a(a)®ib- a®ra(b), a G F(X)(Y)(mx,ni), b G Jr(X)(Y)(m2,n2), mi,m2,ni,n2 > 0, 
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and call O the submodule of obvious relations. It is immediate to see that a(O) = 0. 

We say that TZ is a resolution of A, if Ker(a) is generated by Im(/?) and O. The fact 

that for any theory there exists a resolution is an easy consequence of the following 

lemma, whose proof is an exercise. 

Lemma 2.3 For any theory A there exist a core X and an epimorphism F(X) —> A. 

Similarly, for any module M € A-biMod there exist a core U and an epimorphism 

f\(U) -> M. 

2.4 Example Let us consider A = ^"(fii)/(ri)j f\ = £n °fn« as in 1.12. Let us 

denote 

£ n = 4 and let r/n = O and fn = y be new independent variables. 

We claim that the object 

(4) A *±- ^ „ ) « - - - .F«ii)(-ni> ̂ - ^KiiXCii) 

where 

«Í|)-(--^)-{-{ 
is a resolution of A. It follows from the definition of A that Im(a) = Ker(7r). As for 

a/? = 0, it is clearly enough to verify this condition on the generator £n. We have 

aß ( ! ) . - « 
•Һ 

ь = ł - Ф = o , 

which proves aft = 0. 

The most difficult task is to prove that the condition of 2.2 is satisfied. This is, 

by definition," the same as to show that an arbitrary element of Ker(a) is zero modulo 

the the submodule of ^F((ii)(rjn) generated by the relations 

(5) *7ii°a°fi2i = & 0 f l 0 t t i > * € - F ( 6 i ) ( l , l ) . • 

(6) (fa o 77n o fa) 0 b <g) (V>i o £u o V>2) = (fa o £n o fa) <g> b ® (fa o r}U O fa), 

fa,fa,$ufa E:F(6i)( l , l ) , 6€ J t t n X U ) . / > 0 , and 

(7) rfn o nu = *7n o £n 
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(the first relation is obviously a consequence of the third one). 

Let us introduce first some notation. Let -7ro(£n)(77n)(m. rn) denote, for m > 1, the 

vector subspace of ^(6i)(7/n)(m>m) generated by all elements of the form a\ ® • • • am, 

at- G .F(£ii)(m-m) or at- G ^(fii)(»7ii)(»w,m), 1 < i < m. We can show, similarly as 

in Example 1.7, that an arbitrary element of f(£\\)(rj\\)(m,m) can be written as 

a linear combination of elements of the form u<r with u G •?o(fii)(,7iiHm-m) and 

G G Sm. The equation a(ua) = a(u)a, following from the fact that a is an F(£\\)-

module homomorphism, enables us to infer that an arbitrary element of Ker(a)(m, m) 

is of the form _2jeJu
3<T3 with u3 £ Ker(a)(m,m) fl •Fo(6i)(7/ii)(m»m) and °"J € Sm, 

j € J. This enables us to restrict our attention to the intersection Ker(a)(m,m) fl 

«M6i)v7n)(™,™) only. 

An arbitrary element u of Jro(6i)(T/n)(m>m)» m _ t 1» c a n De plainly written as 

(8) u = ^2 AJ ' (wi ® ''" ® w/j-i 0 c1'® <*>f.+1 ® • • • (8) u;m), 

where w/ G ^"(fii)(l, 1), ej G .F(fii)(nii)(l- -) and ^i € k> for i € J- L e t u s introduce 
also the notation {r} = fjj G ^"(6i)(-» -) for r > 0 and {p,tf} = Ĵ̂ 1 o 7/n o f̂j"9 G 
J^"(^II)(»|II)(1-I 1), for p > 1 and 1 < q < p. Notice that {p,g} = {p, 1} modulo the 
relation (7). Thus we can suppose that the element u from (8) is of the form 

jeJ 

for some iJ
{ > 0 and p* > 1. We immediately have 

. a(tt) = 2^-(W>®"'-H-i)®^ + 1)®K+i)®""-®{ f i )-

Clearly a(u) = 0 if and only if 

(9) . E ^ ' W » - " ^ - i ^ + 1 ^ i + i - " ' f i ) = ° 

as an element of kTO = k © • • • 0 k (m times). Let us decompose u as J^ un, where the 
summation is taken over all m-tuples n = (ni , . . . , nm), n,- > 0, 1 < 11 < m and 

u_ = £ V(M}®"vK- iW 

where Jn = {j G J; (r{,- • • ,r/>_1,p> + - i ^ + i . ' " ,rm) = (n!, . . . ,nm)} . The equa­
tion (9) implies that u G Ker(a)(m,m) if and only if ixn G Ker(a)(m,m) for all n. 
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Let us fix some n = (?ii,... ,nm) . It follows from the very definition that un may 

be nonzero only if there exists some i'o, 1 < io < m with n,0 > 2. We can see now 

that, modulo the relation (6), un can be written as 

un = ^2 Aj • ({ni} ® • • • ® {n,0_i} ® {n10,1} ® {nt0+i} ® • • • {nm} 

and for such a ixu clearly a(un) = 0 if and only if un = 0. We have proved that (4) is 

a resolution of A = J"fii)/(6i ° 6i)-

2.5 Let ft be a resolution (3) of A and let M G A-biMod. The map T : F(X) -> A 

induces on M the structure of an ^*(K)-module. We can relate with ft and M the 

following complex of vector, spaces, £* = £*(ft,M): 

(10p —> Der(^(K),M) -*-> UomT{x)(^(X)(Y),M) - ^ H o m ^ ) ( ^ ( X ) ( Z ) , M ) , 

where S^ is defined by <$i(0)mn = C ( a m n ) and S2 is defined by £2(/)mn = fmn(Pmn), 

m, n > 0. It is easy to check that these definitions are correct and that S2S\ = 0. We 

define 

T'(A;M) = /P ( r ( f t ,M),&0, « = 0-l-

and call it the cotangent cohomology of the theory A with coefficients in M. The usual 

acyclicity argument (recall that ft is a resolution) together with the freeness of the 

objects under consideration enables us to prove that: 

Proposition 2.6 The definition of the cotangent cohomology does not depend on the 

particular choice of a resolution. 

We define also the second cotangent cohomology group, though we do not need it 

in the paper. Let ft be a resolution as in (3) and let U = Ke'r(a). Then the inclusion 

U <-• F(X)(Y) induces the map xj> : Romyr{X)(f(X)(Y),M) -» Hom^-(x)((/,M). We 

P u tT 2 (A ;M) = coKer(V>). 

2.7 As a matter of fact, it was possible to define the cotangent cohomology without 

making use of the third term T(X)(Z) of (3), using only the kernel U (the module of 

'relations among the axioms') similarly as it was done in [20] for the 'classical' cotan­

gent cohomology. We could even avoid the use of the resolution and define Tl(—; —) 

by the similar formula as that of [20, Lemma 3.L2] for T1(—, —). The problem is that 

all attempts to obtain an explicit description of T1(—; —) in concrete examples require 

in fact all the information necessary for the construction of a resolution. 
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2.8 Exercise: Prove from the definition that T°(A,M) = Der(A,M). 

2.9 It will be useful (see 3.15) to consider the construction above also for a pre-

resolution 1Z. Notice that the definition of £*(7£,M) still makes sense and put 

7£(A;M) = # ' (£• (* , M),*.). » = 0-1. 

Proposition 2.10 For any pre-resolution 1Z we have 7^(A;M) = T°(A;M) (this is 

obvious) and T^AjM) D T^AjM). 

Proof To prove the inclusion, it is enough to realize that any pre-resolution (3) can 

be completed into a resolution by adding new generators to the core Z. 

2.11 Example: Continuation of Example 2.4. Let A = -F(fn)/(fn ° 6 i ) D e as -n 

Example 2.4. Let us compute, for M G A-biMod, the cohomology Ta(A;M) as 

introduced above. The complex (10) has the-form 

(11) < ) ^ D e r ( . F ( 6 1 ) ) M ) - * H p m ^ 

Each 0 G Der(.F(£ii),M) is uniquely determined by its value on the generator £n, 

which gives the identification Der(,F(£ii),M) = M( l , l ) . Similarly, an element / G 

Hom^11)(^"(fii)(7yn),M) is determined by its value on the generator r/n, which gives 

that Homy({11)(..F(£ii)(i7ii),M) = M( l , l ) . In the same vain we may get also that 

Hom^ n ) (^(6i)(Cii) -M) S M(l , 1). Thus (11) can be written as 

(12) 0 —+ M(l , 1) -^ M(l, 1) - ^ M(l , 1). 

To describe the value of 6\ on some element </> G M( l , l ) it is enough to evaluate 

^II«II(»7II)J where 6 G Der(.F(fii),M) is the derivation whose value at fn is </>. Using 

the abstract tensor calculus, this evaluation can be depicted as 

.•íi(|)=t»и.-ii(A)--вii for ф 4 
Similarly, to compute ^(AO for /i G M(l , l ) we shall evaluate /n/?n(Cn), where we 

denoted by / G Hom^11)(.F(fii)(.7ii),M) the map whose value at 7711 is //. We have 

Ь (if) = Л1A1 ф = for џ 
-\-
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Expanding the above pictures into formulas we get 6\(4) = ^ 0 ( 1 1 + 61 ° ^ a n^ 

62(H) = A* ° 61 - 61 ° ,"• 

It is very instructive to verify that 626\(</>) = 0. We have 

6261(4) = 62(4 o £n + $11 o 4) = 

= (4 ° 61) ° 61 + (61 0 4) ° 61 - 61 ° (4 ° 61) - 61 ° (61 ° 4) = 

= ^ o ( ^ i o f i i ) - ( 6 i ° 6 i ) 0 ^ 

and we shall prove that this is zero. This is, however, easy: it is enough to realize 
that M G A-biMod and that the ./"(^n)-module structure on M is induced via the 
projection 7r, which sends £n o fn to zero. We warmly recommend to try to make the 
above calculations using the abstract tensor calculus, it is much more quicker (though 
a bit longer in the written form). 

Summing up the results, we infer that 

Ker { ( - ) o 61 - (n o ( - ) : M(l , 1) - M(l, 1 )} 

(uyrHriMKtu °6,);M) = —± f. 
Im | ( - ) o 6 , + (n o ( - ) : M(l, 1) -> M(l, 1) j 

It is also instructive to verify that indeed T°(p(£u)/(£u o f n ) ; M) = Der(,F(fii)/(£iio 

£n),M), as it was stated in 2.8. 

For another examples, see the following paragraph. 

3. Deformations and the Cohomology 

We assume that the reader is already familiar with the basic notions of the defor­
mation theory as it is discussed, for example, in [7], [9], [6], [25], ... It is not difficult 
to verify that the following definitions, given in terms of our calculus, are in concrete 
examples equivalent with the classical ones. 

3.1 There are two main kind of problems of deformation theory: the equivalence 

problem (see 3.3) and the integrability problem (see 3.6). As far as the first problem 
is concerned, it is very simple, at least from the conceptual point of view - it is 
related with the isomorphism problem in the moduli space of the form M/U, where 
the algebraic group U acts unipotently on the variety of structure constants M, and 
this problem has a nice linearization (see [7] or [24]). We still decided to discuss it 
here briefly, in order to show how our calculus works. The second problem is much 
more delicate. Let us introduce first some-notation. 



138 MARTIN MARKL 

3.2 Let A be a theory over a field k and let R be an k-algebra. Then A ®k R 

denotes the theory with (A ®k R)(m,n) = A(ra,n) ®k /?, ra,n > 0, with o and ® 

defined as the /2-linear extensions of the corresponding operations in A. We use the 

notation f\[[t]] for A ®k k[[t]] (t is an independent variable) and F\[[t]]/(tN), N > 1, 

for A ®k k[[t]]/(<7V). The similar notation will be used also for modules over A. 

3.3 Let A : A —> ky be an A-algebra. By a deformation of A we mean a theory 

A = A + tA1%+ t2A2 + - • • : f\[[t]] -> ky[[*]], 

where the sum above means that Amn = Amn + t(Ai)mn + • • • for some linear maps 

(Ai)mn : A(ra, n) —• kv(ra,n), ra,n > 0. Denote by Def(A) the set of all deformations 

of the algebra A. 

Let G = Aut(V[[*]]). The group G acts on Def(A) by (gA)mn = g®nAmn(g®m)-\ 

ra,n > 0. Finally, let U = {g €G,g = 1 + tfa + t2</>2 + • • • ,& G End(V)}. Then 

the first problem of 3.Lean be formulated as the problem of the decision whether a 

deformation A G Def(_4) is equivalent to the 'trivial' deformation A = A + tO -\ in 

Def(A)/U. We state without proof (which is actually very easy) the following 

Proposition 3.4 The obstructions to the triviality problem as formulated in 3.3 are 

elements of the (linear) moduli space 

(14) Der(A,k)/End(V), 

where </> G End(V) acts on 0 G Der(A,k) by 

(<l>o0)mn = <l>^emn(<l>[m])-\ m , n > 0 , 

with <pfi = E - ^ r ' - 1 ® <t> ® i'-'). 

3.5 Example Let A = F(£2i,€i2)/(ri,r2,r3) be the theory of bialgebras as in 1.15. 

Let A = (V,fi,A) be an A-algebra (= a bialgebra), /i = A(£2\) and A = -4(£i2). 

Any derivation 0 G Der(A,ky) is uniquely determined by a couple ^i = ^21(̂ 21) G 

Hom(K®2, V) and ^2 = M 6 2 ) G Hom(K, V®2). Expressing the condition 0(r() = 0, 

i = 1,2,3, we get 

H(l ® Vi) - V>i(/* ® 1) + ^ i ( l ® r-) - ^(1 ® V>i) = 0, 

(fj> ® V>i)(l ® S ® 1(A ® A) - A^i + (V'I ® A*)(l ® S ® 1(A ® A)+ 

+(fi ® //)(! ® 5 ® 1(A ® fa) - 02^ + (fi ® fi)(l ® S ® 1)(^2 ® A) = 0, and 

(1 ® ij>2)A - (A ® 1)V>2 + (1 ® A)V>2 - (V>2 ® 1)A = 0 

(S(x ® y) = i/ ® x for #, y G V), which can be written as 
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<faoch(^i) = 0, <ZCOH(0I) + dUodx(il>2) = 0 and dcoli(^2) = 0, 

where c?Hoch (C-COH) is the Hochschild (coHochschild) differential, see [9] or [25] for 

details. The action of ^ G End(K) on (^i, ^2) is described as 

V>i »-> V>i - M l ®4) + 4p- V>(<t> ® 1) = ^1 - ^Hoch(̂ ) and 

tl>2»ll>2 + (<f>® 1)A - A<j) + (I 0 <£)A = ^2 + dcoH(^2). 

It is clear from this description that the space (14) of Proposition 3.4 is isomorphic 

to H2(A;A), the bialgebra cohomology introduced by M. Gerstenhaber and S. Schack 

in [9], see also [25]. 

3.6 Let A : A —> kv be an A-algebra and consider a 'partial' deformation A = 

A + tAi + --- + tNAN, N>1,A: f\[[t]]/(tN+1) -> kv[[t]]/(tN+1) (the meaning of this 

notation being the same as in 3.3). The integrability problem for A is the problem 

of the existence of a honest deformation in the sense of 3.3 which extends A. The 

primary obstruction to the existence of such an extension is related to the problem of 

finding some AN+x such that A = ii + tN +M j V + 1 : A[[*]]/(*"+2) -> kv[[t]]/(tN+2) is an 

A[[t]]/(t7V+2)-algebra. We show that the obstruction to the existence of such an AN+2 

is an element [O] of T^Ajkv). 

3.7 Let 
K: Д V-- ҢX) **- ҢX)(Y) Л- ҢX){Z), 

be a resolution of A as in (2.1). Define the homomorphism A : f(X)[[t]] —> ky[[*]] of 

theories by Amn(x) = -4mno7rTOn(a;) for a generator x G X(m, n), m, n > 0 (A is a kind 

of a lift of A). The crucial observation here is that Amn(u) ^ Amnoirmn(u) for a general 

u G ,F(.K)(ra,ra), but still A(a) = 0 (mod tN+1) - an easy consequence of the fact that 

A is an 'algebra mod tN+1\ Finally, define O = O(A) G Hom^ ( X )( .^(K)(y),kv) by 

Omn(v) = coefficient at t " + 1 in Amn(amn(v)), v G J r (X)(y)(m,n), m,n > 0. 

Lemma 3.8 The definition ofO is correct, i.e. O defined as above is a homomorphism 

of F(X) -modules. 

Proof We shall show that 

Omk(u ov) = Amn(u) o Onk(v), Omk(a o b) = Omn(a) o Ank(b), 

(15) 0 m i + m 2 , n i + n 2 ( i i ' ® V) = Amini(u') <g> Om2n2(v') and 

Omi+n2,ni+n2(o!. ® &') = Omini(a') ® i 4 m 2 n 2 ( 6 ' ) , 
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for u €JF(.K)(m,n), v G F(X)(Y)(n,k), a e T(X)(Y)(m,n), b e F(X)(n,k), u' e 

^(X)(mi ,m) , v' e F(X)(Y)(m2,n2), a1 e T(X)(Y)(munx) and V G ^(X)(m2 ,n2) , 

for all natural numbers m,n,mi,ni ,m2 , and n2. 

Let us prove the first equation of (15). By definition, Omk(uov) = coefficient at tN+1 

in Xnk(oLmk(u o u)), and Amk(ctmk(u o v)) = Amk(u o anfc(u)) = Amn(u) o Ai*(au*(v))-

Since ^4n*(o.nfc(v)) = O'mod tN+1, we infer that 

coefficient at tN+1 in Amn(u) o Ank(otnk(v)) = 

= < coefficient at t° in Amn(u) > o < coefficient at t^+ 1 in Ank(ctnk(v)) > 

= -4mn(u) o Onk(v), 

which gives the first equation of (15). The argument for the remaining equations is 

the same. D 

Proposition 3.9 Let £* = £*(ft,ky) be as in (10). Then O G ^ ( T ^ k y ) defined 

above is a cocycle, i.e. 82(0) = 0. 

Proof By the definition of 62, we must show that Omn o /3mn(w) = 0 for all w G 

,F(.K)(Z)(m,n), m,n> 0. But Omn o ftmn(w) is, by definition, the coefficient at tN+1 

in Amn(amn o /?mn(tu)), which is zero, because a o ft = 0. • 

Proposition 3.10 The cohomology class [O] eT1(f\;kv) constructed above is the 

(primary) obstruction to the integrability problem as formulated in 3.6. 

Proof We shall show that [O] = 0 is equivalent to the existence of an AN+\ from 3.6. 

So, suppose that we have such an AN+\, i.e., a system of linear maps {(-4jv+i)mn}m,n>o-

(.4^v+i)mn : A(m,n) —• ky(m,n), such that A = A -f tN+1AN+i is an 'algebra mod 

jAM-2> ^;n f.jie evident sense). Define the derivation AN+i G Der(,F(X),ky) by 

' (AN+i)mn(x) = (AN+i)mn o irmn(x) for x G X(m,n), m,n > 0. 

Let also A : ^(X)^]] —> kv[[t]] be the 'lift' of A constructed in exactly the same way 

as the 'lift' A of A from 3.7. We show that A = A-{-tN+1AN+i mod tN+2. Notice first 

that this equation is certainly fulfilled on the generators of F(X). Thus it is enough 
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to prove that A + tn+1AN+i is a 'homomorphism mod tN+2\ We have the following 

equations mod tN+2: 

(A + tN+1AN+i) (U0W) = Amk(u O W) + tN+1(AN+i)mk(u O W) 
\ / mk • 

= Amn(u) o Ank(w) + tN+1 (Amn(u) o (AN+i)nk(w) + (AN+i)mn(u) o Ank(w)) 

= U + tN+1AN+i) (u) o (A + tN+1AN+i) (w) 
\ / mn \ / nk 

for all u e T(X)(m,n), v G F(X)(n,k) and ra,n,fc > 0. This shows that A + 

tN+1AN+i behaves as a homomorphism mod tN+2 with respect to o. We can show in 

exactly the same way that it behaves as a homomorphism with respect to 0 , as well. 

So we know that A = A + tN+1AN+i mod tN+1. We also have Amn(amn(v)) = 0 mod 

tN+2, since A is an 'algebra mod tN+2\ Summing up the above considerations, we get 

that 

0 = coefficient at tN+1 in Amn(amn(v)) = 

coefficient at tN+1 in (Amn(amn(v)) + (AN+i)mn(amn(v))) 

= Omn(v) + (6iAN+i)mn(v) 

for any v £ Jr(X)(Y), ra,n > 0, which is the same as O = — 6i(AN+i) and this implies 

that [O] = 0. 

On the other hand, suppose [O] = 0, i.e. suppose that Omn(v) = umn o (amn(v)) 

for all v e F(X)(Y)(m,n),.m,n > 0, with some u G Der(.F(X),kv0. Define 

A : f\[[t]WN+2) - MM]/(t*+ a) ^ Amn(Tmn(u)) = Amn(u) - tN^umn(u) for all 

u G F(X), m,n > 0. It is immediate to verify that this formula defines correctly an 

extension of the partial deformation A. D 

3.11 Example: Deformations of differential spaces. Let A = -F(£n)/(£n 061) be the 
theory of differential complexes as in 1.12. Let A : A —•• ky be an A-algebra,-i.e. a 
couple (V,d) of a vector space V and a differential d. Theorem 3.10 together with the 
formula (13) gives that deformations of this object are controlled by 

T'fTV k 1 = K e r { ^ : H o m W V ) ~» H o m ( ^ V)) K ' V) Im{«1:.Hom(V,v)->Hom(V,v)} ' 

where 6y{<j>) = <j>{d) + d{<j>) and 62{ip) = ip{d) - d(^), +,+e Hom(V, V). 

3.12 Example: Deformations of associative algebras. 

Let A = Jr(^2i)/(»"i) be the theory of associative algebras as in 1.13, Consider the 
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object 

(16) H : A «--- ^ (6, )«- - - ^(6i)(»73i) ^ - ^(6i)(C4i), 

where 0.(7/31) = n and (̂7741) = 

where 0 denotes £21 and denotes 7731. 

As we prove in §4, this object is a resolution of the theory of associative algebras. 

Let A G A-algebras be an associative algebra, A = (V,/i), where //V®2 —> V is an 

associative multiplication. The complex £*(7£,kv) of (10) has obviously the form 

0 —• Hom(V®2, V) -iU Hom(V®3, V) -X Hom(V®4, V). 

We can easily compute (compare the arguments in 2.11) that 

8\(m) = fi(l 0 m) —m(fi ® 1) + m( 1 ® fi) — y.(m® 1) and 

62(f) = ti(l0f)-f(fi0l2) + f(l®fi(Sil)-f(l20fi)-rKf(Sil), 

i.e. that 8\ and 82 are the usual Hochschild differentials and 

T1(A;kv) = Hoch3(A;A), 

the third Hochschild cohomology group of the algebra A with coefficients in itself. 

3.13 Example: Deformations of commutative associative algebras. 

Let A = T(X)l(r\^r2) be the theory of commutative associative algebras as in 1.14. 

Consider the object 

(17) Ҡ. ҖЫ) Č- -Ҷ6i)tøзi,Vи> ^ - -Ҷ&iXCu.fcь&.C-i), 

where a(rj3i) = n, c*(7/2i) = 2̂ and ,-3(7/41) is as in 3.12. To define /? on the remaining 

generators, let us introduce the notation 

À =6" = 7/31 and • = 7/2!. 
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Then, let 

ß«я) = 

ß(йг) = 

{\J к 

/• 

Л A 

ßUn) = r v 
We recommend to the reader to verify that afi = 0. It is possible to show, by a slight 

generalization of the arguments of §4, that (17) is indeed a resolution of A. It is 

immediate to see that 

^(T^kv) = Hom(V®2,V), 

£2(7£,kv) = Hom(V®3,V)8Hom(V®2,V), and that 

£3(ft,kv) = Hom(V®4,V)©Hom(V®3,V)©Hom(V®3,V)©Hom(V®2,V). 

To describe the differential, consider the diagram 

Hom(V®2,V) 

dnoch 

Hom(V®3, V)фHom(v®2, V) 

^Hoch 

Hom( V®4, V) © HomW®3, V) © Hom( V®3, V) © Hom( V"®2, V) 
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where ^Hodi is the Hochschild differential as in 3.12, Mi(m) = m ( l — S) (S = the 

switch), M2(n) = n(l + 5 ) , J i (n) = - ^ ( 1 (8) n) + n(fi (8) 1) - fi(n <8> l)(fl ® 5 ) , 

J 2 (n) = - / i ( l (8)n) (5®l)+n( l (8) / i ) - /x(n(8) l ) , Shi(f) = /(13-1<8>S+(S®1)(1<8>S)) 

and S7i2(/) = / ( I 3 - 5 (8) 1 + (1 (8) 5 ) ( 5 (8) 1)), for m,n e Hom(V®2, V) and / G 

Hom(V®3, V). The differentials are described as 

Si(m) = dH och(ra)©Mi(m) and 

* ( / 9 n ) = dHoch(/)e(5ft1(/) + J1(n))e(5fe2(/) + J2(n))©Af2(n). 

Let w = / 0 n b e a cocycle in £ 1(7l, ky) , i.e. 

(18) dHodx(f) = 0, Shi(f) + Ji(n) = 0, Sh2(f) + J2(n) = 0 and M2(n) = 0. 

From A/2(n) = 0 we easily get that n = Mi(m) for m = | n . We can now take a;—Si(m) 

instead of w without changing the cohomology class. 

Using the trick above, we can suppose that every cocycle in ^(Tfcjky) is of the 

form / ® 0 , / € Hom(V®3,V). This implies, by (18), that Sh(f) = Sh2(f) = 0, which 

means exactly that / is zero on the decomposables of the shuffle product in V®*. We 

see that 

T 1 ( A ; k v ) = Harr 3 (^ ;A) , 

the Harrison cohomology.of A with coefficients in A, see [12]. 

3.14 Remark As we have already mentioned, the dualization in our theory is ex­

tremely easy - it is nothing but just turning all diagrams upside down. Using this 

innocuous trick, we can easily infer, dualizing the arguments of 3.12, that the cotan-

. gent cohomology of the theory of coassociative coalgebras is exactly the coHochschild 

cohomology (the notion of coHochschild is a kind of folk lore, it has occurred for ex­

ample in [9] or [25]).The statements of this kind are not much surprising. Much more 

important application of this kind of duality are offered by self-dual theories, such as 

the theory of bialgebras (Example 3.15). Here the duality may lead to substantial 

simplifications of arguments. 

The second remark is related to the construction of the obstruction [O] (Theo­

rem 3.10). All the arguments used in the construction remain valid if we start not 

with a resolution, but with a pre-resolution 71 only. The element [On] thus construct­

ed will then belong to 7^(A;ky) . It is an easy consequence of the functoriality of 

the construction that [On] = [O] as elements of T a (A ;kv ) C 7^ (A;ky) . The impor­

tance of" this remark is related to the fact that we are not always able to prove .that 
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a pre-resolution is a resolution (see Example 3.15), but we still have an obstruction 
cohomology, though it may not be the best possible. 

3.15 Example: Deformations of bialgebras. Let A = ^"(^2i»62)/(n,^2,7*3) be the 

theory of bialgebras as in Example 1.15. Consider the object 

(19) n : A <--- .F(6,) *Z- ^(fe)fosi,!h-,ih3) £- ^(6l)(Cll,CM,C-3,Cl4), 

where 0.(7731) = n , a(r722) = f*2 and 0.(7713) = 7*3. The map /? is defined by: /?(C-ii) = 
the same as in 3.12, P(C\A) is dual to /?(C-ii) in the sense of 3.14, P(Czi) is defined by 

r X n ( 

where 4 =f21, 0 = f12, / \ = 7731 and y>{ = »722, 

and ,#(7723) is defined as the dual to (̂7732) in the sense of 3.14. 

It is quite easy to verify that (19) is a pre-resolution, but we are not able to prove 
that it is a resolution, albeit we are almost sure that this is true. Having and A-algebra 
A : A —» ky, we.can easily compute that 

n(f\;kv) = Hf{A;A), 

the bialgebra cohomology of ,4 .with coefficients in A, introduced in [10]. 
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4. Resolutions and the Coherence 

The aim of this paragraph is to prove that (16) is indeed a resolution of the theory 

of associative algebras. We formulate also some open problems гelated with the similar 

questions. 

4.1 Let .řoíÊгi )(m,n) denotes, for m,n > 0, the subspace of -F(f2i)(гл-п) con-

sisting of elements which 4do not contain' the switch 5. This definition is correc-

t - the set .řXfгiKraíГС) can be presented as the set of (meaningful) woгds in £21 

and 5 factoгed by the relations which should be satisfied in a theory, ^0(^21 )(™,n) 

then corresponds to those words which do not contain 5. The meaning of the nota-

tion Fo(І2\)(nз\)(™»>n) and -7гo(f2i)(C-и)(m,7г) is similaг. Denote also by O 0 (n, 1) the 

subspace of ^0(^21 )(nзi)(n, 1) generated by elements of the form a(a) o b — a o a(ò), 

a Є Л(f2i)foşi)(n,/), Ь Є .Fo(6i)føзi)(/,l), 1 < / < n. Notice that O 0 ( n , l ) = 

0 ( n , 1) П ^(бiKrçз i )(*-•, 1)- Anotheг way to. define O 0(n, 1) is to put 

n 

preO0(n,l) = ф^o(Í2i)^зi)(n,0 ^o(6i)^зi)(/,l) 
/=1 

and introduce the map 7 - preO0(n, 1) —> ^0(^21 )(»/зi)(n, 1) by *)(a b) = a(a) 0 6 — 

b o a(b). Then O 0(n, 1) = Im(7). 

4.2 Let BЩІ denotes, for n > 2 and 0 < i < n — 2, the set of all (meaningful) 

insertions of i pairs of bгackets between n nonassociative variables. For 6 Є ü?n,t, let 

òң (resp. òjң], resp. &[[[,•]]]) denote the bracketing obtained fгom 6 by the replacement 

(••) 1—> • (resp. (•••) •-> •, resp. (••••) "-• •) at the ѓ-th position. 

4.3 As we have already observed in 1.8, the set Bn = Æn.n-2 can be used to index 

the elements of íbí íг i j ín, 1). To describe this correspondence in a more formal way, 

observe that all elements of Bn can be obtained by a successive application of the 

operation b 1—> 6[,-j defineii above on • • Є B2. The correspondence Bn Э b 1—> {ò} Є 

-^0(^21 )(n, 1) c a n Ьe then described inductively as: 

- { • • } = 61 Є ^ ( 6 i ) ( 2 , l ) a n d , 

- if b Є B m , then { 6 W } = {ò^íl1""1 (8) 61 ® -lm-,') (m > 2, 1 < i < m). 

Following excactly the same lines, the set BПjП-з can be used to index the elements of 

«^o(Í2i)(nзi)(n, 1), n > 3. To describe this correspondence, observe that an arbitгary 

element of BПtП-з can be obtained ' . 
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- either by successive applications of the operation b \-• &[,-] on • • • G .83,0, or 

- by successive applications of the replacements b 1—• &[,-] or b t-* 6̂ -JJ on • • G B2, 

the second replacement being used exactly once. 

The correspondence 2?n,n_3 3 b i-» {6} G ^o(6i)(773i)(«, 1) is then inductively de­

scribed by the rules: {••} = &i G ^o(6i)(2» -) and {•••} = *73i G ^0(61)(*73i)(3,1), 

{%]} = W(- ,'~1 ® 61 ® lm-") and {Ina,} = (F"1 ® 7/31 ® l m - J ) , for ft G /3m,„ 

1 < hj < n* and * = m — 2 or m — 3. 

Finally, consider Bn|„-4, n > 4. Again, an arbitrary element of this set can be 

created 

i) either from • • by successive applications of the operations b 1—> b[q and b \-* 6[yj], 

the second one applied exactly twice, or 

ii) from • • by successive applications of the operations 6 i-» 6[t] and b 1—> %/]]], 

the second operation applied exactly once, or 

iii) from • • • by successive applications of the operations b i—» 6[,j and b »-> 6[[/]j, 

the second one applied exactly once, or 

iv) from • • • • by successive applications of the operation b i-> ty,-]. 

Clearly J0n,n_4 can be written as the disjoint union of two subsets Bnn_4 and Bnn_4, 

the first one consisting of elements of jBn.n--4 constructed by the procedure of ii) or iv) 

above, the second one consisting of elements constructed as in i) or iii) above. 

Now any 6 £ B'nn_4 can be identified with some {6} G Jro(6i)(C4i)(n>l)- The 

identification is described by the inductive rules: {••} = f2i G «^b(£2i)(2,1), { • • • •} = 

C-u € J"o(6i)fo4i)(4,1), {6W} = { W r - 1 ® 6 i ® l w " ) and {b[m} = {6}(l '~1 0 7,41 ® 

l m _ / ) for 6 G Sm,*, 1 < i, / < m and * = m — 2 o r m — 4. 

Next observation is that for any b G -3nin_4 there are some- /, k and i, / -f k = 

n + 1 and 1 < i < /, and some 61 G *3/,/-3 and 62 G -Bjfe.jfe—3 such that b is obtained 

from 61 by the replacement 62 1—> • at the i-th position. The numbers k, /, i and the 

elements 61 and b2 are not unique, but we may suppose t h e y are chosen, once for 

all, for any b G Bnn_4. Let us define {&}-. as {61} G ^ro(6i)(773i)(/, 1) and {b}2 as 

l1""1 ® {b2} ® I'-1' G ^o(6i)(-73i)(n,0- T h e correspondence b »-* {6}2 © {6}x defines 

then a map from Bnn_4 to preO0(n, 1). 

Using the same arguments as in Example 2.4, we can easily infer that it is enough 

to prove the following proposition (as a matter of fact, this is a consequence of a 

general reduction principle which holds for all theories whose axioms 'do not contain' 

the switch; we intend to discuss this phenomena in a forthcoming paper). 
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Propos i t ion 4.4 Consider the sequence 

*>(6 , ) (n , 1) «_- *b(6i)fa- i ) (» , 1) « - - ^o(6i)(C4i)(n, 1), 

where a0 and fa are the obvious restrictions, n > 1. Then Ker(ao)(n, 1) is generated 

by Im(/?0)(n, 1) and O0(n, 1). 

Proof Let us begin the proof with a brief discussion of the properties of the polyhedron 

Kn (so-called associahedron) introduced in [29] (see also [2] or [25], a nice exposition 

of the properties of Kn can be found also in [16, Chapter II]). Kn is, for n > 2, an 

(n — 2)-dimensional polyhedron whose i-cells are, for 0 < i < n — 2, indexed by the 

elements of £?„-,_,-_ 2- If 5 is a cell corresponding to 6 £ #n.n-,-_2, then the faces of s are 

indexed by those 6' 6 £n.n_i_i which are obtained from 6 by (meaningful) inserting one 

more pair of brackets. It can be shown that the relation 61(6263) > (6162)63, bj _ Bnj, 

j = 1,2,3, induces a partial order on the vertices of Kn. 

Let Ci(Kn\ k) denote, for i > 0, the vector space of i-dimensional cellular chains of 

Kn with values in k. If we identify the z-cells of Kn with the corresponding elements 

of J0n.n_2-i, then the elements of C t (K n ;k ) are of the form ^_]Aj • V (finite sum), 

Aj G k, ¥ E BnfU_2-t. Using the correspondences constructed in 4.3j we can define 

the map fi0 : Co(A'n.k) --> -F 0 (6 i ) (n , l ) hY ^O(_ZAJ ' *0 = J2aJ ' {^}; t h e m a P 

Hi : ^ ( K w ; k) —• ̂ o (6 i ) ( w 3i) ( n j 1) -s defined by the similar way. 

We have the decomposition C2(Kn\ k) = C'2(Kn\ k) 0 C'2\Kn\ k) , where C'2(Kn\ k) 

is defined to be the part of C2(Kn\k) corresponding to 2-cells of Km indexed by B'nn_4 

and, similarly, C2(Kn\\n) is the part corresponding to Bnn_4. This decomposition has 

a nice geometrical interpretation. There are two types of 2-cells: the cells of the first 

type are of the pentagonal shape while the cells of the second type have four vertices. 

Then C'2(Kn\ k) corresponds to the cells of the first type and C2(Kn\ k) corresponds to 

the cells of the second type. The correspondence B'nn_4 9 6 •-> {6} € ^0(^21 )(C-ii)(n, 1) 

defines the map il2 : C2(Kn\k) —> .Fo(6i)(C4i)(rc, 1) and the correspondence Bnn_4 3 

6 •-> {6)2 0 {6}i defines the map il2 : C2(Kn\k) —> preO0(n, 1). Let us consider the 

diagram 
<*o A>+7 

.Fo(6i)(n, 1) .Fo(6i) v73i)(n, 1)- ?o{M(M(n, 1) © preO 0 (n , 1) 

<20> o , Пi 

ð, дг 
C0(Kn;k) Cг(Kn;k) C2(Kn;k) 
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The crucial observation is that the diagram commutes. It is an easy consequence of 

the definitions of the maps involved and the incidence relations of the polyhedron Kn, 

and we leave the verification to the reader. It is also clear that the maps Ho and Hi 

are isomorphisms. The claim of our proposition is equivalent with the exacteness of 

the upper row of (20). But this follows immediately from the above remarks and from 

the exacteness of the bottom row of (20) which follows from the asphericity of Kn 

(see [29] or [16]). • 

4.5 O p e n quest ions and remarks As we have already seen, the most difficult 

task related with the construction of the cotangent cohomology of a theory was to 

find the 'relations among relations'. Here we shall say that it is not so difficult to find 

some of them, it would be principally possible to write a computer program to do 

that . Also the 'abstract tensor calculus' or the 'deviation calculus' of [25] may be used 

for the visualization of these relations. The problem is to prove that we have found 

all of them (or, more precisely, a generating system). There are certain indications 

that this problem is closely related with a coherence problem in some category, but 

it is not exactly the same. For example, in the proof of Proposition 4.4 we did not 

use the coherence theorem in the formulation of for example [21], but we use the 

asphericity of the associahedra, the property which implies the coherence. So the first 

natural question is whether the construction of a resolution of a theory is related with • 

a coherence property of some category. It may also well happen that there exists an 

easier and more direct way to prove the acyclicity. 

As we have already explained in the introduction, for the majority of classical 

examples there exists a candidate for the cotangent cohomology - as the bialgebra 

cohomology [9] for bialgebras, see 3.15. The second question is whether these coho­

mology theories coincide with the cotangent cohomology introduced here, i.e. whether 

they are the best possible in the sense of the inclusion of 3.14. 

The third question is related with the existence of a natural Lie algebra structure. 

Again, as it was shown by many authors, the cohomology theory related with the 

classical objects are naturally defined in all degrees and have a natural structure of a 

graded Lie algebra, although we think that this need not be always true (a candidate 

is the deformation cohomology for Drinfel'd algebras). The question is whether our 

construction can be, at least in some cases, extended to higher degrees to obtain this 

structure on our cotangent cohomology. Here is one remarkable hint: the 'classical' 

cotangent cohomology of [20] can be extended in such a way provided the characteristic 
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of the ground field is zero. 
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