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DEFORMATIONS AND THE COHERENCE

Martin Markl

Introduction

It is well-known that a good cohomology theory which controls the deformations of
schemes is the cohomology of the cotangent complex (see [20] or [11]). The aim of this
paper is to construct a similar object for a category in order to obtain a cohomology
theory which would control the deformations of objects of this category. The range
of definition of our construction will be wide enough to cover both classical and new

examples, see 0.2 and 1.2.

0.1 Motivations In the majority of classical examples, the experience always pro-
vides one with a natural candidate for the cohomology controlling the deformations.
For example, one knows that associative algebras are somehow related with the
Hochschild cohomology (or Shukla or Mac Lane cohomology, but these are all the
same if we assume we work over a field of characteristic zero), and it is really true
that this cohomology captures the deformations of associativé algebras (see [8]). In
the worst case, the deformation cohomology can ‘be constructed as a suitable combi-
nation and modification of classical constructions (again based on the experience),see
for example the case of bialgebras discussed in [10]. But the recent development of
quantum group-theory confronts one with a lot of natural examples (such as Drinfel’d
algebras) where this approach fails. We think the failure is substantial as the con-
structions related with the deformation cohomology are sometimes very complicated,
see for example [25] or [28].
So, the first natural question was whether there exists a construction which, when
blindly applied to an algebraic object, would provide us with a deformation cohomology
for this object. This question was immediately followed with the observation that we

should first understand what we mean by ‘cohomology which controls the deformation’.
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There already have been some attempts to construct such a ‘good deformation co-
homology’. We should quote at least the classical paper of Gerstenhaber [8] and also
the papers [6], [5] of Fox based on the (co)triple approach. The common drawback is
the limited range of applications and also very limited possibilities of explicit calcula-
tions. Notice that the ‘good deformation cohomology’ for associative algebras in the
sense of Gerstenhaber is isomorphic to the Hochschild cohomology by [8, Theorem 6],
while 'the approach of Fox gives the cotriple cohomology which is again isomorphic,
this time by [1], to the same Hochschild cohomology. In both cases the existence of

such an isomorphism is a nontrivial fact.

0.2 Here we explain briefly to which kind of objects our construction applies. By
an algebra we mean a (in most cases) finite dimensional vector space, say V, together
with a set of multilinear operations, say {m;}icr, m; : V®% — V®i which have to
satisfy some axioms which are created from {m;} by the composition, tensor product,
linear combination and the ‘switch’ S : V82 — V&2, §(z ®y) = y @ z. Notice that we
use the word ‘algebra’ in a very liberal way, for example, a coalgebra is also an algebra
in our sense. The variety of such algebras forms then an (algebraic) theory, say A; the
formal definition is given in 1.2.

Our definition differs from the classical definition of an algebraic theory of Law-
vere [19], it is, in a sense, more general. It covers all natural examples of algebras (as-
sociative, commutative, Lie, ...), An-algebras, coalgebras, bialgebras, and even such
exotic objects as Drinfel’d algebras. But this generality has one unpleasant conse-
quence: the forgetful functor (V,{m:}) — V need not have a left adjoint (example:
coalgebras). Notice also that there are natural examples where the set of operations,

as well as the set of axioms, is infinite (example: A-algebras).

0.3 The basic idea of the construction is the following. Having an algebra A (in the
sense of 0.2), we can consider A as a point of some variety M of structure constants. A
deformation of A can be then interpreted as a deformation of the point A in M. Such
deformations are then related, by [20], with the cota.ngenf. cohomology T*(k[M]/k, k)
of the affine coordinate ring k[M] of M. The problem is that, if M is ‘too special’,
this object need not be isomorphic with the ‘good deformation cohomology’, for ex-
ample, if A = (V,pu), p : V& — V, is an associative algebra and M the variety of
associative multiplications on V, then T*(k[M]/k,k) is not, in general, isomorphic to

the Hochschild cohomology (we are indebted for this observation to M. Schlessinger).
So, the idea is, very roughly speaking, to replace k[M] by something like the affine
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coordinate ting of the ‘universal’ variety of structure constants for algebras of the
theory A, the réle of this object being played by a certain strict symmetric monoidal
category, see 1.2. This, of course, in turn implies the necessity to define the notion
of the cotangent complez of a category. The possibility of such a definition was made
possible by the recent development of the theory of monoidal categories, see [14], [15]
or [30]. Here we point out also the definition of a module over a strict monoidal
category, given in 1.17. It was only after we realized what the notion of a module is
(though the definition is very natural, modules are, as usual, abelian group objects in

a suitable over-category), when the full development of the theory was possible.

0.4 As for practical computation, it may be already clear from the hints of 0.3 that
the main problem is related with the description of ‘relations among axioms’. One
way to detect these relations is the ‘deviation calculus’ described (and also applied
to some explicit calculations) in [25]. Another way to visualize these relations is the
‘naive’ abstract tensor calculus in the sense of [17], this approach will be used in the

present paper.

The next problem is, having already found some relations, to prove that they
generate all relations. This problem is related with a general coherence problem for a
category as it is presented in [18]. For example, we prove in §4 that, as a nontrivial
consequence of some arguments used in the proof of the celebrated Mac Lane-Stasheff
coherence theorem [21], [29], the ‘good deformation theory’ for associative algebras is
isomorphic with the Hochschild cohomology. See also the discussion in 4.5.

All the computations and considerations of the present paper seems to be a shade
of something like ‘a homological algebra of the monoidal category’, except that, as far
as we know, there is nothing like that in the literature; what is usually meant by the
cohomology of a category or of a theory in the sense of, for example, [26] or [13], seems
to have nothing to do with our calculations. - .

Plan of the paper: . :

1. Theories and Module
2. Resolutions and the Cohomology
3. Deformations and the Cohomology

4. Resolutions and the Coherence (with some open questions)
1. Theories and Modules

In this paragraph we introduce the basic technical tools of our theory. We always

work over a field k of characteristic zero, though we believe that a good deal of the-
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theory makes sense over a field of an arbitrary characteristic. For two maps f and g
let fg or f(g) denote the usual (i.e. used by human beings) composition g followed by
f. We shall sometimes use also the covariant notation g o f for the same composition,

so one must take into account the switch go f = fg = f(g).

1.1 For the convenience of the reader we recall here some more or less classical
notions. A strict monoidal category is a triple C = (C,®,I), where C is a category,
® :C x C — C is a functor and I € C is an object such that

(A® B)@ C=AQ®(B®C) for all A,B,C € C (associativity), and
A®I=Aand I® A= Afor all A€C (I is the two-sided identity).

Recall that a strict monoidal category is a special case of a monoidal category (see [22,
VIL.1] or [21] for the definition), but we will not need this more complex notion here.
As usual, the associativity enables us to write multiple products, such as AQ B® C,
without parentheses.

Let C be a strict monoidal category as above. By a symmetry on C we mean a
functorial map S = Ss5: A® B — B ® A given for any two objects A, B € C, such
that the diagrams (1 denotes the identity)

1 SA,B@C
A® B——— AQ®B AQRBRC——BRCQ®A
SAR /9;.;4 and Sa.B ®}\ / ® Sac
B A BRA®C

commute. The functoriality of S means that for any two maps f : A — A’ and
g : B — B’ the following diagram

f®g
ARB —A'QB'

Sa,B ‘ 1 Sap
gl f '

BRA———B'QA

commutes. Notice that a symmetry on a monoidal category is a special case of a
braiding, see [14]. By a functor F : C — D between two strict symmetric monoidal
categories we always mean a strict symmetric monoidal functor, i.e. a functor which

respects the strict symmetric monoidal structurés on C and D, respectively.



DEFORMATIONS AND THE COHERENCE 125

A typical example of a strict symmetric monoidal category is the category Vect
of k-vector spaces. The operation ® is the usual tensor product over k, the identity
object I is k itself and the symmetry Syy : UQV — V @ U takes u ® v onto v ® u.

1.2 By a theory we mean a strict symmetric monoidal category, say A, such that

— the objects are indexed by (or identified with) the set N of natural numbers,
-m®n =m+n, for any m,n € N = Ob(A) (hence I = 0), and
— each hom-set A(m, n) carries a structure of a k-vector space and all the operations

of the category A (the composition o, ® and S) are compatible with this structure.

Theories in the sense of the above definition and their (strict symmetric monoidal)

functors form a category which we denote by Theorties.

By an A-algebra we mean a (strict symmetric monoidal) functor A : A — Vect.
It is clear that the value A(1) can be interpreted as the underlying vector space of the
algebra A. The category of A-algebras will be denoted by A-algebras. Notice that
there is a resemblance of our definition and the classical definition of Lawvere [19],

compare also the comments in 0.2.

1.3 Let Gets denote the category of sets and consider a map X : N@QN — Gets, X =
{X(m,n)}mmn>0, we will call such a map a core. Denote by €ores the corresponding
category. Using the terminology of [22, II.6] we can define €oves simply as the category
(N x N | Gets) of objects under (N x N) € Gets. We have the ‘forgetful’ functor
O : Theoties — Cores defined simply by ignoring the k-vector space structure on the
sets A(m,n). Using the same kind of arguments as, for example, in [22, IL.7] or [30],
we can easily show that this functor has a left adjoint F : €oves — Theoties; it is
natural to call the object F(X) the free theory on the core X. Let us give a few of
examples to 1llustrate this notion.

1.4 Example: Sym and F(0). Let S, be, for m > 0, the symmetric group on m
elements and put, by definition, Sp = {1}. Let us define

_ [ k[Sn], m=n,
Sym(m,n) = { 0 otherwise.

It is immediately to see that the usual composition of pérmuta.tions, linearly ex-
tended over the group ring k[Sy], defines a category with N as the set of object-
s and Sym(m,n) as the hom-sets. We denote this category by Sym. To define

a symmetric monoidal structure on Sym, we put, for two permutations ¢ € Sp,
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o:{l,...,m}—={1,....m}and v € S;, v: {1,...,n} = {1,...,n},

~_ J o(i),1<i<m,and
(0®V)(1)—{ m+v(i—m) form <i<n+m.

Finally, we define the ‘switch’ Spn : m +n — n+ m by

Smali) = {

It is an easy exercise to prove that the operations defined above (or, more precisely,

n+iforl1 <i<mand
t—mform<i<m+n

their linear extensions) equip Sym with the structure of a theory (denoted again by
Sym).

Let 0 denote the empty core (= the sets X (m,n) are empty for all m,n > 0). Then
it is more or less clear that Sym is the free theory on the empty core §, Sym = F(0),
compare the arguments in [14]. :

For an arbitrary core X, there is a natural map § — X which implies the existence
of an embedding Sym = F(0) — F(X). The existence of such an embedding enables
us to consider elements of k[S,,] in a natural way as elements of F(X)(m,m) for any
natural m. There is a very easy explicit description of this embedding: let o; be the
generator of S,, interchanging i-th and (i + 1)-th elements. Then o; is mapped onto
]li—l & Sl,l ® ]ln—i—l_

1.5 In what follows we will use the ‘naive’ abstract tensor calculus [17, 1.8]. For
7"\

will denote a map having two ‘imputs’ and one ‘output’, i.e. an element of A(2,1) of
8

example, the symbol

some theory A. Also the composition will be denoted in a natural way, for instance

Q)= A D-( A=)

1.6 The following notation will be useful in the sequel. Having an index set J and
a couple (s;,1;) of natural numbers, given for any j € J, then any sequence {¢,,,}
determines a core X with X(m,n) = {{;,;; s; = m and ¢; = n}. For example, the
one-element sequence {£;,} determines a core with X(1,1) = {£11} and X (m,n) =0

otherwise.
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1.7 Example: F({11). We claim that F(£11)(m,n) = 0 for m # n (this is trivial)
and that every element of F(£;;)(m,m) can be written as a k-linear combination of
elements of the form (¢} ® - -- ® £im)o, where 1y, . . ., I, are natural numbers, o € S,

and ¢!, denotes the composition £11 0« 0 &1 (I-times).

The proof is an easy exercise; it is based on the functoriality property of the switch
S (see 1.1) which implies that the relation

R

is satisfied, for %r € A(1,1), in each theory A.

1.8 Example: F(§). Let B, denote, for n > 1, the set of all (full) bracketings of n
nonassociative indeterminates. The fact that [| B, with the evident multiplication is
the free monoid on one element [27, 1.4] implies that the elements of B, can be used
to encode n-fold compositions of £;. For example, (o) denotes the identity,

(e, ®) denotes /J)\ = £a1, ((e,e),e) denotes {j and so on,

see also [2, Chapt. I] or [29] or 4.3 of this paper. This makes possible to identify the
elements of B,, with corresponding maps in F(£2;)(n, 1).

Again as a consequence of the functoria.lity of S, whi_.ch implies that

@K1

we get that, for any m > n, every element of F {21)(m n) decomposes as a k-linear
combination of elements of the form -

(1@ ®n)0, 0 € S, & € By, i >1and Yl = m,
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for m < n is the set F(£21)(m,n), of course, empty.
The dual case of F(§13) can be handled analogically just by ‘turning all the argu-
ments upside down’. This is a way in which the duality works in our theory, see also

the comments in 3.14.

1.9 'In all the examples above we showed that an arbitrary map can be written as a
k-linear combination of elements either of the form ¢o or o¢ (the former one in the
case of F(£;2)), where o € Sy, for some m > 1 and the map ¢ ‘does not contain’ the
switch. This is, however, not always true. As an example take the element

} )
X) ( with /l\ = §2; and \T/ =12 )

of F(é21,&12). This element will play an important réle in the theory of bialgebras,

see 1.15.

1.10 The examples of algebras related with free theories are very plain. An F(&11)-
algebra is nothing but a couple (V, d) of a vector space V and an endomorphism d, an
F(é21)-theory is a couple (V, u) where p : V® — V is a bilinear map, an F(éq3)-theory
is a couple (V, ®) where ® is an element of V&3, etc.

1.11 Let A be a theory and J an index set. Suppose we are given a sequence r; €
A(mj,n;). Then it is easy to see that there exist a theory A/(r;j;j € J) together with
amap v : A = A/(rj;j € J) having the property that, for any theory B and for
any map f : A — B such that f(r;) = 0 in B(mj,n;), j € J,-there exists a unique
¥ : A/(r;j;7 € J) — B such that the diagram

A——*B

|

A/(ri;7€J)

commutes.

1.12 Example: Complexes. Let A = F(é11)/(r1), where
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rn =

Then an A-algebra is a couple (V,d) of a vector space V and an endomorphism d :
V — V such that d? = 0.

1.13 Example: Associative algebras Consider A = F (&1)/ (r1) with

r/\ /\\‘

Then an A-algebra is a couple (V, i) of a vector space and an associative multiplication
p:Vez, vy,

1.14 Example: Commutative associative algebras. Consider A = F(€21)/(r1,72) with

(R

Then an A-algebra is an associative commutative algebra.

r; as in 1.13 and

1.15 Example: Bialgebras. Let A = F(£21,612)/(1,72,73), where r; is the same as

Y-

Algebras of the theory A are exactly the bialgebras in the sense of, for example, [25],
r, encodes the associativity, r; encodes the compatibility of the multiplication and the

comultiplication and r; encodes the coassociativity.

1.16 Example: Dridfel’d algebras. As the last examle of this kind we discuss briefly
Drinfel’d algebras. Following [3] and [4], by a Drinfel’d algebra (or a quasi-bialgebra
in the terminology of [9]) we mean an object of the form A = (V, u, A, ®), where V is
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a k-linear space, p: V ® V — V (the product) and A : V — V ® V (the coproduct)
are linear maps and ® € V ® V @ V is an invertible (in the natural product structure
induced on V@V ®V by p) element. Moreover, u is supposed to be associative, p and
A are supposed to be compatible (see the relation r; of 1.15) and we also assume that
the product p has an unit 1 € V and that A(1) =1 ® 1. The usual coassociativity
condition on A is in the Drinfel’d case replaced by -

1) (1QA)A-2=0-(A®1)A
and, moreover, the validity of the following ‘pentagon’ condition is supposed:
(2 (1’ A)(®)-(AQ1%*)(2)=(189)- (18AR1)(D)-(2®1).
In both equations above - denotes the multiplication induced by p.
If we neglect, for simplicity, the role of the unit, the structure of a Drinfel’d algebra

is encoded by the theory of the form F (13, €12, €o03)/ (71,72, 73, 74), Where r; and rp are

as in 1.15. To describe the condition (1) we put

. U U .

LT_ |

We leave the relation r4, encoding (2), as an exercise to the reader. The pictures
based on the abstract tensor calculus are in the case of Drinfel’d algebras already too

baroque. More appropriate way to handle this case is the deviation calculus of [25].

1.17 Let A be a theory. Modules over A are, as usual, abelian group objects in the
over-category Theoties/A, but we prefer to give the following explicit definition.
By a module over a theory A we mean a core M = {M(m,n)}mn3o such that

each M(m,n) has, for m,n > 0, a structure of a vector space and there are bilinear

operations
o=o0; : A(m,n)x M(n,k) — M(m,k), (left composition)
o=o, : M(m, n) x A(n, k) = M(m, k), (right composition)

®=Q : A(mq,n1) X M(mg,n3) = M(m; + my,ny + na), (left tensoring)
®=Q, : M(nh,rh) x A(ma, nz) — M(my + ma, ny + n2), (right tensoring)
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for all natural m,n, k,m;,my,n; and n,.

These operations must satisfy the following axioms (notice the shorthand, it gives

us almost for free the proper axioms for modules, compare also [23]):
fo(goh)=(fog)oh, f € Oi(m,n), g € Oz(n, k) and h € Os(k,1),

where (04, 0,,0;) = (A,A,M), (R, M,A) or (M, A,A), m,n,k,1 > 0. To elucidate
the use of this shorthand, take, for example, (0;, 0;, 03) = (A, A,M). Then the above

axiom reads as

foi(gorh)=(fog)orh

for f € A(m,n), g € A(n, k) and h € M(k,1). Next, we require
f®(g®h)=(f®g)Q®h, f€Oy(my,n1), g € Oz(mz,n3) and h € O3(m3, n3),

where (0,,0,,0;) = (A, A, M), (R, M, A) or (M, A,A) and m,,n;,mz,nz,mz,nz > 0.
The last condition is )

(fiof)®(g1092) = (f1® )0 (28 4),

for fi € Oy(k1, k2), f2 € Oa(ks, k3), g1 € Oa(ly,12) and g2 € O4(lz, I3); (04, 0,,02,04) =
(Aa A,Av M)’ (A) A: Ma A)’ (A,M’ AiA) or (MvA’ A’ A)) kl) k21 k31 117121 l3 2 0.

1.18 We denote by A-biMod the category of A-modules in the sense of the above
definition. It is easy to see that A-biMod is an abelian category. The vocabulary from
the category of (usual) modules over a (usual) algebra translates ‘coordinatewise’ in
an obvious way. For example, for M,N € A-biMod, we say that M is a submodule
of N if M(m,n) C N(m,n) for all m,n > 0. Similarly, for a map f : M — N
we let Ker(f) to be the submodule of M defined by Ker(f)(m,n) = Ker(f|mmn) :
M(m,n) — N(m,n)), m,n > 0, and so on. Finally, having a module M and a system
S={s;€ M(m,-,n,-); jeJd}, we define the submodyle generated by S (in M) to be
the intersection of all submodules N of M such that s; € N(mj,n;) for all j € J.

1.19 Let A be a theory and let M be an A-module. Let Der(A, M) be the set of all
sequences 6 =,{0n}mm>o of linear maps O, : A(m,n) — M(m,n) such that

0(foyg)

0(f®29)

fo 0(9) + 0(f) Or ga fe A(man)v g€ A("’a k) and
F®0(9) +6(f)® g, f € A(my,n1) and g € A(mz,'ﬂz),

where m,n, k,m;,mz,n; and n, are natural numbers.
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It is obvious that both Der(A, M) (the set of derivations) and Homa(M, N) (the
set of A-algebra homomorphisms from M to N) has a natural structure of a vector

space.

1.20 Example: Free modules and the ‘basic field’. Similarly as in the case of theories,
there exists a ‘forgetful’ functor O : A-biMod — €otes. This functor has again a left
adjoint which we denote by A(—) : €ores — A-biMod. We call A(X) the free A-

module on the core X.

Next, let ky be, for a given vector space V, the full subcategory of Vect whose
objects are tensor powers V&, n > 0 (i.e, ky is the subcategory of Vect, ®-generated
by V). It is obvious that ky inherits from Vect the structure of a strict monoidal
category. It is equally obvious that the image of an A-algebra A : A — Vect with
A(1) = V belongs to ky and that A defines on ky the structure of an A-module. As
we will see later, the category ky plays in our theory the réle of the basic field (this
is why we choose the ambiguous notation ky for it) and that the algebra A can be
considered as an ‘augmentation’ of the theory A.

2. Resolutions and the Cohomology

The goal of this paragraph is to define an analog of the ‘classical’ cotangent coho-
mology functor T%(—; =), i = 0,1,2, which was introduced, for example, in [20], see
also the discussion in 0.3. Most important for our purpose is the first cohomology,
which is intimately related with deformations (see Proposition 3.10), therefore all the

exposition aims toward this object.

2.1 Let A be a theory. A pre-resolution of A is an object R of the form
(3) . A& F(X) & FX)NY) L F(X)(2),

where X,Y and Z are cores, 7 is an epimorphism (i.e. a map such that mpn, :
F(X)(m,n)

— A(m,n) is epic for all m,n > 0) of theories, @ and § are morphisms of F(X)-
modules, af = 0 and Im(e) = Ker(x).

2.2 Let R be a pre-resolution as in 2.1 and consider the submodule O C F(X)(Y)
generated by elements - - : - .

a(a) o1 b — a o, a(b), a € F(X)(Y)(m,n), b € F(X)(Y)(n,k), m,n,k >0, and
a(a)®ib— a®,a(b), a € F(X)(Y)(my,n1), b € F(X)(Y)(ma2,n2), m1,ma,n1,n3 >0,
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and call O the submodule of obvious relations. It is immediate to see that a(O) = 0.
We say that R is a resolution of A, if Ker(a) is generated by Im(8) and O. The fact
that for any theory there exists a resolution is an easy consequence of the following
lemma, whose proof is an exercise.

Lemma 2.3 For any theory A there ezist a core X and an epimorphism F(X) — A.
Similarly, for any module M € A-biMod there ezist a core U and an epimorphism
A(U) = M. '

2.4 Example Let us consider A = F(§11)/(r1), 1 = €11 0 €11, as in 1.12. Let us
denote

&n = {» and let 9, = # and (;; = +be new independent variables.

We claim that the object

(4) A < FEn) < F(Eu)(m) <= FEu)(Cu)

where

o($)=[mis(f)=]-

is a resolution of A. It follows from the definition of A that Im(a) = Ker(w). As for
af =0, it is clearly enough to verify this condition on the generator (;;. We have

aﬂ(+).=.a -1]= - =0,

which proves a8 = 0.

The most difficult task is to prove that the condition of 2.2 is satisfied. This is,
by definition, the same as to show that an arbitrary element of Ker(a) is zero modulo
the the submodule of F(&;1){711) generated by the relations

(5) micaotl; = & oaon, a€ F(fu)(1,1) .
(6) (f10Mm106¢2) VR (Y103, 0952) = (¢ oo $2) ® b® (1 0711 0 93),

b1, b2, 1, %2 € F(€n1)(1,1), b€ F(&u)(l,1), 1 >0, and ‘
(M fnonu = mmoén
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(the first relation is obviously a consequence of the third one).

Let us introduce first some notation. Let Fo(£11)(n11)(m, m) denote, for m > 1, the
vector subspace of F(é11){m1)(m,m) generated by all elements of the form a;®- - - am,
a; € F(&1)(m,m) or a; € F(é11)(m1)(m,m), 1 <i < m. We can show, similarly as
in Example 1.7, that an arbitrary element of F({11)(n11)(m,m) can be written as
a linear combination of elements of the form uo with u € Fo(&11)(n11)(m,m) and
0 € Sm. The equation a(uo) = a(u)o, following from the fact that a is an F(¢11)-
module homomorphism, enables us to infer that an arbitrary element of Ker(a)(m,m)
is of the form Y. ; u/o? with u/ € Ker()(m,m) N Fo(é11)(n1)(m,m) and o7 € S,
J € J. This enables us to restrict our attention to the intersection Ker(a)(m,m)N
Fo(€11){m1)(m, m) only.

An arbitrary element u of Fo(é11)(n11)(m,m), m > 1, can be plainly written as

® . u=) AW w0 0u, @ - Qul),
: ieJ
where w! € F(£11)(1,1), ¢ € F(£11)(nm1)(1,1) and A; € k, for j € J. Let us introduce
also the notation {r} = {f; € F(£u)(1,1) for r > 0 and {p,q} = El oot e
F(é11){m1)(1,1), for p > 1 and 1 < ¢ < p. Notice that {p,q} = {p,1} modulo the
relation (7). Thus we can suppose that the element u from (8) is of the form
u=Y 4;-({rf} - {r}e {1} @ {r .} ® 8]
jeJ .
for some r;' > 0 and p’ > 1. We immediately have

a(u) =) A;j-({ri}@--{r_}e{p+1} & {r .} ® & {r}.
jeJ :
- Clearly a(u) = 0 if and only if
9) . ZAj'(T{,...,ri__l,pj+1,7’,1;.+1,.-.,7‘3.,‘)=0
jeJ ’
as an element of k™ =k@--- ©k (m times). Let us decompose u as >~ un, where the

summation is taken over all m-tuples n = (n,,...,n,), 7; 20,1 <7< m and
=Y Ai-({rf}e--{r_}e{r.1}e{,}e ek}
Jj€Jn

where Jy = {j € J; (1'{, e ,ﬂ;_,,ﬂ + l,r{;H,- --,r8) = (n1,...,nm)}. The equa-
tion (9) implies that u € Ker(er)(m,m) if and only if un € Ker(a)(m,m) for all n.
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Let us fix some n = (n4,...,ny,). It follows from the very definition that uy may
be nonzero only if there exists some ip, 1 < 79 < m with n;; > 2. We can see now

that, modulo the relation (6), un can be written as

un= Y Aj-({m}® - @ {ni(1}® {n.o, 1} ® {Riot1} ® -+ {nm}
JjE€Jn
and for such a uy clearly a(un) = 0 if and only if uy, = 0. We have proved that (4) is
a resolution of A = F¢11)/(é11-0 é11). '

2.5 Let R be a resolution (3) of A and let M € A-biMod. The map 7 : F(X) - A
induces on M the structure of an F(X)-module. We can relate with R and M the
following complex of vector.spaces, £* = £*(R,M):

(10) — Der(F(X),M) -5 Homyz(x)(F(X)(Y), M) - Homyz(x)(F(X)(Z), M),

where &, is defined by 61(0)mn = Omn(amn) and 62 is defined by 83(f)mn = frmn(Bmn),
m,n > 0. It is easy to check that these definitions are correct and that 5261 =0. We
define

T(A; M) = H"(E"‘('R,,M),ﬁ,.), 1=0,1,

and call it the cotangent cohomology of the theory A with coefficients in M. The usual
acyclicity argument (recall that R is a resolution) together with the freeness of the

objects under consideration enables us to prove that:

Proposition 2.6 The definition of the cotangent cohomology does not depend on the

particular choice of a resolution.

We define also the second cotangent cohomology group, though we do not need it
in the paper. Let R be a resolution as in (3) and let U = Ker(a). Then the inclusion
U — F(X)(Y) induces the map 9 : Hom;-(x)(}'(X)(Y),M) — Homx(x)(U, M) We
put 72(A; M) = coKer(3).

2.7 As a matter of fact, it was possible to define the cotangent cohomology without
making use of the third term F(X)(Z ) Z) of (3), using only the kernel U (the module of
‘relations among the axioms’) similarly as it was done in [20] for the ‘classical’ cotan-
gent cohomology. We could even avoid the use of the resolution and define 71(—; )
by the similar formula as that of [20, Lemma 3.1.2] for T(—, —). The problem is that
all attempts to obtain an explicit description of T*(—;-) in concrete examples require

in fact all the information necessary for the construction of a resolution.
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2.8 Exercise: Prove from the definition that 7' %(A,M) = Der(A,M).

2.9 It will be useful (see 3.15) to consider the construction above also for a pre-
resolution R. Notice that the definition of £*(R, M) still makes sense and put

Ti(A; M) = H'(£*(R,M),4.), i =0,1.

Proposition 2.10 For any pre-resolution R we have T2(A; M) = T°(A; M) (this is
obvious) and T3(A; M) D T'(A; M).

Proof To prove the inclusion, it is enough to realize that -any pre-resolution (3) can
be completed into a resolution by adding new generators to the core Z.

2.11 Example: Continuation of Example 2.4. Let A = F(&11)/(é11 0 €11) be as in
Example 2.4. Let us compute, for M € A-biMod, the cohomology 7!(A; M) as
introduced above. The complex (10) has the form

(11) 0—Der(F(é1), M) 3 Hom(g,,)(F(€11)(m1), M) B Homz(enny (F(611) (Cua), M)

Each 6 € Der(F(¢11),M) is uniquely determined by its value on the generator &,
which gives the identification Der(F(¢11),M) & M(1,1). Similarly, an element f €
Homg¢,,)(F(é11)(m11), M) is determined by its value on the generator #;;, which gives
that Homgg,,)(F(é11){(m1), M) = M(1,1). In the same vain we may get also that
Homyg,,) (F(é11){1), M) = M(1,1). Thus (11) can be written as

(12) 0 — M(1,1) 25 M(1,1) 2 M(1,1).

To describe the value of §; on some element ¢ € M(1,1) it is enough to evaluate
O11a11(711), where 0 € Der(}' (é11), M) is the denvatlon whose value at £;; is ¢ Using
the abstract tensor calculus, this evalua,tlon can be deplcted as

ORORA R S 2

Similarly, to compute 8(p) for p € M(1,1) we shall evaluate fi1811((11), where we
denoted by f € Homg(g,,)(F(£11)(n11), M) the map whose value at 711 is p. We have

6 (§) =suba(§)=su| (- [ =T-[rorn-¢-
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Expanding the above pictures into formulas we get 6;(¢) = ¢ o &1 + &1 0 ¢ and
6a(p) =pobun—Euop.
It is very instructive to verify that §26;(¢) = 0. We have

6261(¢) = b(doén+énogd) = .
(poén)obn+(bnod)obu—£€no(goén)—E&no(fnog)=
$o(fnoéu)—(uobun)og .

and ;ve shall prove that this is zero. This is, h9wever, easy: it is enough to realize

that M € A-biMod and that the F(¢;;)-module structure on M is induced via the

projection w, which sends &;; 0 £11 to zero. We warmly recommend to try to make the

above calculations using the abstract tensor calculus, it is much more quicker (though

a bit longer in the written form).

Summing up the results, we infer that

Ker { ()0 n —6u 0 (-): M(1, 1) > M1,

(13)TY(F(é11)/(én1 0 éun); M) = .
tm{ ()0 n + 60 () : MU, 1) ~ M@, |

It is also instructive to verify that indeed 7°(F(£11)/(é11 © é11); M) = Der(F(é11)/ (€110
é11), M), as it was stated in 2.8.

For another examples, see the following paragraph.

3. Deformations and the Cohomology

We assume that the reader is already familiar with the basic notions of the defor-
mation theory as it is discussed, for example,-in [7], [9], [6], [25], ... It is not difficult
to verify that the following definitions, given in terms of our calculus, are in concrete

examples equivalent with the classical ones.

3.1 There are two main kind of problems of deformation theory: the equivalence
problem (see 3.3) and the integrability problem (see 3.6). As far as the first problem
is concerned, it is very simple, at least from the conceptual point of view - it is
related with the isomorphism problem in the moduli space of the form M/U, where
the algebraic group U acts unipotently on the variety of structure constants M, and
this problem has a nice linearization (see [7] or [24]). We still decided to discuss it
here briefly, in order to show how our calculus works. The second problem is much

more delicate. Let us introduce first some-notation.
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3.2 Let A be a theory over a field k and let R be an k-algebra. Then A ®x R
denotes the theory with (A ®x R)(m,n) = A(m,n) @ R, m,n > 0, with o and ®
defined as the R-linear extensions of the corresponding operations in A. We use the
notation A[[t]] for A @y k[[#]] (¢ is an independent variable) and A[[t])/(t"), N > 1,
for A ®x k[[t]]/(¢"). The similar notation will be used also for modules over A.

3.3 Let A: A — ky be an A-algebra. By a defohnatic;n of A we mean a theory
/i = A + tA1‘+ t2A2 + e A[[t]] - kv[[t]],

where the sum above means that /i,,m = Apn + t(A1)mn + - - - for some linear maps
(A)mn : A(m,n) = ky(m,n), m,n > 0. Denote by Def(A) the set of all deformations
of the algebra A.

Let G = Aut(V[[t]]). The group G acts on Def(A) by (9A)mn = g% Amn(¢®™)72,
m,n > 0. Finally, let U = {g €G;g = 1 +té1 + t?¢2+---,¢; € End(V)}. Then
the first problem of 3.1.can be formulated as the problem of the decision whether a
deformation A € Def(A) is equivalent to the ‘trivial’ deformation A = A+¢0+ --- in
Def(A)/U. We state without proof (which is actually very easy) the following

Proposition 3.4 The obstructions to the triviality problem as formulated in 3.8 are
elements of the (linear) moduli space
(14) : Der(A, k)/End(V),
where ¢ € End(V) acts on 6 € Der(A, k) by
(60 O)mn = $"0a(¢™) 7", m,n 2 0,
with g1 = 3, (17 ® 4 ® 1').

3.5 Example Let A = f((zl,ﬁlz)/(rl;r2,1'3) be the theory of bialgebras as in 1.15.
Let A = (V,p,A) be an A-algebra (= a bialgebra), u = A(£21) and A = A(é2).
Any derivation § € Der(A,ky) is uniquely determined by a couple ¥; = 05(£21) €
Hom(V®?%,V) and 9, = 015(¢12) € Hom(V, V®2). Expressing the condition 6(r;) = 0,
1=1,2,3, we get '

(1@ ) —i(n @ 1) +$1(1 8 ) — w(1 B h1) = 0,
(r@¥)(1®S@LARA)— A + (1 ®u)(1@S@L(ARA)+
+Hp@u)(1®S®UAR ) — 20+ (4@ u)(1®S®1)(¥s ®A) =0, and
(1®)A—(A® n)¢z_+ (1®A):— (¥2@1)A =0

(S(z ®y) =y ® z for z,y € V), which can be written as
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dHodl(¢1) = 01 dcoH('/)l) + dHoch(¢2) =0 and dcoH('/)2) = 01

where dH;cl, (deon) is the Hochschild (coHochschild) differential, see [9] or [25] for
details. The action of ¢ € End(V) on (31,) is described as

Y1 1 —p(1 @ @) + dp — p(¢ ® 1) = 1 — duoan(¢) and
Yo P+ (PO 1)A — Ad+ (1 ® ¢)A = P2 + deoni(92).

It is clear from this description that the space (14) of Proposition 3.4 is isomorphic
to ﬂE(A; A), the bialgebra cohomology introduced by M. Gerstenhaber and S. Schack
in [9), see also [25].

3.6 Let A: A — ky be an A-algebra and consider a ‘partial’ deformation A=
A+tAy+---+tNAy, N > 1, A: A[[t])/(t¥*1) - ky[[t]]/(#V+?) (the meaning of this
notation being the same as in 3.3). The integrability problem for A is the problem
of the existence of a honest deformation iri the sense of 3.3 which extends A. The
primary obstruction to the existence of such an extension is related to the problem of
finding some An.; such that A = A+tN+1 Ay, : A[[t]]/(tV*?) — ky[[t]]/(tV+?) is an
A[[t])/(tV*?)-algebra. We show that the obstruction to the existence of such an Anya2
is an element [O] of T'(A; k).

3.7 Let
R: A& F(X) < FX)NY) £ F(Xx)(2),

be a resolution of A as in (2.1). Define the homomorphism A : F(X)[[t]] = kv/[[t]] of
theories by .A,,,,.(z) = /im,.or,,m(z) for a generator z € X(m,n), m,n >0 (.A is a kind
of alift of A). The crucial observation here is that Apmn(u) # /i,,,,.o'lr,,_.,.(u) for a general
u € F(X)(m,n), but still A(a) = 0 (mod tV+1) - an easy consequence of the fact that
A is an ‘algebra mod ¢V+1, Finally, define © = O(A) e Homgz(x)(F(X)(Y);kv) by

Opnn(v) = coefficient at tN*! in Apn(@mn(v)), v € F(X)(Y)(m,n), m,n > 0.

Lemma 3.8 The definition of O is correct, i.e. O defined as above is a homomorphism
of F(X)-modules. : )

Proof We shall show that

Omi(u 0 v) = Apa(u) 0 Onr(v), Omi(a 0 b) = Opa(a) 0 Ank(d),
(15) 0m1+'mz,ﬂ1+ﬂc (u’ ® v’) = Amxm (u") ® omznz ('U') and .
Oy 4mainy+ns (@' ® V) = Opayny (') ® Ay (V),
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for u € F(X)(m,n), v € F(X)(Y)(n,k), a € F(X)(Y)(m,n), b € F(X)(n,k), v’ €
F(X)(m1,m), v’ € F(X)(Y)(ma,n2), @' € F(X)(Y)(m1,n1) and ¥ € F(X)(ma,na2),
for all natural numbers m,n,m;, n;,my, and n,.

Let us prove the first equation of (15). By definition, Opk(uov) = coefficient at ¢V+!
in Ami(0mk(u0v)), and Amk(Cm(u 0 v)) = Ak (10 0k (v)) = Amn (1) 0 Ani(ni(v)).

Since Ank(ank(v)) = 0'mod tV+!, we infer that

coeficient at tV+! in ./i.,,.,,(u) ) ./i,,,,(a,.k(v)) =
= {coeﬂicient at t% in .A,,m(u)} 0 {coefﬁcient at tN+1in ./i,.k(a,.k(v))}
= Amn(1) 0 Oni(v),

which gives the first equation of (15). The argument for the remaining equations is

the same. [

Proposition 3.9 Let £&* = £*(R,ky) be as in (10). Then O € E'(R,ky) defined

above is a cocycle, i.e. §;(0) = 0.

Proof By the definition of 8, we must show that Opy, 0 Bn(w) = 0 for all w €
F(X){(Z)(m,n), myn > 0. But Opy 0 Brun(w) is, by definition, the coefficient at tVN+!

in ./im,.(a,,.,. 0 Bn(w)), which is zero, because a0 § = 0. ]

Proposition 3.10 The cohomology class [O] € .T'(A;ky) constructed above is the
(primary) obstruction to the integrability problem as formulated in 3.6.

Proof We shall show that [O] = 0 is equivalent to the existence of an A4, from 3.6.
So, suppose that we have such an Ay, i.e., a system of linear maps {(An+1)mn }mn30,
(AN4+1)mn @ A(m,n) — ky(m,n), such that A=A+ tN+1AN,, is an ‘algebra mod
tN+2 (in the evident sense). Define the derivation An4+i € Der(F(X),ky) by

" (AN41)mn(Z) = (AN+1)mn © Tma(2) for z € X(m,n), m,n > 0.

Let also A : F(X)[[t]] = kv[[t]] be i;he ‘lift’ of A constructed in exactly the same way
as the ‘lift’ A of A from 3.7. We show that A = A+tN+IAN+1 mod t¥+2, Notice first
that this equation is certainly fulfilled on the generators of F(X): Thus it is enough
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to prove that A + t**1 Ay, is a ‘homomorphism mod t¥+?’. We have the following

equations mod tN+2;

(.‘i + tN+1AN+l)mk (uow) = Ak (u 0 w) + N (AN 41)mk(u 0 w)
= Ann(1) 0 Auk(w) + t¥+! (Amn(u) 0 (An41)nk() + (AN41)mn (1) 0 Ank(w))
= (.A + tN+1AN+1)"m (u)o (./i + tN+1.AN+1)”k (w)

for all u € F(X)(m,n), v € F(X)(n,k) and m,n,k > 0. This shows that A +
tN+1 An .1 behaves as a homomorphism mod ¢V+2? with respect to o. We can show in
exactly the same way that it behaves as a homomorphism with respect to ®, as well.
So we know that A = A 4tV + An41 mod tNH, We also have Amn(@na(v)) = 0 mod
tN+2 since A is an ‘algebra mod tV+?’. Summing up the above considerations, we get
that

0 = coefficient at tV! in Apu(amn(v)) =
coefficient at ¢V+! in (./i,,m(a,;m(v)) + (.AN+,),,,,,(a,,,,,(u)))
= Omn(v) + (51 AN+1)ma(v)

for any v € F(X)(Y), m,n > 0, which is the same as O = —6;(An41) and this implies
that [O] = 0.

On the other hand, suppose [O] = 0, i.e. suppose that Opa(v) = wimn © (Amn(v))
for all v € F(X)(Y)(m,n),. m,n > 0, with some w € Der(F(X),ky). Define
A : A[)/@V*?) = ky[[t])/(E¥*2) by Apn(Tma(t)) = Amn(u) — tV+wp, (u) for all
u € F(X), m,n > 0. It is immediate to verify that this formula defines correctly an

extension of the partial deformation A. |

3.11 Example: Deformations of differential spaces. Let A = F(£11)/(£11 0&11) be the
theory of differential complexes ‘as in 1.12. Let A : A — ky be an A-algebra,-i.e. a
couple (V,d) of a vector space V and a differential d. Theorem 3.10 together with the
formula (13) gives that deformations. of this object are controlled by
Ker {6, : Hom(V, V) — Hom(V, V)}

Im {6, : Hom(V, V) — Hom(V, V)}’

where 61(4) = ¢(d) + d(¢) and 6;(¥) = (d) — d(¢), 4,¢ € Hom(V, V).

T'(Askv) =

3.12 Example: Deformations of associative'algebras. ]
Let A = F(&1)/(r1) be the theory of associative algebras as in 1.13, Consider the
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object
(16) R: A& F(En) & Flen)mm) & FEn)(Ca)

where a(n31) = and B(ng) =

K}\/(MMB\

where /JJ\ denotes £3; and / \ denotes 73;.

As we prove in §4, this object is a resolution of the theory of associative algebras.

Let A € A-algebras be an associative algebra, A = (V, ), where uV®? — V is an
associative multiplication. The complex £*(R,ky) of (10) has obviously the form

0 — Hom(V®?, V) -2 Hom(V®, V) -2 Hom(V®, V).
We can easily compute (compare the arguments in 2.11) that

bi(m) = p(l®@m)-—m(pEe1)+m(l®u)-pme1)and
&(f) = pA®f)-f(rO1)+f(1Q@p®1) - f(1?Qp) +u(f®1),

i.e. that 6, and é, are the usual Hochschild differentials and

T'(A; ky) = Hoch®(4; A),
the third Hochschild cohomology group of the algebra A with coefficients in itself.

3.13 Example: Deformations of commutative associative algebras.
Let A = F(X)/(r1,72) be the theory of commutative associative algebras as in 1.14.
Consider the object

(17) R: A & F(€n) «— F(€a)(na1,721) L F(21)(Car, G315 G315 C1)s

where a(n31) = r1, a(21) = r2 and B(n41) is as in 3.12. To define § on the remaining

generators, let us introduce the notation

/ \ = a1, /i\ = 13 and 1 =n2a.
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DDA &
b

BGn) = r H + Q

We recommend to the reader to verify that a@ = 0. It is possible to show, by a slight
generalization of the arguments of §4, that (17) is indeed a resolution of A. It is

immediate to see that
E(R,ky) Hom(V®2,V),

EX(R,ky) Hom(V®3,V) @ Hom(V®?%,V), and that
E(R,ky) = H01p(V®4, V) ® Hom(V®3, V) ® Hom(V®3,V) @ Hom(V®2, V).

To describe the differential, consider the diagram
Hom(V®%,V)

M;
dHodl !

Y

Hom(V®3,V)@ Hom(V®2,V)

dHod\ S h]

Hom(V®4, V)@ Hom(V®3, V)@ Hom(V®3, V)@ Hom(V®2,V)
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where dyocn is the Hochschild differential as in 3.12, M;(m) = m(1 — S) (S = the
switch), Ma(n) = n(l + 5), Ji(n) = —p(1 ®n) +n(p® 1) — u(n @ 1)(1 ® S),
Ja(n) = —u(18n)(S@1)+n(18)—u(n®1), Shi(f) = F(I°~1®S+(S®1)(185))
and Shy(f) = f(1*°-S®1 + (1 @ S)(SQ® 1)), for m,n € Hom(V®%,V) and f €
Hom(V®3, V). The differentials are described as -

6i(m) = dyon(m) ® My(m) and
S(fOn) = duoa(f) ® (Shi(f) + Ji(r)) ® (Sha(f) + Ja(n)) ® Ma(n).

Let w = f @ n be a cocycle in £}(R,ky), i.e.
(18)  duoan(f) =0, Shi(f) + J1(r) = 0, Sha(f) + J2(n) = 0 and M,(n) = 0.

From M;(n) = 0 we easily get that n = M;(m) for m = }n. We can now take w—6;(m)
instead of w without changing the cohomology class.

Using the trick above, we can suppose that every cocycle in €'(R,ky) is of the
form f@0, f € Hom(V®3,V). This implies, by (18), that Shy(f) = Sha(f) = 0, which
means exactly that f is zero on the decomposables of the shuffle product in V®*. We

see that
T'(A;ky) = Harr’(4; A),
the Harrison cohomology.of A with coefficients in A, see [12].

3.14 Remark As we have already mentioned, the dualization in our theory is ex-
tremely easy — it is nothing but just turning all diagrams upside down. Using this
innocuous trick, we can easily infer, dualizing the arguments of 3.12, that the cotan-

. gent cohomology of the theory of coassociative coalgebras is exactly the coHochschild
cohomology (the notion of coHochschild is a kind of folk lore, it has occurred for ex-
ample in [9] or [25]).The statements of this kind are not much surprising. Much more
important application of this kind of duality are offered by self-dual theories, such as
the theory of bialgebras (Example 3.15). Here the duality may lead to substantial

simplifications of arguments.

The second remark is related to the construction of the obstruction [O] (Theo-
rem 3.10). All the arguments used in the construction remain valid if we start not
with a resolution, but with a pre-resolution R only. The element (O] thus construct-
ed will then belong to Tz(A;ky). It is an easy consequence of the functoriality of
the construction that [Og] = [O] as elements of T'(A;ky) C TA(A;ky). The impor-

tance of this remark is related to the fact that we are not always able to prove that
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a pre-resolution is a resolution (see Example 3.15), but we still have an obstruction
cohomology, though it may not be the best possible.

3.15 Example: Deformations of bialgebras. Let A = F (é21,&12)/ (1,72, 73) be the
theory of bialgebras as in Example 1.15. Consider the object

(19) R: R & F(&n) ‘—a— F(€21)(n31, 22, M3) L -7"(521)-((41,Csm(za,(u),

where a(na1) = r1, a(n22) = r2 and a(ms) = rs. The ﬁap B is defined by: B(a) =
the same as in 3.12, B((14) is dual to B((a) in the sense of 3.14, B((32) is defined by

Lk/k/i
A m><g

7\ 7\

where /l\ =&n, \T/ _ = €12, / i =131 and 0< = a2,

and fB(n23) is defined as the dual to /'9(7153) in the sense of 3.14.

It is quite e;asy to verify that (19) is a pre-resolution, but we are not able to prove
that it is a resolution, albeit we are almost sure that this is true. Having and A-algebra
A : A - ky, we,can easily compute that

TA(A;skv) = H3(4; A),

the bialgebra cohomology of A with _coeﬂicieuts in- A, introduced in [10].
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4. Resolutions and the Coherence

The aim of this paragraph is to prdve that (16) is indeed a resolution of the theory
of associative algebras. We formulate also some open problems related with the similar

questions.

4.1 Let Fo(€21)(m,n) denotes, for m,n > 0, the subspace of F(£21)(m,n) con-
sisting of elements which ‘do not contain’ the switch S. This definition is correc-
t — the set F(£1)(m,n) can be presented as the set of (meaningful) words in &3
and S factored by the relations which should be satisfied in a theory, Fo(£21)(m,n)
then corresponds to those words which do not contain S. The meaning of the nota-
tion Fo(é21)(na1)(m,n) and Fo(€21)(Ca1)(m,n) is similar. Denote also by Og(n,1) the
subspace of Fo(é21)(na1)(n,1) generated by elements of the form a(a) 0 b — a o a(d),
a € Fo(éa)(nn)(n,1), b € Fo(éu)(na1)(I,1), 1 < 1 < n. Notice that Op(n,1) =
O(n,1) N Fo(€21){7a1)(n,1). Another way to define Og(n,1) is to put

preOq(n, 1) = D Fo(€a) (1) (1, 1) & Fo(€ar)(man) (1, 1)
: =1
and introduce the map « : preOg(n, 1) — Fo(€21)(na1)(n,1) by .'7(a ®b) =a(a)ob-
bo a(b). Then Og(n,1) = Im(y).

4.2 Let B,; denotes, for n > 2 and 0 < 7 < n — 2, the set of all (meaningful)
insertions of i pairs of brackets between n nonassociative variables. For b € B,;, let
by (resp. by, resp. i) denote the bracketing obtained from b by the replacement

(@) — @ (resp. (eee) — o, resp. (seee) i @) at the i-th position.

4.3 As we have already observed in 1.8, the set B, = B, n—2 can be used to index
the elements of Fo(€21)(n,1). To describe this correspondence in a more formal way,
observe that all elements of B, can be obtained by a successive application of the
operation b +— by defined above on ee € B,. The correspondence B, 3 b+ {b} €
Fo(€21)(n,1) can be then described inductively as: .

— {oe} = &2 € F(€21)(2,1) and,

- if b € By, then {b3} = {B}(1"' @ £n @ 1™) (M= 2,1 < i <m).
Following excactly the same lines, the set B, ,—3 can be used to index the elements of
Fo(€21)(n131)(n,1), n = 3. To describe this correspondence, observe that an arbitrary

element of B, ,—3 can be obtained
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— either by successive applications of the operation b+ b on eee € B3, or
- by successive applications of the replacements b+ b or b — by;; on ee € By,

the second replacement being used exactly once.

The correspondence By ,-3 O b — {b} € Fo(é21)(n31)(n,1) is then inductively de-
scribed by the rules: {ee} = {21 € Fo(€21)(2,1) and {eee} = 13, € Fo(€21)(na1)(3,1),
{bg} = {B}(A"" ® & ® 1™) and {b} = (17! @ 131 ® 1™), for b € Bp,e,
1<i,j<mand *=m—2o0rm—23.

Finally, consider B, ,—4, n > 4. Again, an arbitrary element of this set can be
created

i) either from ee by successive applications of the operations b — by and b — b[l:]]:

the second one applied exactly twice, or

ii) from ee by successive applications of the operations b+ by and b — by,
the second operation applied exactly once, or

iii) from eee by successive applications of the operations b — b[ﬂ and b+ by,

the second one applied exactly once, or
iv) from eeee by successive applications of the operation b+ by;.

Clearly B, -4 can be written as the disjoint union of two subsets B, ,_, and B}

nn— n,n—4’

the first one consisting of elements of By n—-4 constructed by the procedure of ii) or iv)

above, the second one consisting of elements constructed as in i) or iii) above.

Now any b € Bj,,_, can be identified with some {b} € Fo(£21)(Ca)(n,1). The
identification is described by the inductive rules: {ee} = ¢3; € Fo(€21)(2,1), {0000} =
Ca € Fol€a)(na1)(4,1), {ba} = {b}(1*~" ® €1 ® 1™*) and {byypy} = {b}(1' ®7a ®
1™!) for b € By, 1 <i,l<mand *=m—2o0r m—4.

Next observation is that for any b € B!, _, there are some Lkand i, I+ k=
n+1and 1 <4 <, and some b; € By;_3 and b; € B3 such that b is obtained
from b; by the replacement b, e at the i-th position. The numbers k, I,7 and the
elements b; and b, are not unique, but we may suppose they'are chosen, once for
all, for any b € By, _,. Let us define {b}; as {b1} € Fo(21)(na1)(!,1) and {b}; as
11 @ {b2} ® 1'* € Fo(€x1){na1)(n,1). The correspondence b — {b}, & {b}; defines
then a map from By, _, to preOg(n,1).

Using the same arguments as in Example 2.4, we can easily infer that it is enough
to prove the following proposition (as a matter of fact, this is a consequence of a
general reduction principle which holds for all theories whose axioms ‘do not contain’
the switch; we intend to discuss: this phenomena in a forthcoming paper).
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Proposition 4.4 Consider the sequence

Fol€n)(n,1) €= Fola)(na1)(n,1) €& Fo(€n)(Car)(n, 1),

where ag and By are the obvious restrictions, n > 1. Then Ker(ap)(n,1) is generated
by Im(Bo)(n,1) and Og(n,1).

Proof Let us begin the proof with a brief discussion of the properties of the polyhedron
K, (so-called associahedron) introduced in [29] (see also [2] or [25], a nice exposition
of the properties of K,, can be found also in [16, Chapter II]). K, is, for n > 2, an
(n — 2)-dimensional polyhedron whose i-cells are, for 0 < ¢ < n — 2, indexed by the
elements of By, ,—i-2. If s is a cell corresponding to b € By, n—i—2, then the faces of s are
indexed by those ' € By, »—i—1 Which are obtained from b by (meaningful) inserting one
more pair of brackets. It can be shown that the relation b;(b2b3) > (b1b2)bs, b; € By,

j =1,2,3, induces a partial order on the vertices of K.

Let Ci(Kn; k) denote, for ¢ > 0, the vector space of i-dimensional cellular chains of
K, with values in k. If we identify the i-cells of K, with the corresponding elements
of Byn—2-i, then the elements of Ci(Ky,;k) are of the form 3 A; - & (finite sum),
Aj € k, Ve By n—2-i. Using the correspondences constructed in 4.3; we can define
the map Qo : Co(Kn; k) = Fo(€a1)(n,1) by Qo(T A; - ¥) = Y a; - {¥}; the map
O : C1(Kn; k) = Fo(€21)(na1)(n, 1) is defined by the similar way.

We have the decomposition Ca(Ky; k) = C3(Knjk) @ C5(Kyn; k), where Cj(Kn; k)
is definied to be the pa.r't of C3( K k) corresponding to 2-cells of K,, indexed by B ,,_,
and, similarly, C3(Ky; k) is the part corresponding to By, _,. This decomposition has
a nice geometrical interpretation. There are two types of 2-cells: the cells of the first
type are of the pentagonal shape while the cells of the second type have four vertices.
Then C4(Ky; k) corresponds to the cells of the first type and CJ(K,; k) corresponds to
the cells of the second type. The correspondence B}, ,_4 3 b+ {b} € Fo(£21)(Car)(n,1)
defines the map  : C3(Kq; k) = Fo(£21)((a1)(n,1) and the correspondence By, 4 3
b — {b}; @ {b}, defines the map Q] : C;’(K,.;k) — preOg(n,1). Let us consider the

diagram

Fo(€21)(n, 1)

Qo ﬂ0+7 .
Fo(£21)(ma1)(n, 1)e——Fo({21)(Ca)(n, 1) © preOo(n, 1)

20
(20) Qo 0, 0, ® N

i) 0
CO(KH; k) D Cl(Krnk)

C2(Ku;k)
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The crucial observation is that the diagram commutes. It is an easy consequence of
the definitions of the maps involved and the incidence relations of the polyhedron K,,
and we léave the verification to the reader. It is also clear that the maps g and
are isomorphisms. The claim of our proposition is equivalent with the exacteness of
the upper row of (20). But this follows immediately from the above remarks and from
the exacteness of the bottom row of (20) which follows from the asphericity of K,
(see [29] or [16]). : [ ]

4.5 Open questions and remarks As we have already seen, the most difficult
" task related with the construction of the cotangent cohomology of a theory was to
find the ‘relations among relations’. Here we shall say that it is not so difficult to find
some of them, it would be principally possible to write a computer program to do
that. Also the ‘abstract tensor calculus’ or the ‘deviation calculus’ of [25] may be used
for the visualization of these relations. The problem is to prove that we have found
all of them (or, more precisely, a generating system). There are certain indications
that this problem is closely related with a coherence problem in some category, but
it is not exactly the same. For example, in the proof of Proposition 4.4 we did not
use the coherence theorem in the formulation of for example [21], but we use the
asphericity of the associahedra, the property which implies the coherence. So the first
natural question is whether the construction of a resolution of a theory is related with -
a coherence property of some category. It may also well happen that there exists an

easier and more direct way to prove the acyclicity.

As we have already explained in the introduction, for the majority of classical
examples there exists a candidate for the cotangent cohomology - as the bialgebra
cohomology [9] for bialgebras, see 3.15. The second questt.'on is whether these coho-
mology theories cointide with the cotangent cohomology introduced here, i.e. whether

they are the best possible in the sense of the mcluswn of 3.14.

The third question is related with the existence of a natural Lie algebra structure.
Again, as it was shown by many aduthors, the cohomology theory related with the
classical objects are naturally defined-in all degrees and have a natural structure of a
graded Lie algebra, although we think that this need not be always true (a candidate
is the deformation cohomology for Drinfel’d algebras). The' question is whether our
construction can be, at least in some cases, extended to higher degrees to obtain this
structure on our cotangent cohomology. Here is one remarkable hint: the ‘classical’

cotangent cohomology of [20] can be extended in such a way provided the characteristic
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of the ground field is zero.
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