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Abstract

Moduli space of Hopf structures on the Borel subalgebra of si(2) is a line
with the origin (the point 8 = 0, where § is a parameter on the line) excluded,
and with two points at 8 = 1, the classical cocommutative algebra and a Hopf
algebra J. The algébra J is triangular. We describe its properties and give its
differential operator realization on the Jordanian quantum plane.
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1 Moduli of Hopf structures

The simplest nonabelian Lie algebra is the algebra with two generators 73, 7_ satisfying
[7'31'"'-] =—2m_ . (1)

It has the standard cocommutative coproduct, A,7s =301+ 1Q 73, A7 =7_Q
1+ 1®x-. The theory of Hopf algebras generalizes the theory of Lie algebras like the
theory of nonabelian Lie algebras generalizes the theory of abelian Lie algebras. For
Hopf algebras the coproduct becomes noncocommutative.

In the simplest situation of the algebra (1) one can ask what is the most general
coproduct for this algebra. It is easier to consider this question from the dual point
of view. Let A be the coalgebra of linear functionals on the algebra U« = U(r3.7_) of
polynomials in 73, 7_. The comultiplication law on A is given by (A¢,u© v) = (¢, uv),
¢ € A, u,v € U(r3, 7). Consider two linear functionals ¢ and p, given by

(t,757l) =26, , (p,757l) = &6 . (2)
Computing values ofAt, Ap on monomials we obtain using 72 7F = (73 + 25)*x’,

(At,ind @ Thxl) = 2tkgisL

(Ap,int @ rhxl) = 65(2%6161 + 616k67) . (3)

Therefore - :
At=tQ@t, (4)
Ap=p®@t+1Q@p. (5)

Thus the coproduct closes on p and ¢ in a simple way. This is the reason for our choice
of p and ¢. .

Possible coproducts for the algebra (1) become multiplication laws for the coalgebra
A. To find the coproduct on the whole of A one can directly compute values for every
linear functional like in (3). Alternatively one can find some commutation rules for p, ¢,
making A an algebra, in such a way that A is generated (in a proper topological sense)
by ¢,p, and A is a homomorphism. The precise formulation of our question is: what
is the most general ordering prescription preserved by the coproduct (4, 5)? Assume
we order functions of p, ¢ in such a way that p stands before ¢. The ordered monomials
p't! we assume to be linearly independent. Then writing

tp=Y pai(t) (6)
with the most general r.h.s. and applying A we obtain
(t®t)(r@t+18p) =3 (POt+1®p) a(t®1). (7)
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The ordered expression for the Lh.s. is
Yrut) @t +1® Y pat) . (8)
Collecting terms not containing p in the first factor, we find
a0®) @8+t Y plai(t) = (1@ p)a(t 01) . (9)

The terms of the form f(t) ® p'g(t) are linearly independent for different 7. Writing
a;(t) = T; a;;t’ we obtain for i > 0

Za.—,-(t@tj -t @t)=0. (10)

Therefore a;; =0, j # 1 i>0.
For i = 0 we have ao(t) @ t? + t @ ag(t) = ao(t © t), which after decomposmg ap in

power series, ag(t) = T; ag;t!, implies that agy = 0, agz = —ag1. ag; =0.i > 2.
Thus, eqn. (6) takes the form
tp= zpihut - amtz . (11)

Eqn. (7) reduces to

S rantet? =) {(p®t+10p) -107p'} an-(tQ1). (12)
>0 - i>0
Compare terms containing p*, k 2 2, in the first factor. Eqn. (11) shows that At
is the both-sided ideal. Therefore, terms containing p* in the first factor in the r.h.s.
of (12) have at least t**! in the second factor. For k > 2 such terms are absent in the
Lh.s. Therefore we find that ax, =0, k£ > 2.
Thus, denoting 2a = ag;, B = ay;, we conclude that

tp = Bpt + 2a(t —t?) (13)

is the most general ordenng prescription compatlble with (4, 5). "The factor 2 stands
for convenience.

We have now to identify equivalent products (13). The coproduct (4, 5) allows
automorphisms .
tet pHp’=~/p+u(t—1)- (14)
Then

tp' = Bp't+ (2va + p(B - 1))(t - 7). (15)
Therefore, if 8 # 1 we can set a to 0. The product tp = Bpt corresponds to the

coproduct ATs=13Q1+1Q7, Ar_=7_Q1+ B™/? @ x_ for the algebra (1). This
coproductA appears in the standard g-deformation of the Borel subalgebra of s!(2) [1].
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For 8 = 1 one can set & to 1 by the transformations (14). But since the classical
limit corresponds to a = 0, it is convenient to leave a free. Below it is shown that this
bialgebra structure actually extends to the Hopf structure.

For f = 0 one can set a to 0 by the transformations (14). Then tp = 0. The
counit € should obey (€ ® id)At= ¢, or €(t)t = t. Since the ordered monomials are
linearly independent it follows that €(t) = 1. Then te(t) = tis satisfied as well. One of
the properties of the antipode S is ¢(t)= m(S ® id)At, where m is the multiplication.
Thus we should have 1 = S(¢)t. Multiplying this by p from the right one finds p = 0.
Therefore for B = 0 the antipode does not exist, so this bialgebra does not admit a
Hopf structure.

To conclude, Hopf structures (admitting ordering in which the ordered monomials
are linearly independent) form a family described by the parameter g # 0, 1, and two
points for # = 1, one is the classical algebra, @ = 0, another corresponds to a = 1. In
the topology induced by the transformations (14), neighbourhoods of the point a = 1
are open sets of the line of 8, but neighbourhoods of a = 0 include an open set of the
line of B and always the point @ = 1. Thus the point & = 1 can be considered as a
nonstandard ”classical limit” of the g-deformation. Note that the classification of the
Hopf structures coincides with the classification of quantum groups in two dimensions
admitting left and right quantum spaces [2].

2 Algebra J

We now study the bialgebra structure with 8 =1, a # 0.
Lemma 1.1 The product [t, p] = 2a(t — ) corresponds to the coproduct

, Ay = 3QA+1Q@Ts,
Ar_ T-Q1+A"'@w.. (16)

for the algebra (1), where

A"'=1-2ar_. (17)

Proof. One checks that A given by (16) is a homomorphism, and that it is coassociative.
We will show that the coproduct A induces the needed multiplication rules for ¢, p.
The product on the coalgebra A is defined by (¢9,u) = (¢ ® ¥,Au), ¢,9 € A,
ueld. . :
Denote by K a two-sided ideal Ur_ @ U + U @ Un? of U ®U.. We have

A(irl) = (3@ A +1@ )i (r- @1 +1@7.)

=6 @A +187) +8i(r ®A +1@7)(1®_)(mod K)
=6(®L+1®m+20er @) (18)
+8(1s®1+1@ 7)(1® 7_)(mod K) .
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If [h,z] = —2z then (h + 2az)’ = k' + a((h + 2)' — h')z (mod z?). Using this with

h=7381+1Q, z="13Q7-, we find
(tp, il ) = 6i(t @ p, (3@ 1 +1 @) +a((1s @1 + 1 @ 75 + 2)°
—~(13®@1+1@ 7)) (1 @7-))
+6(t®p(®1+107) - (1®7.)) | (19)
= 2a65(2% - 2') + 6{2° ,

since p takes a non-zero value only on the linear monomial 7_.

It is simpler to compute

(Pta"'ai”i) = 6{2'. ’
(B -trixl) = &(2¥ -2, (20)
and we obtain tp — pt = 2a(t? — t), as required. O
The bialgebra (1), (16) has an antipode
S(ms) = —msA™! , S(x.)=-7w_A, . (21)
and a counit .
€(r3) =¢(xr-)=0. (22)
Thus, the algebra (1) with the coproduct (16) is a Hopf algebra.

Definition. We denote by. J, the Hopf algebra generated by elements A, A1, 75 with
the product

AAN'=1 , [A,m]=2A(A-1), (23)
the coprodut_:t :
AT3 = T3®A+1®T3,
AA = AQ®A, (24)
the antipode -
S(ms) =—-mA"' |, S(A)=A"1, - ' (25)
and the counit :
e(rs) =0 , ¢A)=1.0 (26)

It is convenient to take the logarithm of A. There is a minimal completion for
which the logarithm is defined. Define the vector space J of finite sums ¥; fi(73)g:(o),
where f; are polynomials, and for each g; there exists such n € Z that g;(c) differs
from exp(no) by at most a polynomial in o.

Definition. The commutation relation

[r3,0] = 2(1 —¢°) | (27)
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together with the coalgebra structure
Aoc=0c@1+1Qc , An=130e"+1Q@7. (28)
and the antipode and counit
S(e)=—c , S(ms)=-me" ,e(oc)=¢(13)=0. (29)

make J a Hopf algebra. O

The Hopf a.lgebra. Jo is a dense Hopf suba.lgebra in J, the embeddmg is glven by
A=¢

We now describe some properties of J. Below J°P? denotes the Hopf algebra
obtained from J by taking the opposite comultiplication (and the same multiplication),
and J,,p - the Hopf algebra obtained by taking the oppos:te multiplication and the
same comultiplication.

Lemma 1.2 (a) J is isomorphic to J orp,
(b) 73+ —73, 0 = o is an isomorphism between J and Jopp-

Proof. (a) Let 73 =73¢™, § = —0. Then
[73,6] = [rse™7, ~0] = 2(1 — €°) (30)
and

Afs = (3R +10m)(e7 Qe ) =HBR1l+e? @7,
A = 6@1+1®¢, (31)

which proves (a). (b) is obvious. O

The composition of the mappings (a) and (b) is the antipode S.

Any other isomorphism between J and J° or J,,, is the composition of the ones
given in Lemma with some automorphism of J. Here is the description of the group
of automorphisms of J.

Lemma 1.3 Any automorphism of the Hopf algebra J has the form
oo , T Tstc(l—e) ' (32)

with some constant .

Proof. Choose a basis m§o7 of J. .
1. Let ¢ be an a.utomorphlsm of J. Then Ao ¢ = (¢ ® ¢) 0 A, therefore, o/ = ¢(o)
must obey Ao’ =0’ ® 1+ 1@ ¢’. For o/ = ¥;; a;;7ic? € J this gives

Y ai(n® +1@m)(0@1+100) =Y ayricd ®1+10 Y airic’ . (33)
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Compare terms not containing 73 in the first factor:

Ea,,(l@‘rs)(a'®1+l®a)’—Zama ®1+1®Za,,.,.1'3 . (34)

‘4§

Denoting a;(2) = ¥; a2, =0 ® 1, y = 1 ® o and comparing terms with 7§ we find
ao(z + y) = ao(z) + ao(y) and ax(z + y) = ar(y), k¥ > 0. Therefore, ag(z) = 7oz and
ax(z) = 7, k > 0, for some constants v;. Hence, o’ = 790 + ¥i507i73, and eqn. (33)
reduces to ] ) ]
Y 1i(3®@e”+1@m) =) % ®1L+1Q D %rs . (35)
i>0 i>0 i>0
Modulo the ideal J ® Jo this implies ¥(t + s) = v(t) + v(s), where y(r) = ,>o Firt,
t=713®1 and s =1 ® 73. Therefore 7(1') ~7. Substituting o/ = Y0 + 7173 in (35)
one gets immediately 7, = 0. Thus, o' = y0.
2. For 74 = ¥ bijrio’ we obtain

Y bi(®e +107)(c®1+100) =Y bymic’ @™ +10 3 bjrio’ . (36)
Terms not containing 73 in the first factor are

Eb,,u@fa)(amn@a):—Zbo,a®e‘~"+1®2b,,.,.r3 . (37)

ij

It follows then that bo(z+y) = bo(z)e™¥ +bo(y), bi(z+y) = be(y), k > 0, where b;(z) =
¥; bijz?. Thus, bo(z) = Bo(1 — €™7), bi(z) = Bx with some constants ;. Considering
(36) modulo J ® Jo one finds that B = 0, k > 1. Thus, 7§ = Bo(1 — ™) + f173. We
have B, # 0, otherwise the image of ¢ belongs to the proper subalgebra generated by
o only. Now eqn. (36) reduces to

Bi(ts ® e+1Q® T3)=Pis @™ +1Q pi73 (38)

which implies 4o = 1. Thus, ¢’ =0, 7§ = ﬂo(l —€°%) + Bi7s.
3. Substituting expressions for ¢’ and 73 in (27) one finds immediately §; = 1. O

We now return to the dual algebra A. One finds that the linear functlona.ls t,p take
the following values on the basis 7307 of J:

(t,mi0%) =28 , (p,7ic’) =2a6i6i . : (39)

Introduce also a functional s, (s,7io?) = 2616}, By induction one finds then that
(s%,7i0%) = k'2"6;,5’ Therefore, (e*,io’) = 2'6 which implies that ¢ = e®. The
functionals s*p' are characterized by the property that they take nonzero values only
on finite number of monomials 7ig?. So, in this topology they form the dual coalgebra.
However, to make it an algebra one has to add the exponent of s. In other words,
we define the dual Hopf algebra J’ to be the vector space of finite sums ¥ f;(s)g:(p),
where g; are polynomials, and for each' f; there exists n € Z such that f;(s) differs
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from exp(ns) by at most a polynomial in s. Above we have found the algebra structure
on J’, which for the generators s,p takes the form

[s,p] = 2a(e’ -1), . (40)
and its coalgebra structure, ‘
As=3Q@1+1Q@s , Ap=pRe’+1Q@p. (41)
The antipode and counit translate to J' as ' .
S(s)=—s, S(p) =—pe™* , e(s) =¢(p) =0. (42)

Comparing (27,28,29) with (40,41,42) we conclude:
Lemma 1.4 The map

x:ra»;v%p , OF38 (43)

is an isomorphism between the Hopf algebra J and its dual J’. O

Thus, all eight Hopf algebras which can be obtained from J by taking opposite
multiplication or opposite comultiplication or dual are isomorphic. Together, Lemmas
1.2, 1.3 and 1.4 give the description of the spaces of isomorphisms between them.

In the next section we find the universal R-matrix for J and show that J is
triangular.

3 TUniversal R-matrix

We will often use the original generators 73,7 of J.
The universal R-matrix satisfies

RA=A's R, (44)
RAn.=A'7_- R, (45)

where A’ is the opposite comultiplication.

Considering « as a variable, one can introduce a grading on the Hopf algebra J
by deg 73 = 0, deg 7— = 1 and deg a = —1. (Exactly the fact that a has a nonzero
dimension, allows to set it to 1, in contrast to the standard g-deformation, where ¢ is
dimensionless.) We assume that R has the grading zero. This means that it depends
on 7_ only in the combination ax_.

Also, since the classical limit is o = 0, we assume that R|,=0 = 1.

Lemma 2.1 Let 1
F= exp(§or ® 7). (46)
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Then
R = FaFy' . (47)

Proof. For any dimensionless function f(ar_) we have

e f]=—2af . T
Rewriting (44) in the form _ '
®1+18mR =RHO(A-1)-(A-1)8™R, (49)
using (48) and A — 1 = 2aA7_, we find, after ca.ncelhng by (—2a),
= (Ar- @ T3)R — R(rs ® Ar-) , (50)

where dot means the derivative in a..
We have

F=12 = (A‘K- ®‘I‘3)Fm ’ (Fz_ll)' = —Fﬁl(‘ra ® A‘R'_) . (51)

Therefore, R = F1,WFy; w1th W=0. Comparison of values at a=0gves W =1.
It remains to check (45) We have

(r- @ 1)R = el7®ne= 4200 (r_g 1) = R(r_ @A) . (52)
Here we used that 7_g(73) = g(7s + 2)7— for any function g. Now;
(A'®@r)R=(A"'® 1)ede@n2e-ineo(1 @ r_ ) =R(1® 7). (53)

Since A7_ =r_Q@1+A'Q@r_=r_Q1+1Q@ 7. —2ar_ Q@ 7_ =7 @A'1+1®1r_,
egs. (52) and (53) imply (45).0

Lemma 2.2 (J,R) is triangular. In other words,

RmRn = 1 9 (54)

and
(A®id)Ryz = RisRas, ~ (55)
({d®A)R1;; = RusRiz. ) (56)

Proof. 1. Eqn. (54) follows from (47)
2. Obviously,
(A ® ld)Flg = F]3F23 . (57)
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For any ¢ qommuting with 7_ and 73 one has [r3, A°] =—4ac\“Fx_ which implies
A°r3A™° = 13 + dacAn_ . (38)
Using this, one finds

e} 8 (19 @0)e i =10 KEo+ T (A1) Ta
=(Ams-170®1)Q0. (39)

AT commutes with 73 @ 1. Dividing by 2, taking exponent of eq. (59) and using
exp(zyz~!) =z exp(y)z~!, we obtain Fiy F5pFp' =F5' - (A 2 id)Fy. which implies

(A@id)F' = FnF' Fi' Fy* (60)
Therefore

(AQid)Ry; = (AT id)(FiaFy') = FiaFasF F3 ' Fi!
FisFanRuF;TFt, (61)

since F,3 commutes with F;.
On the other hand, (id ® A)Fy! = Fi'F5l, (id © A)Fi! = F;'F5l. By Lemma
2.1 we have (id ® A)F5;' = Rz - (id © A') Fi7' - Rys, therefore
RasFn'Fa' = Fi'F5'Rys (62)
Substituting this in (61) we obtain

(AQid)Ry; = F13F21R23F;11E-;11
= F3F5'Rys = R_ls'Rza . (63)
which proves (55).

3. When R,; = Rz, eqn. (56) follows from (55) (if (A O id)uy; = w3 for some u. e |
then (id ® A)uy; = was;) and we need not check it separately.0

Notes. 1. The element F3; twists the classical coproduct,
Au=Fy - Agu- Fj! (64)
for any u (to check it for u = 73 one uses (58)). The element F satisfies the condition
Fa- (id @ Ao)Fn = Fin - (Ao ©id)Fin (65)
ensuring the coassociativity of the twisted coproduct [3]. To prove (65) we notice that

eémea . (AOA—l) . e—*}n@a =A"? o AT, (66)
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Therefore 318787 . (id @ Ag)(1 @ A)° - e~ 41878 = 1 @ A¢ @ A° for any ¢ commuting
with 1@ U @U. For c = 3" ® 1 ®1 this gives

F3p- (id @ Ao)Fy - Fg' = Fpy Fy (67)

which is equivalent to (65) since (Ap ® id)Fy; = F3; F3,.

After we know the twisting factor F, we can build the Hopf structure on the whole
of sl(2) by adding the generator =, satisfying [r,,7_] = 73, [13,74] = 27y, Amy =
FnAomy Fit. Using the identity [r4,A] = 2acA°t'rs — 4c(c + 1)a?A+?x_ which
implies A=°7 A® = 7y + 2acA7s — 4c(c + 1)a?A?n_ one finds explicitly the coproduct
on 7y

A1r+ =Ty ® A + 1 ® T4 — QT3 ® AT3 - Qz(T:s2 —'27'3) @ AZ"._ . (68)
It looks simpler on a generator ¢ = 7, + a7},
Ap=¢QA+1Q 4. (69)

We denote this Hopf algebra with generators 7., 7_, 73 by U”sl(2): Hopf algebras
related to J, U7sl(2) and its dual were appearing in a number of contexts [4], [5], [6],
[2].

2. Let e, be a basis of some Hopf algebra, m%,, uft are the structure constants of
the multiplication and comultiplication respectively, S? is the matrix of the antipode,
€’ and ¢, are the unit and counit respectively. Let e* be the dual basis of the dual Hopf
algebra, (e*,e;) = 6;. For the self-dual Hopf algebra let x be the isomorphism between
the algebra and its dual, in components x(e?) = g*e;. If g* is symmetric, ¢g* = g%,
it is natural to call the Hopf algebra symmetric self-dual. The matrix g* relates the
structure constants m and g, it is compatible with the antipode, and maps the unit to
the counit: ' ' _

mh = gugng®pe , (S71)i=g"Skgi; , € = g"e:, (70)
where g, is the inverse to g*, g,:g'* = 6%. The universal R-matrix for the standard
g-groups can be obtained by the double construction [1]. In the self-dual situation one
can find a "self-double” interpretation of the R-matrix. The element e* ® e, satisfies
the Yang-Baxter equation. This element reverses the coproduct if

pamigimiy = ' min g M, . (71)

For the algebra J we take a basis ey = r£0'. One computes then that the dual

basis is 1 _

= e hen =84 . (72
Thus, J is symmetric self-dual. One sees immediately that its R-matrix has the form
e’ ® e,.
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4 Differential Realization

Any representation of J in a space V gives rise to a numerical R-matrix, actingin VOV,
and a R-matrix R = PR, where P is the matrix of permuta.tlon, PvQw)=wOr.
The triangularity (54) implies RR = PRPR = Ry\Ry; =

The R-matrix corresponding to the simplest. two-dlmenswnal representation of the
relation (1) first time appeared probably in [4]. It defines a quantum group called
Jordanian [6], dual to U7sl(2). The Jordanian quantum group coacts on the noncom-
mutative quantum plane given by the relation

yz = zy + ay’. (73)

This relation is defined by one projector entering the R-matrix, and therefore one can
build the derivatives by the formula [7].

6;:c5 = 5‘,7 + é{‘kz'lak . (74)
This reads explicitly
0x = 14208+ ayd,, dz = 20,- azd, —ayd, +a’yd, , (75)
Oy = y0:, 0y = 14y0,+ ayl; .
Derivatives satisfy
8,0; = 0;0, + 08,0;. (76)

We are going now to build a realization of U”sl(2) in terms of differential operators on
the Jordanian quantum plane, similar to, the realization of Uysl(2) and U,si(2,C) [8].
We shall see that the coproduct for U”sl(2) is naturally implied by the Leibnitz rule
for differential operators acting on the space (73).

The operator 1 + 2ay0d, will turn out to represent the element A appearing in (17).
Thus we denote it by the same letter,-A = 1 + 2ayd.. It obeys

Az (z +2ay)A , AD; a:A

Ay = A, 8A = A(d, +20ds) . (7)
The operator A is a Jordanian analogue of the multiplicative factors used in [9].
The commutation relations between the operators z*9; are
[28z,28,] = =zA9,, [#0,,90:] = zAd: —yAd,,
[z0:,90,) = 0, [z0,,90,) = zA9,, (78)
[0:,90;] = —yAd;, [v0:,y9,] = —=yAad,.

Thus three operators

T-=y0 , 3=20:—y0,, 74 = (z - 2ay)av (79)
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form a closed subalgebra, We have
[ray7=] = =2A7_ |, [r3,74]) = 2A7y , [r4,7-) = A3 — da AT (80)

and A =1+ 2ar_. We find a comutiplication for this algebra using the Leibnitz rule:

if an operator T obeys T'(fg) =3; a;(f)bi(g) with uniquely defined «; and b; then we

set AT = Y; a; ® b;. This requires a knowledge of the action of the operators 7. 7_

and 73 on a whole basis of functions. It turns out to be convenient to work in the basis
mn = 2{™y™ where we denoted for any v

v™ =v(v+ay).(v+am=-1)y), v0=1. (81)
The following identities are useful in computations in the basis F,,:

(z+amy)(z+any) = (r+a(n+1)y)(r+a(m=-1)y),
(zy)" = =y", (82)
($A1/2 > = 1'("1\"/2.

By induction one finds

3z = nz"A + z(Pry ,
Ty" = —ny"A+y"rs,
-z = ny(z + ay)™ ! + (¢ + 20y) "1,
-yt = Y-, : _ (83)
ez = (z= 2ay)™ (7, — nars —a®n(n —2)r.) ,
" = n(z—20y)y"" +y" (14 + anm — oPn(n +2)7-) .

This easily extends to the basis F,, and we obtain the following formulas for comul-
tiplication:

A3 = 3QA+1@Ts,
-Ql+AQT., (84)
Aty = 7, 014+A7'9 1 —aA 3@ 1 —® A7 (12 = 2am) O 7 .

B
1
I

and AA = AQA. Here only the expression for A, requires an explanation. Introducing
a generator ¢ = A7, + -;-01'32 one finds, using (83),
gz® = %an’z("A +z("¢,
1
W' = (ney™ o+ anty A+ (35)

which implies
Ad=¢R@A+10¢. (86)



198 0. OGIEVETSKY

This is equivalent to the last line in (84).
To compare with U”sl(2) we choose another set of generators

m.=7-A"1, 1 = A1y . (87)

Now A~! =1—2an_. For the generators 7, 7_ and 73 the commutation relations are
those of the classical sl(2),

[T3’ 7I‘+] =2ry , [T3,7l'-] =-2r_, [7r+,1r...] = T3, (83)

while the coalgebra structure is

Az = 3QA+1QTs, (89)
Ar_. = 7 Q@1+A71@nx_, (90)
Ay = 1, QA+1Q 7 —ams ® Ars — (12 — 273) @ A’x_ (91)

which coincides with the above formulas for U7sl(2).

Notes. 1. In [9] the isomorphism between certain completions of the rings of dif-
ferential operators on the g-spaces and the ring of usual differential operators was
established. Here it holds as well. Let

61 = zA1/2 , 62 — yA—I/Z (92)
& = AV, 8=A"9,. (93)

Then , .
Ele? = fzfl y 010,=0,0,, 9 = 6;1 + fjai ’ (94)

which gives the needed isomorphism.

2. As shown in Sect. 1, the Hopf algebra U”sl(2) is a limit of the standard g-deforma-
tion. In the dual picture this limiting procedure looks as-follows.
Let & = (£,)" be the quantum vector for SL,(2), Zj = ¢fj2. Introduce a matrix

M= ( (1) ,1‘ , where g = af(1 — ¢). The matrix M is singular at ¢ = 1. However

the components z,y of the vector v = M# satisfy the nonsingular relation zy = qyr +
ay?, which in the limit ¢ — 1 defines the Jorda.nla.n plane. Similarly if A is the
SL¢(2) quantum matrix then lim,,; MAM™" is finite and satisfies the relations for
the Jordanian quantum matrix. Twisting with M and taking the limit one obtains also
the Jordanian R-matrix from the R-ma.tnx for SL(2).

Acknowledgements. I am very grateful to J. Bobra for many inspiring discus-
sions.



HOPF STRUCTURES ON THE BOREL SUBALGEBRA OF si(2) 199

References

[1] V. Drinfeld, Quantum Groups, Proc. Math. Congress Berkeley 1 (1986) 789.

[2] H. Ewen, O. Ogievetsky, J. Wess, Quantum Matrices in Two Dimensions, Lett.
Math. Phys. 22 (1991) 297.

[3] V. Drinfeld, On Almost Cocommutative Hopf Algebras, Algebra i Analiz 1 (1989)
3a.

[4] V. V. Lyubashenko, Hopf Algebras and Vector Symmetries, Uspekhi Mat. Nauk
41 (1986) 185.

[5] S. Majid, Hopf Algebras for Physics at the Planck Scale, Class. Quantum Gravity
5 (1988) 1587.

(6] E.E. Demidov, Yu.l. Manin, E.E. Mukhin, D.V. Zhdanovich, Non-Standard Quan-
tum Deformations of GL(n) and Constant Solutions of the Yang-Baxter Equation,
Progr. Theor. Phys. Suppl. 102 (1990) 203. -

[7] J. Wess and B. Zumino, Covariant Differential Calculus on the Quantum Hyper-
plane, Nucl. Phys. B (Proc. Suppl.) 18 B (1990) 302.

[8] O. Ogievetsky, M. Pillin, W. B. Schmidke, J. Wess, Hilbert Space Representation
of the g-deformed Poincaré Algebra on the Light Cone, Preprint MPI-Ph/92-86.

[9] O. Ogievetsky, Differential Operators on Quantum Spaces for GL,(n) and SO,(n),
Lett. Math. Phys. 24 (1992) 245.



