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SPINOR FIELDS ON RIEMANNIAN MANIFOLDS

OLGA POKORNA!

1. Introduction

Let (M, g) be a connected Riemannian manifold of dimension n with a spin

structure (P, 1), let S be a spinor bundle on M and I'(S) the space of all smooth
sections od S.

A spin field 4 € I'(S) is called Killing spinor with a Killing number A € C if the
differential equation
Vi = AX.9 (1)

is satisfied for all vector fields X on M.
A spinor field ¢ € I'(S) is called a twistor spinor if for all vector fields X on M
DY =V + %X.D¢ =0 2)

and such a field 9 is called E-spinor (or so-called Lichnerowicz spinor) if for all
vectors fields X on the manifold M

B = V(DY) + gt X =0, ®)

where D denotes the Dirac operator.
The equation (3) was introduced by A. Lichnerowicz in 1988 in connection with a
study of spinor fields. At the same time he proved the following important theorems

(see [4])-
Theorem 1.1. (Lichnerowicz)

If (M, g) is a connected Riemannian spin manifold of dimension n > 3 with a
nontrivial E-spinor, then the scalar curvature R is constant on M.

Theorem 1.2 (Lichnerowicz)
If (M, g) is a compact Riemannian spin manifold with a nontrivial E-spinor, then
Ker(D) = Ker(FE) =K,
where we denoted by K the space of all Killing spinors on M (see [1], e.g.).

1This paper is in final form and no version of it will be submitted for publication
elsewhere.
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I have succeeded in finding E-spinors on S x R! and H? x R!. It is a natural
way to construct E-spinors which are not Killing ones. Noncompact Riemannian
manifolds $2 x R! and H? x R! are not the Einstein spaces and that is why Killing
spinors do not exist there.

Proposition 1.3
Every solution of the equation (3) on H? x R! is of the form

¥(z,t) = {40 cos(%t) + A sin(%t)}c,b"‘(a:) + {40 sin(%t) _ 4 cos(%)}¢“(m)+

+{Bo cos(%t) +B sin(%t)}tp"'(z) +{-Bo sin(%t) + B, cos(%t)}zp‘ (=),

where Ay, A1, Bo, B are arbitrary constants and 9 = %% + 9~ resp. ¢ = ¢t + o~
are Killing spinors on H? corresponding to A = } (resp. A = —%). Proof.(see [5])

Proposition 1.4
Every solution of the equation (3) on S x R! is of the form

¥(z,t) = {4o cosh(%t) +A, sinh(%t)}t/;*’(z) —i{4o sinh(%t) + Alcosh(%t)}1/)‘(m)+

+{Bo cosh(%t) +B, sinh(%t)}qp"'(z) ++i{Bo sinh(%t) +B cos(%t)tp‘(x),

where Ao, A1, Bo, B, are arbitrary constants and 9 = ¥+ + 4~ resp. ¢ = pt + ¢~
are Killing spinors on S? corresponding to A = } (resp. A = 1). Proof.(see [5])

2. The other relations between Ker(E) and Ker(D).

Theorem 2.1

Let (M,g) be a connected Riemannian manifold of dimension n with a spin
structure. If ¥ € Ker(E) # {0}, then

R5(X,Y).Dy + ) (Y.Vxy — X.V3y) =0, (4)

_R__
4(n-1
where RS(X,Y) is the curvature tensor of the connection VS on S and X,Y are

vector fields on M.

Proof: If 1 € Ker(E) # {0}, then the Theorem 1.1 implies that the scalar curva-
ture R is constant on M (see [4]).

By differentiation of the equation (3) with respect to Y, we get

R

VEVi (DY) + e

1)(V,S,X) Y+ 1 R 1)X.v,s,-z/;=o. (5)



SPINOR FIELDS ON RIEMANNIAN MANIFOLDS 203

Exchanging X and Y, we get

R

R
1)(V§{Y)¢+ - )va¢ 0. (6)

4(n
The equation (3) is also valid for vector fields [X,Y] on M:

V5 V5 (DY) +

V(DY) + gy K Y19 =0 ")

By subtracting the equations (5) and (7) from (6), we get
V% V§ (DY) — V3 V5%(DY) — Vix,y(D¥)+

R
(1)

)(YV§:1/J X.Viy) = =

+ oy (VRY - VEX - [X, Y]+

4(n
For a given % € I'(S), let us define functions

C4 = Re(D, )

QY = [¥[*|Dy[* — C% — ) " (Re(Dy, ei1)))?
=1
Then we have

Theorem 2.2

Let (M, g) be a connected Riemannian spin manifold of dimension n > 3 such
that Ker(F) # 0 and the scalar curvature is nonzero. Then the quadratic forms C
and Q are constant on Ker(E).

Proof: Theorem 1.1 implies that the scalar curvature R is constant. Moreover R
is nonzero. Then Corollary of Theorem 1 (see[2]) implies that,

dimgKer(E) = dimgKer(D) < 2i*/2+1,

On this vector space, there exist quadratic forms C and Q.
Forall X € T.M, z € M we get

X(C) = Re((VXD%,¥) + (D, V). (8)
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Proposition 2 (see [2]) implies, that

Vip= ;((’;:12)) ( 2(:1 5% - Ric(X)) Dy

We obtain
X(Cy)= ( e X-¥ ¢) +Re (D¢a 123(::2) (2(n—l)X Ric(X )) ) =

= —EnRe(X.4, %) + 220 Re (D¢, (mx - Rlc(X)) .sz) .

Clifford multiplication has the following property with respect to the Hermetian
scalar product ( , )

Re(X%,9)=0 forall Xe T, M,zeM
hence C =konst.

Moreover, if 3 € Ker(E), then Theorem 1 (see [2]) implies that
¢ =Dy € Ker(D)

hence Q¢ = konst (see [3]).
But

¢ = |p|*|Dg|? — C?p - Y (Re(Dyp, e:.¢))% =
i=1

= |Dy|*|D*$|* - (Re(D*y, Dy))* - »_(Re(D*¢, e:.D9))* =
i=1
= Tor s DUV - (e, DY) — 3 (Re(ex.D¥)* =

i=1
() @

Moreover we have

Re(%, €;.Dy) = —Re(D, e;.1).
Hence Q% is constant. - . a
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