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SPINOR FIELDS ON RIEMANNIAN MANIFOLDS 

OLGA POKORNÁ1 

1. In t roduct ion 

Let (M, g) be a connected Riemannian manifold of dimension n with a spin 
structure (P,rj), let S be a spinor bundle on M and T(S) the space of all smooth 
sections od S. 

A spin field ip G T(S) is called Killing spinor with a Killing number A G C if the 
differential equation 

v ^ = \X4 (i) 
is satisfied for all vector fields X on M. 

A spinor field ip G T(S) is called a twistor spinor if for all vector fields X on M 

Tfy = V^V + -X.Dij) = 0 (2) 

and such a field V is called FJ-spinor (or so-called Lichnerowicz spinor) if for all 
vectors fields X on the manifold M 

E* = V & I t y ) + ^-^X-1> = 0, (3) 

where D denotes the Dirac operator. 
The equation (3) was introduced by A. Lichnerowicz in 1988 in connection with a 

study of spinor fields. At the same time he proved the following important theorems 
(see [4]). 

Theorem 1.1. (Lichnerowicz) 

If (M, g) is a connected Riemannian spin manifold of dimension n > 3 with a 
nontrivial 2£-spinor, then the scalar curvature R is constant on M. 

Theorem 1.2 (Lichnerowicz) 

If (M, g) is a compact Riemannian spin manifold with a nontrivial E-spinor, then 

Ker(T>) = Ker(E) = K, 

where we denoted by K the space of all Killing spinors on M (see [1], e.g.). 

1This paper is in final form and no version of it will be submitted for publication 
elsewhere. 
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I have succeeded in finding ^-spinors on S2 x R1 and H2 x R1. It is a natural 
way to construct .E-spinors which are not Killing ones. Noncompact Riemannian 
manifolds 5 2 x R1 and H2 x R1 are not the Einstein spaces and that is why Killing 
spinors do not exist there. 

Proposition 1.3 

Every solution of the equation (3) on H2 x R1 is of the form 

ip(x,t) = {A0cos(-t) + A1sm(-t)}^(x) + {A0sm(-t) - .Aicos(-)}^"(x)+ 

+{.B0 cos(-t) + .Bi sm(-t)}<p+(x) + {-B0 sm(-t) + Bx cos(-t)}<p-(x), 

where A0, A±, B0, B\ are arbitrary constants and \j) = -0+ + tj>~ resp. ip = y?+ + ip~ 
are Killing spinors on H2 corresponding to A = ^ (resp. A = — ̂ ) . Proof.(see [5]) 

Proposition 1.4 

Every solution of the equation (3) on S2 x R1 is of the form 

ip(x, t) = {A0 cosh(-t) + Ai smh(-t)}^(x) - i{A0 sinh(-t) + A\cosh(-t)}^)~ (x)+ 

+{£0cosh(-*) + B1sinh(-t)}(p^(x) + +i{.B0sinh(-t) + Bxcos(-t)<p-(x\ 

where An, Ai, 5 0 , J?I are arbitrary constants and ^ = -0+ + >̂~ resp. y> = y?+ + <p~ 
are Killing spinors on S2 corresponding to A = \ (resp. A = | ) . Proof.(see [5]) 

2. The other relations between Ker(E) and Ker(V). 

Theorem 2.1 

Let (M,#) be a connected Riemannian manifold of dimension n with a spin 
structure. If ip e Ker(E) ^ {0}, then 

RS(X, Y).Dr/> + - ^ - - - (Y.VU - X.Vfy) = 0, (4) 

where RS(X, Y) is the curvature tensor of the connection V 5 on S and X, Y are 
vector fields on M. 

Proof: If ^ G Ker(E) 7- {0}, then the Theorem 1.1 implies that the scalar curva­
ture R is constant on M (see [4]). 

By differentiation of the equation (3) with respect to V, we get 
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Exchanging X and Y, we get 

Vs
x Vfr (D+) + _ A _ ( v « y).^ + -^JL^Y.VU = 0. (6) 

The equation (3) is also valid for vector fields [X, Y] on M: 

vfj-.nW) + -"-^--- [x, Y].tf = o. (7) 

By subtracting the equations (5) and (7) from (6), we get 

V£V£(£>V) - V£V$(Zty) - VfXtY](D^)+ 

R 
4 ( n - l ) (VS

XY-VS.X-[X,Y])1>+ 

+4(n^l) ( y ' V ^ " X V ^ } = °' " 

For a given ^p G r(5), let us define functions 

Cip = Re(Dtl>,ip) 

Q^|> = |Vf W|2 - CV - f>e(.D^eW0)2 

t= i 

Then we have 

Theorem 2.2 

Let (M, g) be a connected Riemannian spin manifold of dimension n > 3 such 
that Ker(E) ^ 0 and the scalar curvature is nonzero. Then the quadratic forms C 
and Q are constant on Ker(E). 

Proof: Theorem 1.1 implies that the scalar curvature R is constant. Moreover R 
is nonzero. Then Corollary of Theorem 1 (see[2]) implies that, 

dimc-K'er(.E) = dinictfer(Z>) < 2 ' w ^ + 1 . 

On this vector space, there exist quadratic forms C and Q. 

For all X e TXM, x e M we get 

. X{C4) = Re((VS
xD^ ^|>) + (D^9 V | * ) ) . (8) 
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Proposition 2 (see [2]) implies, that 

*-*-i^(-^-----w)-* 
We obtain 

X{C*) = Re ( - - - f e j X . V , rf>) + Re (.Dtf, | ^ ( - - * - - * - Ric(X)) J t y ) = 

= -*£vMX.4>, V) + |£E^.Re (-D*, ( 5 ^ * - Ric(X)) . Z * ) . 

Clifford multiplication has the following property with respect to the Hermetian 
scalar product ( , ) 

Re(X^,^) = 0 for all XeTxM,xeM 
hence Ci/> =konst. 

Moreover, if ip e Ker(E), then Theorem 1 (see [2]) implies that 

tp = Drpe Ker(V) 

hence Q<p = konst (see [3]). 
But 

Q<p = \V\2\DV\2 - C \ - ^ ( R e ( ^ , e ^ ) ) 2 = 
t = i 

= \Di,\2\D^\2 - (Rea l ty ) ) 2 - £(Re(Z>V.ei..Ety))2 = 
1 = 1 

n 2 / ? 2 n 

= 16(n-l)- ( | £>^ | 2H2 _ ( R e ^ ' ^ ) ) 2 " ECRe(tf,e,..D*))a = 

_U»-i)) 
2 

Moreover we have 

Re(i/>, ei.Dip) = -Re(.D^, e ^ ) . 

Hence Qtp is constant. • 
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