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1. Introduction

The study of certain moduli spaces leads to concepts which are otherwise known in
mathematical physics, in particular to that of a Poisson structure. Let me remind
you of its definition: On R?" with its usual coordinates {qi,...,qn,P1,---,Pn}, the

formula of Oh  Of oh
hry =2 (apj 9q;  0q; apj)

yields a bracket {-,-} on the algebra of smooth functions. This bracket was introduced
by PoIssON around 1809 and he observed that, given three functions f,g,h with
{f,9} =0 and {f,h} =0, one also has {f,{g,h}} = 0. This means that if ¢ and
h are integrals of motion for (the hamiltonian vector field of) f, so is {g,h}. See
e. g. [1 p. 196], [4 p. 216]. Poisson’s collegues at Paris would not trust him, and
only thirty years later Jacob: discovered what is nowadays called the Jacob: identity
which of course immediately explains Poisson’s observation. We now have almost
completely reproduced the definition of a Poisson algebra: a Poisson algebra is a
commutative algebra with the additional structure of a Lie bracket which behaves
as a derivation in each variable with respect to the algebra structure.

After their discovery, Poisson structures have been explored by S. LIE [37], E.
CARTAN [10], P. DIRAC [11], and others. They were the basic tool for Lie’s work
and provided for example an appropriate language for the proof of Lie’s third
theorem. For many discoveries of modern symplectic geometry, there are precedents
in Lie’'s work which could not have been spelled out without the concept of a
Poisson structure. Dirac made the fundamental observation that Poisson brackets
provide the right framework in which classical mechanics is seen as an approximation
of quantum mechanics. He also noticed their importance for classical constrained

1991 Mathematics Subject Classification. 32G13, 32G15, 32560, 58C27, 58D27, 58E15, 81T13.

Key words and phrases. Principal bundles, Yang-Mills connections, geometry of moduli spaces,
represeutation spaces.

t The author carried out this work in the framework of the VBAC research group of Europroj.
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systems and developed the miraculous notion of Dirac bracket. Poisson brackets
are nowadays in a period of intense development, cf. e. g. [53, 54]. Among others
they are used to study collective hamiltonian systems, see e. g. [12]. They have
been useful even in engineering mathematics. Some references and discussion in this
direction may be found in [39].

The geometry of certain moduli spaces may be described in similar ways as that
of collective hamiltonian systems. Poisson structures then yield geometric insight
which goes beyond what can be obtained from standard symplectic geometry. These
moduli spaces include those of central Yang-Mills connections for a principal bundle
on a Riemann suirface, in particular moduli spaces of semi stable holomorphic
vector bundles, certain representation spaces, moduli spaces of parabolic bundles,
and related ones. Work in progress applies these ideas to certain moduli spaces of
Einstein-Hermite vector bundles. We now explain a special case:

Let ¥ be a closed (real) surface, G a compact Lie group, with Lie algebra ¢, and
&P — ¥ a principal G-bundle. Further, pick a Riemannian metric on ¥ and an
orthogonal structure on g, that is, an adjoint action invariant scalar product. These
data then give rise to a Yang-Mills theory which has been studied in great detail
by ATIYAH-BOTT [7]. They showed in particular that, in a sense, it suffices to
study the geometry of the moduli space N(£) of gauge equivalence classes of central
Yang-Mills connections. Here a connection A is said to be central provided the
values of its curvature lie in the Lie algebra of the centre of G. When the bundle ¢
is flat the central Yang-Mills connections are precisely the flat ones. In particular,
for G = SU(2), the moduli space N(§) is that of flat connections coming into play
in Chern-Simons gauge theory. Another important special case is that of G = U(n),
the unitary group; the bundle ¢ is then topologically classified by its Chern class
(say) k, and the space N(§) is homeomorphic to the NARASIMHAN-SESHADRI moduli
space N(n,k) of semi stable holomorphic rank n and degree k vector bundles over
Y (with reference to a choice of holomorphic structure). In general, these moduli
spaces still carry additional geometric structures such as e. g. symplectic or Kahler
ones which are at first well defined only away from certain singularities, though.
Our program is aimed at extending such structures, suitably generalized, over the
whole space, its singularities included. Here is the first result.

Theorem 1. The decompcsition of the space N(€) into connected components of
orbit types of central Yang-Mills connections is a (Whitney) stratification in such a
way that each stratum, being a smooth manifold, inherits a symplectic structure, in
fact, a Kdhler structure, from the given data. Moreover the data determine an algebra
C=(N(£)) of continuous functions on N(€) together with a Poisson structure {-,-}
which, on each stratum, restricts to the corresponding symplectic Poisson structure.

A comment might be in order: On each stratum, the algebra C°(N(§)) restricts
to the compactly supported functions; obviously we cannot get all smooth functions.
However the compactly supported functions certainly suffice to recover the symplectic
Poisson structure on a stratum. In general, on a stratified space, an algebra of
continuous functions which on each stratum restricts to the compactly supported
functions is referred to as a smooth structure. A stratified space can support different
smooth structures. An example will be given after Theorem 2 below.

A space with a structure of the kind spelled out in the theorem has been
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christened stratified symplectic space by SIAMAAR-LERMAN [51].

REMARK 1. A formal consequence of the theorem is the existence of a smooth
open connected and dense stratum, referred to as top stratum. In the vector bundle
case, it consists of the stable points. Its existence in the symplectic context is not
as obvious as one might believe since a priori we do not have a structure of a
complex analytic variety at our disposal. '

REMARK 2. It has been known for a while, cf. NARASIMHAN-SESHADRI [46],
ATIYAH-BOTT [7], that an orthogonal structure on the Lie algebra gives rise to
a symplectic structure on the top stratum. In particular, in the vector bundle
case, for n and k relatively prime, there is only a single stratum, the top stratum,
and a result of NARASIMHAN-SESHADRI [46] says that, the moduli space inherits a
st.ucture of a compact Kahler manifold. Qur theorem extends the symplectic part
thereof to the general case. In fact, our Poisson structure is defined also at the
singular points; it encapsulates the mutual positions. of the symplectic structures on
the strata. Borrowing some language from algebraic geometry one could say that
it describes what happens to the symplectic structure under “specialisation”. A
structure of this kind cannot even be spelled out in ordinary symplectic geometry.
Furthermore, it is known that, for general n and k, the spaces N(n,k) have a
structure of a normal projective variety SESHADRI [48], [49]; however, this does
not shed too much light on the singular behaviour of the symplectic or Poisson
structures in general; in fact it may happen that the symplectic structure is singular
whereas the complex analytic one is not. An example will be explained in Theorem

2 below.

The Poisson structure gives rise to some interesting Poisson geometry. A special
case worthwhile studying is that where G = SU(2). In another guise, cf. what was
said above, after a choice of compatible holomorphic structure on ¥ has been made,
the moduli space N(£) is then that of semi stable holomorphic vector bundles on
Y of rank 2, degree 0, and trivial determinant. This space and related ones have
been studied extensively in the literature [43 - 49]. In particular, for genus £ > 2,
NARASIMHAN-RAMANAN proved that the complement K of the top stratum is the
Kummer variety of ¥ associated with its Jacobien J and the canonical involution
thereupon [43]. This has the following consequence, established in [25].

Theorem 2. For G = SU(2), when ¥ has genus £ > 2, the Poisson algebra
(C®(N(€)),{-,-}) detects the Kummer variety K in N(£) together with its 2%¢ double
points. More precisely, K consists of the points where the rank of the Poisson
structure 1s not mazimal, the double points being those where the rank is zero.

For genus > 3, the Kummer variety K is precisely the (complex analytic) singular
locus of N(£), a result due to NARASIMHAN-RAMANAN [43]. This has been reproved
in [25] within our framework. When T has genus two the space N(£) equals complex
projective 3-space and K is the Kummer surface associated with the Jacobien of
T. In the literature, this case has been considered somewhat special since as a
space N(€) is then actually smooth. More precisely, its algebra of smooth functions
in the usual sense is a smooth structure in the above sense. However, from our
point of view there is no exception. Qur smooth structure is not the standard one,
and as a stratified symplectic space, N(£) still has singularities, that is to say, the
Poisson algebra (C*®(N(£)),{:,}) detects a Kummer surface together with its 16
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singularities and hence the underlying algebra of functions can plainly not be that
of smooth functions in the ordinary sense; in particular, the symplectic structure
on the top stratum does not extend to the whole space. It is interesting to observe
that the stratification mentioned in Theorem 1 is finer than the standard complex
analytic one on complex projective 3-space.

One way of proving these results is by means of suitable local models. These
local models yield insight interesting in their own right. We explain this briefly
for the special case where G = SU(2). Let Z C G denote the centre and T C G a
maximal torus. The space N = N(£) has three strata

N=NGUN(T)UNZ

where N(g) denotes the points of orbit type (K). The top stratum is Nz.
Theorem 3. Near a point of Nk), N and (C®(N),{:,-}) may be described in the

following way:

K = Z: the space C*t=V) with its standard symplectic Poisson structure; .
K =T: a product of C with its standard symplectic Poisson structure and of the
reduced space and reduced Poisson algebra of a system of £—1 particles in the plane
with total angular momentum zero;

K = G: the reduced space and reduced Poisson algebra of a system of £ particles in
3-space with total angular momentum zero.

For illustration, consider the special case where ¢ = 2, so that, by virtue of the
Narasimhan-Ramanan result cited above, the space N is complex projective 3-space.
By Theorem 3, near a point of N(r), the space N looks like the product of a
copy of C? with the reduced system of a single particle in the plane R2. It turns
out that the latter is indeed R?, with reduced Poisson algebra generated by the
coordinate functions z,, z; and, which is crucial here, an additional function r
which is the radius function, so that the usual relation

a:f + zg =7’
holds. Notice r is not smooth in the ordinary sense. The Poisson structure {-,-}
is given by the formulas

{.’L‘l,zz} = 27‘, {III],T} = 2332, {(L‘z,T} = —21‘1.

Thus we see that the algebra C°°(N) contains the usual smooth functions but is
strictly larger than that of smooth functions on complex projective 3-space in the
ordinary sense.

The present paper is intended as a leisurely introduction to the Poisson geometry *
of the mentioned moduli spaces which has been developped in our papers [20 — 28].
In Section 2 below we briefly explain the idea of a stratified symplectic space while
in Section 3, after a very short description of Yang-Mills theory over a surface which
follows the paper [7] by ATIYAH AND BOTT, we give the construction of suitable
local models. In Section 4 we explain the resulting (local) Poisson geometry whereas
in Section 5 a finite dimensional approach is presented. Moduli spaces of parabolic
bundles [41] are not touched in this paper, cf. [16], [28].
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What remains to be done? Well, a compatible complex analytic structure on a
symplectic manifold can be described in terms of a polarization. To extend this
relationship to stratified symplectic spaces, in [29] we introduced the concept of
a stratified Kahler space. This is a stratified symplectic space whose strata are
endowed with structures of Kahler manifolds, together with an additional piece of
structure which describes the mutual positions of the Kéhler structures, generalizing
what was said above about the mutual positions of the symplectic structures on a
stratified symplectic space. The description of this additional piece of structure is
achieved by means of results in our paper [18], see also [19]. We plan to prove
that a moduli space of central Yang-Mills connections inherits a structure of a
complex analytic space together with that of a compatible stratified Kahler space
which is integral in an appropriate sense. We note that, for a singular Kéhler space
in the sense of GRAUERT [15], a stratified Kahler structure in our sense amounts
to an additional requirement which the local Kahler potentials have to satisfy in
the singular points. Thereafter we plan to demonstrate that an integral stratified
Kahler space inherits a structure of projective variety. While it is known from
geometric invariant theory constructions that a moduli space of central Yang-Mills
connections inherits a structure of a projective variety, the link of the latter to
the symplectic or more generally Poisson geometry presented here is not completely
understood. Our program is aimed at yielding a purely analytical construction of the
projective variety structure, thereby providing a better understanding of how this
structure is related with the Poisson geometry. We then plan to study holomorphic
quantization over the resulting stratified K&hler space. Also the closures of the
strata of the stratification in Theorem 1 are worth further investigation. These
are presumably interesting projective varieties; they are detected by the Poisson
structure and generalize the Kummer varieties mentioned before.

We presented a possible construction of the Poisson structure for the first time
at the AMS-meeting on classical field theory in Seattle (USA) in the summer of
1991 and shortly thereafter in a Berkeley seminar talk. The research program
has been presented thereafter at various meetings; a brief account will appear in
[30]. I am much indebted to A. Weinstein for his encouragement to carry out this
program; in fact, at the Berkeley MSRI workshop on quantization in the spring of
1989, he suggested to me to relate the results of my paper [18], see also [19], to
the moduli spaces arising in Chern-Simons gauge theory and related ones. I am
indebted to M. S. Narasimhan for having pointed out to me the need for an entirely
analytical construction of the projective variety structure on such moduli spaces. It
is a pleasure to thank the organizers of the 14th Winter School GEOMETRY AND
PHysIcs for the opportunity to deliver this series of lectures.
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2. Symplectic reduction and stratified symplectic spaces

Symplectic reduction of Hamiltonian spaces is a rich source of symplectic manifolds.
It has been widely applied to the study of Hamiltonian systems with symmetries
since the days of Jacobi. A general framework for symplectic reduction at regular
values of a momentum mapping has been set up by MEYER [42] and MARSDEN-
WEINSTEIN [40]. However, in many of the applications one would like to carry out
reduction at a singular value of a momentum mapping. It is therefore of interest
to devise a reduction scheme for singular levels of a momentum mapping and to
study the singularities arising from it.

Let M be a symplectic manifold, with symplectic structure o, and G a Lie group
acting on M in a Hamiltonian way, with momentum mapping ¢ from M to g*. To
explain what this means, for X in g, we denote by uX the smooth .function on M
which is the composite of 4 and X, viewed as a linear function on g*, and by Xy
the vector field on M determined by X and the G-action. Now the action to be
hamiltonian with momentum mapping p means that
— p is G-equivariant, and that
— for every X € g, we have

d(u*) = o(Xn,").

The G-action reflects a certain symmetry of the system. For example, consider
a system of n particles in R?, moving with constant angular momentum. Here
G = 0(3), its Lie algebra g equals R3?, with standard inner product, so that we
can identify g with its dual ¢g*, and the manifold M is the corresponding phase
space, that is, the total space (T*R3)*™ of the cotangent bundle on (R3)*", which
amounts to (R®)X", acted upon by G in the usual way; furthermore, with the usual
notation (qi,p1,---,qn,Pn) € (R¥)*", the momentum mapping p from (R®)*™ to g
is given by the association

(q1,P1,-++1GnsPa) F @@ APL+ -+ gn APn.

Picking a value of the momentum mapping amounts to fixing a constant total
angular momentum.

Let p be a momentum mapping as above, and let o be a point of g*, fixed under
the coadjoint action. The space

M, =u"1(0)/G

is called the Marsden-Weinstein reduced space at o. By suitably modifying p we
may assume that o is the origin. This is the so-called “shifting trick”, which allows
one to talk exclusively about reduction at zero. It is common to write

Mea = M/ /G = 5 (0)/G

for this space. What is the significance of this construction? For any G-invariant
function h and any element X of g, we have

{h,yX} = Xpmh =0.
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In other words, the functions uX are preserved by the hamiltonian flows of the
function h. Thus for hamiltonian actions symmetry implies conservation laws. Using
the momentum map one can cut down the number of degrees of freedom of a
symmetric hamiltonian system. The reduced space M,eq is the one underlying the
new system. The function h passes to a function on M;eq.

There is a problem here swept under the rug: How do we know whether M;eq is a
smooth manifold at all? Suppose that (i) 0 is a regular value so that the zero locus
p~1(0) is a smooth submanifold of M (not necessarily connected), and that (ii) the
G-action on the zero locus is free. Then M;eq Will obviously be a smooth manifold.
Moreover, it will inherit a symplectic structure. This is the MARSDEN-WEINSTEIN
reduction [40]. We explain briefly some of the details: Let (V,w) be a symplectic
vector space, and let W be a subspace of V. Recall that the annihilator W* (or
skew complement) of W is the subspace of V consisting of all v so that w(v,w)
is zero for every w in W. Now W is called isotropic if it lies in its annihilator
and coisotropic if it contains its annihilator. Likewise a smooth submanifold of a
symplectic manifold is (co)isotropic provided for every point its tangent space is
(co)isotropic in the tangent space of the ambient manifold. To see that, under the
present circumstances, M;eq inherits a symplectic structure, let p € p=1(0). Recall
at first that the tangent space Tpu~!(0) equals the kernel of the tangent map du,
from TpM to g*. In view of the momentum mapping property, the tangent space
Tpu~1(0) thus consists of all vectors v in T,M so that o,(Xam(p),v) is zero for
every X € g. In other words: The tangent space T,u~!(0) is the annihilator of
the tangent space T,(Gp) to the G-orbit Gp through p. Moreover, the latter is
isotropic in M: In fact, for every X,Y in g we have

op(Xn(p), Yn (p)) = duX (Ya(p)).

But u(p) is zero and hence p is zero on all of the orbit Gp by equivariance whence
dpp(Yam(p)) is zero for every Y € g. Consequently the G-orbit Gp through p is
isotropic in TpM. Since the tangent space Tpu~'(0) is the annihilator of T,Gp we
conclude that T,u~!(0) is coisotropic in T,M in such a way that the restriction
of the form o, to Tpu~!(0) vanishes exactly in the vertical directions. Since p was
an arbitrary point of the zero locus, we see that, under the present circumstances,
the zero locus p~1(0) is a coisotropic submanifold of M, the canonical projection
map from the zero locus to M;eq is the projection map 7 of a principal G-bundle,
and the restriction o|p~1(0) of the form descends to a symplectic form oyeq so that

T*(Ored) = al/,t_l(O).

The form oieq is the symplectic structure on the reduced space we are aiming at.

In most interesting cases, zero will not be a regular value. This happens for
example for the system of n particles in R® with total angular momentum zero.
Under suitable circumstances, a way out is provided by the following result.

Theorem 2.1 (SJIAMAAR-LERMAN [51]). Suppose G compact and p proper. Then the
orbit type decomposition of Mieq is a stratification, and the data determine a structure
of stratified symplectic space, that is to say, a Poisson algebra (C®°(M;eq),{:, }red)
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of continuous functions which, on each stratum, restricts to a smooth symplectic
Poisson algebra in the usual sense.

As before, on each stratum, the algebra C°(N(£)) restricts to the compactly
supported functions, which suffices to describe the symplectic Poisson structure on
that stratum.

We now explain briefly the orbit type decomposition. For each closed subgroup

K of G let M(k) denote the subspace of points having symmetry type conjugate
to K, and let

(Mrea)(xy = (71(0) N M(x))/G.

Then
Mied = U(Mred)(K)'

Each connected component of (Med)(k), if non-empty, inherits a structure of a
smooth symplectic manifold. More precisely: For K so that (Med)(k) is non-empty,
write Mk for the smooth submanifold of (M)(k) of points with symmetry K. Then
the quotient L = Ng(K)/K of the normalizer Ng(K) of K in G by K acts on
My in a hamiltonian way so that 0 is a regular value of the momentum mapping,
and the corresponding reduced space amounts to the space (Mred)(k). Furthermore,
SIAMAAR AND LERMAN prove that the decomposition Mied = U(Mred)(k) is a
stratification. This means that

— (Mied)(k) lies in the closure of (Mieq)(y if and only if H is a subgroup of some
conjugate gKg~! of K, and that

'— for every point of M;eq, a certain precise local cone condition (not spelled out
here) holds describing a neighborhood of that point in Mieq.

The algebra C°(M;eq) is taken to be the algebra (C°(M))¢/IC of G-invariant
functions C*°(M)¢ on M modulo the ideal I¢ of smooth G-invariant functions that
vanish on the zero locus p~1(0). The symplectic Poisson bracket {-,-} on M passes
to a Poisson bracket {-,-}rea on C®®(Mieq). This is not at all obvious. It relies on
the following

Lemma 2.2 (ARMS-CUSHMAN-GOTAY [2]). Let f and h be smooth G-invariant
functions on M and suppose that h vanishes on the zero locus p=1(0). Then {f,h}
also vanishes on the zero locus.

We include a proof, for the sake of illustration.

Proof. Since p is a momentum mapping and since f is G-invariant, we have
(W, f}=Xuf=0

for every X € g. Consequently for every X € g the function uX is constant >ng
the integral curves of the hamiltonian vector field Xy for f, that is, the val  of
i is constant along the integral curves of X;. Hence for every m € p~((  the
integral curve ¢f of X; through m lies in the zero locus p~1(0). Since h vanishes
on the latter, the real function ho ¢f, is identically zero. Differentiation yields

{f,h}(m) =0.
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This completes the proof. O

Under circumstances of the present kind, we shall refer to the Poisson algebra
(C*®(Mred), {*;-}red) as the Arms-Cushman-Gotay algebra.

There is a way to make sense of a smooth curve in M;eq, cf. [51]. Given a
Hamiltonian h € C°°(M;ed), an integral curve of h through a point mg is a smooth
curve v with 4(0) = mo such that, for all functions f € C°°(M;eq),

2 Fa(t)) = (£, hYa(t).

Theorem 2.3 (SJIAMAAR-LERMAN [51]). Given myo, there is a unique integral curve
of h passing through mqo. Moreover hamiltonian flows ezist and are unique and
preserve the pieces of the decomposition of Mieq, and the restriction of a hamiltonian
flow to a piece equals the corresponding hamiltonian flow on the piece.

3. Yang-Mills theory over a surface and local models

We return to the situation of the Introduction. Thus £&:P — ¥ is a principal
G-bundle, having structure group a compact Lie group G. Moreover, we suppose
Y oriented and endowed with a Riemannian metric, and we write vol for the
unique volume form of length one in the chosen orientation. Moreover, we pick an
orthogonal structure on g, that is, an adjoint action invariant scalar product, which
we denote by (,-). We write Q* = Q*(Z,ad(£)) for the forms on ¥ with values in
the adjoint bundle
ad(§): P xgg — %.

Abusing notation somewhat, we write
(,): 2 Q" — C=(T)

for the induced Riemannian structure on each Q*. The scalar product on g also
induces a graded pairing

A @ QF - QITE(T R).

Now the data determine a star operator * on 2* which sends an ad(§)-valued j-form
to an ad(¢)-valued (2 — j)-form; this operator is characterized by

a A *f = (a,B)vol.

Consider the space A of connections on . For a connection A we write da
for its operator of covariant derivative and K4 for its curvature; the latter is an
element of Q2. The data give rise to a Yang-Mills theory studied extensively by
ATIYAH-BOTT [7]. The resulting Yang-Mills equations amount to

dA*KA =0.

Recall that a connection is said to be central provided the values of its curvature lie
in the Lie algebra z of the centre Z of G. Notice when G is not connected z may
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be smaller than the centre of the Lie algebra g. ATIYAH-BOTT [7] showed that,
for connected structure group G, in a sense, it suffices to study central Yang-Mills
connections; moreover they showed that, for a central Yang-Mills connection A, its
curvature looks like

K4 = X¢ Qvol,

for a constant element X, in z determined by the topology of the bundle. For
example, for G = U(n), the unitary group, the bundle £ is classified by its topological
characteristic class in the infinite cyclic group H%(Z, m;(U(n)) which amounts to an,
integer k, also called degree (in the vector bundle picture), and the element X,
looks like

k
Xe = 2mi—diag(l,...,1) € u(n).
n

The moduli space of central Yang-Mills connections N is now the quotient A / G of
the subspace N of central Yang-Mills connections in A divided out by the group G of
gauge transformations. This is the space commented on already in the Introduction.

How does symplectic geometry come into the picture? The data yield a bilinear
pairing (-,-) on Q* given by

(@8) = [().

This pairing is weakly non-degenerate, meaning that its adjoint is injective. In
particular, we get a weakly symplectic structure o on !, and we can view Q2
as the dual of °; the latter is in fact the Lie algebra of the group of gauge
transformations, whence Q2 appears as the dual of the Lie algebra of infinitesimal
gauge transformations. The 2-form o is translation invariant and hence yields a
2-form on the space A of connections, in fact, a weakly symplectic structure. A
crucial observation of ATIYAH-BOTT [7] is that the assignment to a connection A of
its curvature K4 is a momentum mapping p for the action of G on A, and that, with
the notation of the previous Section, the space N arises as the Marsden-Weinstein
reduced space

Ax, = p"H(Xe @ vol) /G

at X¢ @ vol. Notice this makes sense since X; ® vol remains fixed under the
induced G-action on 02, viewed as the dual of Q°. In particular, the weakly
symplectic structure on A descends to a symplectic structure on a certain smooth
submanifold of N. There are a great deal of technical difficulties to be overcome
here; in particular, X¢ ® vol will in general not be a regular value of the momentum
mapping. Further, to make sense of the above heuristic approach technically, one has
to invoke Sobolev spaces, regularity results of elliptic differential equations, Hodge
theory, slice theorems, and the like.

Obviously, the SIAMAAR-LERMAN result (2.1) cited in the previous Section is
not applicable here. Theorem 1 spelled out in the Introduction says that the
statement of the SIAMAAR-LERMAN result is still true, though. Thus the space N
is stratified by orbit types, and the data determine a Poisson algebra (C*°(N),{-,-})
of continuous functions which, on each stratum, restricts to a symplectic Poisson
structure on that stratum. This result has been established in a series of papers
[20 - 24].
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A crucial step in the construction of the stratified symplectic structure is provided
by suitable local models. These local models contain geometric information interesting
in its own right. We now explain this.

Let A be a central Yang-Mills connection. Its operator d4 of covariant derivative
is manifestly a differential on Q*, that is to say, (2*,d4) is a complex. Hence we
can talk about its cohomology

HY, = H*(Q*,d,).

Since the holonomies of any central connection yield a representation of the funda-
mental group m of ¥ in the quotient G/Z of G by its centre Z, the cohomology H%
may be identified with the Eilenberg-Mac Lane group cohomology H*(7,g4) where
¢ denotes the representation determined by A and g4 the Lie algebra g, made into
a m-module via ¢. In particular, the cohomology H*(r,g4) is finite dimensional
and hence so is H%. Thus we see that, while the complex (2*,d4) is certainly
elliptic, finite dimensionality of HY% may be established without appealing to the
index theorem.

The orthogonal structure on g induces a symplectic structure o4 on the (finite
dimensional) vector space HY and the Lie bracket on g induces a graded Lie bracket
[,-]a on H% which, for degree reasons, is symmetric on HY. Let Z4 C G be the
stabilizer of A. After a choice of base point has been made, the group G? of based
gauge transformations acts freely on the space of connections whence restriction to
the point @ identifies Z4 with a closed subgroup of G. Consequently Z4 is a
compact Lie group which acts canonically on H¥ preserving o4 and [-,-]4, and its Lie
algebra z4 equals HY. The orthogonal structure on g induces a canonical isomorphism
between HZ and the dual z% of z4 preserving the Z4-actions. Furthermore the
assignment to n € HY of ©4(n) = 3[n,n]a yields a momentum mapping ©4 for the
Z 4-action on the symplectic vector space HY. MARSDEN-WEINSTEIN reduction then

yields the space Hq = ©3'(0)/Z4.

Theorem 3.1 [20]. The symplectic quotient Hy is a local model for N near [A].
More precisely, a suitable Kuranishi map identifies a neighborhood of [A] in N with
a neighborhood of the class af zero in Hy.

We shall say that a point [A] of N is non-singular provided Z4 acts trivially
on H). Theorem 3.1 entails that N is smooth near a non-singular point [A], and
that the data yield a symplectic structure on the subspace of non-singular points of
N. This is the symplectic structure constructed by ATIYAH-BOTT [7] by symplectic
reduction in infinite dimensions.

A formal consequence of (3.1) is the following.

Corollary 3.2 [21]. The decomposition of N according to orbit types is a (Whitney)
stratification in such a way that each stratum inherits a symplectic structure from
the data. ’

Locally, the Arms-Cushman-Gotay Poisson algebra on the models yields a Poisson
structure near every point of the moduli space N. A single global Poisson structure
on N which encompasses all these has been constructed in our paper [24]. It may
be described in the following way: In [22] we constructed a homeomorphism py,
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referred to as Wilson loop mapping, from N(€) onto a certain representation space
Rep¢(T,G) for the universal central extension I' of the fundamental group n of
Y. While the space N(£) depends on the choices of Riemannian metric on ¥ the
space Rep¢(T,G) does not. In [23] we constructed smooth structures C°(N(£)) and
C> (Repe(l‘, G)) on these spaces, and we have shown that p, is a diffeomorphism
with respect to these structures. By construction, the space Repg(I',G) is the
quotient Hom¢(T',G)/G of a certain space of homomorphisms Hom¢(T',G) of T into
G determined by {. For ¢ € Hom¢(I',G), we denote by gi the dual g* of the
Lie algebra g, made into a m-module via ¢ and the coadjoint action. For every
[#] € Repe(T',G), a choice of representative ¢ € Hom¢(T',G) induces a linear map
Ay from the real vector space Qg Rep¢(T,G) of differentials at [¢], with reference
to C® (Repe(I‘,G)), into the first homology group Hi(w,g3) of 7 with coefficients
in g3 [24 (1.16)], and X} is an isomorphism if and only if [#] is a non-singular
point of Rep¢(I',G). In view of [24 (1.17)], A} is independent of the choice of ¢ in
the sense that, given z € G, the corresponding linear map A}, from Qg Rep(T',G)
to Hy(m,g;4) equals the composite of A} with the isomorphism Ad*(z), induced by
z. The induced coadjoint action invariant symmetric bilinear form (-,-) on g* then
gives rise to, for every ¢ € Hom¢(T',G), an intersection pairing (-,-)y on H;(m,g3),
and the corresponding Poisson bracket {-,-} on C° (Rep¢(T',G)) will then satisfy
the formula

(33) {£, R}l = (A(df[¢)), A5 (dh[8]))s

where f,h € C*® (Repg(P,G)) and where ¢ € Hom¢(T',G) is a representative of the
point [#] € Rep,(T',G). As a set function, the bracket {-,-} is determined by (3.3).
This formula is intrinsic in the sense that it does not involve choices except that
of the representative ¢ which has been taken care of by the discussion of the
dependence of A} on the choice of ¢. The details of this construction are given
in our paper [24]. Theorem 3.1 now has the following extension, established in

[24 (4.3)].

Theorem 3.4. For every central Yang-Mills connection A, near [A] € N(£), the
Arms-Cushman-Gotay Poisson algebra (C*®(Ha),{-,-}4) yields a local model of N(£)
with its Poisson structure and likewise, near the point p,[A], a local model of
Rep(T',G) with its Poisson structure, where p, refers to the Wilson loop mapping
from N(€) to Rep(T',G). More precisely, the choice of A (in its class [A]) induces a
Poisson diffeomorphism (of smooth spaces) of an open neighborhood W4 of [0] € Ha
onto an open neighborhood Uas of [A] € N(£), where W4 and Ua are endowed
with the induced smooth and Poisson structures, and a similar statement holds for
Rep¢(T',G) near the point py[A].

The intrinsic description (3.3) of the Poisson structure has the following conse-
quence, cf. [24 (Theorem 2)].

Theorem 3.5. The induced action of the mapping class group of T respects the
Poisson structure. More precisely, its subgroup of orientation preserving elements
preserves the Poisson bracket on Rep;(T', G) whereas the orientation reversing elements
yield Poisson bracket preserving diffeomorphisms from Rep(T',G) to Rep_,(T',G)
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where —¢ refers to the (topologically) “opposite” bundle (which may coincide with
£).

Another construction of the Poisson structure will come out of the finite di-
mensional approach explained in Section 5 below. The above construction is more
elementary but less elegant than the finite dimensional one. The advantage of the
above construction is its invariance properties which entail invariance under the
mapping class group as just explained.

The globally defined Poisson structure has another important consequence: Let f
be a smooth invariant real function on G, and let C be a closed curve in ¥, having
starting point Q. The homotopy class of C' induces a homomorphism [C] from Z
to the fundamental group m of X, and the assignment to ¢ of the real number
f(#([C](1))) induces a real valued function f€ on Rep(r,G) = Hom(r,G)/G. Let
¢ be a flat G-bundle over ¥. Since [C] lifts to a homomorphism from Z to the
free group F on the chosen generators, f€ yields a function in C*(Rep¢(w,G)),
and hence {f€,-} is a derivation of C*°(Rep¢(r,G)). On each stratum it amounts
of course to a smooth vector field. The corresponding flow on the non-singular
part of Repg(m,G) has been studied by GOLDMAN in [14], referred to as a twist
flow. However, the derivation {f€,-} in fact integrates to a “twist flow” on the
whole space Rep,(m,G), that is, an action of the real line on this space preserving
the smooth structure. Theorem 2.3 applied to the local model spelled out in (3.4)
above shows that this is locally so, and, using the partition of unity established in
our paper [23], we can conclude that these twist flows in fact exist globally and
are unique.

4. Local Poisson geometry

Let A be a central Yang-Mills connection. The star operator endows HY with a
complex structure compatible with the symplectic structure o4. Hence H), inherits
a structure of unitary Z4-representation in such a way that ©4 is its unique
momentum mapping having the value zero at the origin. Now Theorem 3.4 reduces
the local Poisson geometry of the space N to what is called the “the standard
example” (2.4) on p. 52 of ARMS-GOTAY-JENNINGS [3]. This observation is exploited
in our paper [25]. We now explain some of the underlying ideas.

Consider a unitary representation V of a compact Lie group K. Associated with
it is a unique momentum mapping g from V to k* having the value zero at the
origin [3]. Later we shall take V = HY, for a central Yang-Mills connection 4 on ¢
and K = Z,4, the stabilizer of A in G, and p will be ©4. For ease of exposition,
we shall present the situation for arbitrary V and K.

The I -action extends to an action of the complexification K€ of K on V. The
idea is to relate the symplectic quotient with the space of orbits of the K C-action.
Now the latter is a bad space: There may be orbits which are not closed, and
hence the orbit space is not in general Hausdorff. The way out is provided by the
affine categorical quotient V//KC, cf. e.g. [47]. It is obtained in the following
way: Consider the algebra C[V]Kc of KC-invariant complex polynomials; actually it
coincides with that of K-invariant complex polynomials. By Hilbert’s theorem, this
algebra has a finite set fi,..., fr of generators. These yield a K -invariant algebraic
map f from V to C" which, by construction, factors through the space of K C-orbits
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in V. The subspace of closed orbits may now be identified with the affine set in C”
defined by a set of defining relations for the algebra of invariants C[V]Kc. Recall
that the reduced space Vied is the quotient p~1(0) / K. The following consequence
of an observation of KEMPF-NESS [35], cf. §4 of [47], where the zero locus p~1(0)
is referred to as a Kempf-Ness set, will be crucial for our purposes.

Lemma 4.1. The canonical map Vieq — V//KC from the reduced space Vieq to the
(affine) categorical quotient V//KC induced by the inclusion of p=1(0) into V is a
homeomorphism.

Hence as a space, in fact, as a complex affine variety, the reduced space Vieq
looks like the affine categorical quotient V//K©. We shall see below that, as a
stratified symplectic space, il looks rather different, though.

To illustrate how this works, consider the special case where G = SU(2). The
following discussion will in particular show what is behind the proof of Theorem 3
above.

The bundle € is now necessarily trivial. Let Z C G denote the centre and T C G
a maximal torus. We already pointed out that the space N = N(£) has three strata

N=NGUN(T)UNZ

where N(i) denotes the points of orbit type (). The top stratum is Nz. We can
now “see” the strata in the local model in the following way: For a point [A] in
the top stratum, H% and H?% are zero, and hence near [A], the moduli space looks
like a neighborhood of zero in HY, with the symplectic structure o4. However, H}
amounts to a copy of C3(¢~1) with the standard structure.

For a point [A] in the “middle” stratum N(7), up to conjugation, the holonomies
of a representative A yield a homomorphism ¢ from 7 to T, and the cohomology
H? amounts to H*(m,g4). Now gy decomposes into a direct sum of ¢ and tt
where t is the Lie algebra of T which is a copy R of the reals and t* amounts to
R?, with circle action through the 2-fold covering map onto SO(2,R). Moreover,
H'(7,g4) decomposes into a direct sum of (t® C)¢ and (t* ® C)¢~!. The action on
(t®C)* is trivial - in fact, this summand corresponds to the points in the stratum
N7y (locally), while the SO(2, R)-representation on (t1® C)*~! is hamiltonian, with
momentum mapping O 4, restricted to (¢ ® C)¢~!. The latter boils down to the
classical constrained system of ¢ — 1 particles moving in the plane with constant
total angular momentum. In particular, reduction at total angular momentum zero
yields the reduced space we are looking for (locally).

To be even more specific, let £ =2 and V =t ® C = R? x R%. The SO(2,R)-
representation is the obvious one, that is SO(2,R) acts as rotation group on each
copy of R2. With the usual coordinates (g,p).€ R? x R?, the momentum mapping
i from V to R is given by the assignment to (g,p) of the determinant |gp|. The
algebra of (real) invariants in R[V] is generated by the three scalar products qq, gp,
pp, and the determinant |gp|. However, on the zero locus p~!(0), the determinant
vanishes whence the algebra C°(V,eq) is generated by the three scalar products.

To understand Vieq as a space, we observe that the extension of the SO(2,R)-
representation to its complexification amounts to the standard SO(2, C)-representation



POISSON GEOMETRY OF CERTAIN MODULI SPACES 29

on C2?. This representation has a single invariant, the complex scalar product which,
with the notation w = ¢ + ip, we write ww, and the algebra of complex invariants
is free. Consequently the affine categorical quotient C? / / SO(2,C) is a copy of the
complex line By virtue of Lemma 4.1, the canonical map from Vieq to C is a
homeomorphisth. Under this homeomorphism, with the notation ww = z; + iz, so
that z; and z; are the coordinate functions on C, viewed as the real plane, we
have

T1 =4qq —pp, T2 =29p, v =qq+ pp.

It is obvious-that the algebra C%(Vied) is as well generated by the coordinate
functions z;,z; and the radius function r. Moreover, the complex picture tells us
that the single obvous relation z? + z3 = r? between the coordinate functions and
the radius function suffices, that is, is a defining relation for C°°(Vieq). Finally,
a straightforward calculation of the Poisson brackets between z;,z2,r, viewed as
functions on the original space V, yields the formulas

{ll,Iz} = 27”, {171,7‘} = 2$2, {zg,r} = —211

already spelled out in the Introduction. See [25] for details.

A similar reasoning yields a model for a neighborhood of a point in the “bottom”
stratum Ng. It consists of 22¢ isolated points and, locally, the Poisson algebra is
that of the reduced classical constrained system of £ particles in R® with total
angular momentum zero. Even for £ = 2, the reduced Poisson algebra is already
rather complicated: It has ten generators; in fact, a basis of sp(2) may be taken as
coordinate functions on sp(2)*; the reduced space may be described as the closure
of a certain nilpotent orbit in sp(2)*. This relies on the theory of dual pairs [17)
and work done in [36]; see our paper [25] for details.

A general study of the smooth structures needed to describe the Poisson geometry
of our moduli spaces has been undertaken in our paper [23]. In particular the
problem arises of determining, at an arbitrary point, the Zariski tangent space
with reference to the smooth structure. For a general principal bundle £ over
L, cf. [23 (7.9)], an arbitrary central Yang-Mills connection A, that is, a choice
of representative of the point [A] of the moduli space N of central Yang-Mills
connections, induces a linear map A4 from H), to the Zariski tangent space T,
with reference to the smooth structure C°°(N) mentioned earlier. This map is
injective on the invariants (H})%4 and has kernel the orthogonal complement of the
invariants. Now the subspace (HY)Z4 of invariants amounts to the tangent space
of the stratum in which the point [A] lies. Moreover, for the above example where
G =SU(2) and £=2, it is shown in [23] that, for a point in the middle stratum
N(t), the Zariski tangent space has dimension 7, while for a point in the bottom
stratum Ng, the Zariski tangent space has dimension 10. We have seen above that,
for a point [A] in the middle stratum, (H4)%4 is of dimension 4, and so is its
orthogonal complement; hence the kernel of A4 is then of dimension 4. Likewise,
for a point [A] in the bottom stratum, (HY)Z4 is trivial and the kernel of A4
is the whole space HY,. The latter has dimension 12 whereas the Zariski tangent
space has dimension 10. The same discussion applies to the representation space
incarnation of these spaces. Thus we see that, at a singular point [¢] of a space of
the kind Rep,(T',G), the Zariski tangent space Ty Rep,(T,G) with respect to the



30 J. HUEBSCHMANN

smooth structure C*°(Rep¢ (T, G)) does not boil down to H'(m,g4). This should be
compared to what is said on p. 205 of [13].

It is obvious that the whole description generalizes to get a Poisson model for a
neighborhood of an arbitrary point in a general moduli space of central Yang-Mills
connections. More examples should be worked out!

5. The finite dimensional construction

Let
'P=($1,y1,'--11t,yl;r)y r=H[:z:,,y]],

be the standard presentation of the fundamental group m of ¥ where £ denotes the
genus. Write F for the free group on the generators and N for the normal closure
of the relators, so that # = F/N. The choice of generators identifies Hom(F,G)
with G?¢ and, furthermore, the space Hom(w,G) with the pre-image of the identity
element in G, for the word map

rnG¥ 5 G

induced by the relator. The idea is now to view r as a momentum mapping. While
this might appear a bit strange at first, a minor change will fit the picture into
the appropriate framework: Let O C g be the open G-invariant subset of g where
the exponential mapping from g to G is regular; notice that O contains the centre
of g. For example, when G = SU(2), the image of O in G is the 3-sphere with
the point —1 removed. Write H(P,G) for the space determined by the requirement
that a pull back diagram :

H(P,G) —— O

nl lexp

Hom(F,G) —— G

results, where the induced map from H(P,G) to O is still denoted by r. The
space H(P,G) is a smooth manifold and the induced map n from H(P,G) to
Hom(F,G) = G** is a smooth codimension zero immersion whence H(P,G) has the
same dimension as G*; moreover the above injection of Hom(7,G) into Hom(F,G)
induces a canonical injection of Hom(w, G) into H(P,G), and in this way Hom(r,G)
will be viewed as a subspace of H(P,G). When we combine 7, the inclusion of O into
g, and the adjoint from g to its dual g* of the orthogonal structure on g, we obtain
a smooth G-equivariant map g from H(P,G) to g* which looks like a momentum
mapping and has Hom(w,G) as its zero locus. It turns out that a G-invariant
2-form can be constructed on H(P,G) which, on a neighborhood of Hom(7,G) in
‘H(P,G), amounts to a symplectic structure in such a way that (i) ¢ is a momentum
mapping, and (ii) the holonomy identifies the moduli space of flat connections on
the corresponding flat bundle with its stratified symplectic structure mentioned in
Theorem 1 above with the reduced space R = Rep(w,G) for p with reference to
zero which we now explain. This gives a purely finite dimensional treatment of the
symplectic geometry of moduli spaces of flat connections. More generally, certain
twisted analogues Rx associated to elements X in the Lie algebra of the centre of
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G amount to moduli spaces N(£) of central Yang-Mills connections. Goldman [13]
constructed a symplectic structure on a smooth, open, connected, and dense subspace
of R; Karshon [34] gave the first proof using only finite dimensional techniques that
the symplectic form is closed, and Weinstein [55] (whose construction we follow)
reinterpreted Karshon’s construction in terms of the de Rham-bar bicomplex. The
construction to be presented extends the methods of [55] and gives a smooth finite
dimensional space M together with a G-invariant symplectic form and momentum
mapping in such a way that the moduli spaces Rx result from symplectic reduction
with reference to X (or what corresponds to it in the dual of g). Such a construction
is given by [27] (Section 5 and 6) and [33] (5.1).

To the Lie group G, we associate the de Rham-bar bicomplez (C'(G);d,d) defined
by C?P(G) = Q7(GP), the two operators d and § being the de Rham differential
d:Q*(G*) = Q**1(G*) and the bar complex operator §:Q*(G*) — Q*(G**1), respec-
tively. Its total cohomology gives the cohomology of the classifying space of G [§],
[50]. For a discrete group II — we shall take II = F or I = 7 — we shall denote the
chain and cochain complexes of its inhomogeneous reduced normalized bar resolution
BII by (C.(IT),d) and (C*(II),4), respectively; see e. g. MAC LANE [38] for details.
We may form another bicomplex (C';d, ) defined by C?7 = CP(II)®@N¢(Hom(II, G),
the two operators d and § being the de Rham differential on Hom(II, G) and the bar
complex operator §:C*(II) — C**1(II), respectively. Notice when II = F, the free
group on 2¢ generators, Hom(II,G) amounts to G?¢. For general w, the evaluation
maps E:II? x Hom(I[, G) — GP give rise to a sequence of maps from CP4 to CP1
which combine to give a morphism of bicomplexes.

Denote by 7 the g-valued left-invariant 1-form on G which maps each tangent
vector to the left invariant vector field having that value. The corresponding right-
invariant form is denoted by 7. These are the Maurer-Cartan forms. Next, if a is
any differential form on G, we denote by «; the pullback of a to G x G by the
projection p; to the j’th component. Henceforth we denote the chosen invariant
2-form on g by “-”. Let

Q= §T1 '7_'2.

This is an alternating 2-form on G x G. Then E*(Q) € C*(II) ® Q*(Hom(Il, G)).
To any 2-chain ¢ in C(II), Weinstein associated the 2-form w. = (¢, E*Q) on
Q?(Hom(II,G)), and he observed that this assignment induces a homomorphism
from H(II) to the closed 2-forms on Hom(II,G) [55]. Now an element x of Hp(m)
may be expressed in terms of a representative ¢ € C;(F) having boundary ar, that
is, an integral multiple of r determined by «; this relies on the Schur-Hopf formula
calculating the second homology group of a discrete group. We thus obtain a 2-cycle
of 7, which will still be denoted by c. The above construction with II = F yields
the 2-form w. on Hom(F,G). Let

Lt 3
A= 12[T,T] T € Q°(G).

This is a closed invariant 3-form so that

(5.1) dw, = ar*) € Q*(Hom(F,G))
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([27] (18); [33] Proposition 4.1). The choice of generators induces an embedding of
the space Hom(w, G) into Hom(F,G) and (5.1) entails that the 2-form w,, restricted
to Hom(w,G), is closed, suitably interpreted in its singularities.

We now suppose that « is a (suitably chosen) generator. In view of (5.1), dn*w,
then equals dr*(a) where a is a closed form on O. Using the homotopy operator
h that enters the usual proof of the Poincaré Lemma, let 8 = ha; then o =dB on
g and hence on O. Thus we have:

Proposition 5.2. The 2-form & = n*w.—7*(0) on H(P,G) is closed and G-invariant.

As usual we write ¢ for the contraction operator on forms. An equivariant version
of the de Rham-bar bicomplex finally provides a proof of the following [27], [33].

Proposition 5.3. The above map p from H(P,G) to g* satisfies, for every Y € g,
the formula

Yy = d(/"Y)
where as before u¥: M = H(P,G) = R refers to the composite of p with.Y, viewed
as a linear map on g*.

Thus formally thé momentum mapping property is satisfied, cf. [6], except that
is not necessarily symplectic since it need not be non-degenerate. By adding u to
on H(P,G) we obtain in a standard way an extension of & to an equivariantly
closed 2-form on H(P,G).

Now Hj(w) is infinite cyclic, generated by an element represented by a 2-chain
¢ of F whose boundary equals r. The subspace O of g contains the centre z of g,
and Poincaré duality in the cohomology of = implies that, on a neighborhood M
of the pre-image (7*)7!(z) in H(P,G), the 2-form & has maximal rank, that is, is
symplectic. Symplectic reduction with reference to zero then yields the usual space
R of representation of 7 in G, while symplectic reduction with reference to suitable
non-zero central values X corresponding to topologically non-trivial G-bundles yields
certain twisted moduli spaces Rx. Application of the SJAMAAR-LERMAN result [51]
then yields the following, cf. [27].

Theorem 5.4. With respect to the decomposition according to G-orbit types, the space
R and, more generally, each twisted representation space Rx inherits a structure of
stratified symplectic space.

g2 81

Each possible non-zero central value X is precisely of the kind X¢ coming into
play in Section 3 above, where ¢ refers to a suitable principal bundle, and the
Wilson loop mapping, that is, the operation of taking holonomies with reference to
suitable paths, yields a diffeomorphism of stratified symplectic spaces from N() to
Rx. In other words, we have recovered the moduli space N(£) of central Yang-Mills
connections as a stratified symplectic space by a finite dimensional construction.
In particular, for G = U(n), the unitary group, the moduli spaces of holomorphic
semi stable rank n vector bundles of arbitrary degree arise in this way by finite
dimensional symplectic reduction.

Theorem 5.5. Each stratum of the space R and, more generally, each stratum of
a twisted representation space Rx has finite symplectic volume.

The finiteness of the symplectic volumes may also be derived from the local
models, see [21].
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Theorem 5.6. The reduced Poisson algebra is symplectic, that is, its only Casimir
elements are the constants.

Again this may as well be derived from the local models.
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