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1. I n t r o d u c t i o n 

T h e s tudy of certain moduli spaces leads to concepts which are otherwise known in 
mathemat ica l physics, in part icular to t h a t of a Poisson s tructure. Let me remind 
you of its definition: On R 2 n with its usual coordinates {oi,..., on,pi,... , p n } , the 
formula 

ifhX-X-ÍÊĹĚL-ĚĹÊҺЛ 
U ' ^^Kдpjдqj дqjдpj) 

yields a bracket {•, •} on the algebra of smooth functions. This bracket was introduced 
by PoiSSON around 1809 and he observed tha t , given three functions / , g,li with 
{/?g} = 0 a n c l {/»M = 0, one also has {/, {g ,h}} = 0. This means tha t if g and 
h are integrals of motion for (the hamiltonian vector field of) / , so is {g , l i}. See 
e. g. [1 p . 196], [4 p . 216]. Poisson's collegues at Paris would not t rus t him, and 
only thir ty years later Jacobi discovered what is nowadays called the Jacobi identity 
which of course immediately explains Poisson's observation. We now have almost 
completely reproduced the definition of a Poisson algebra: a Poisson algebra is a 
commutat ive algebra with the additional s t ructure of a Lie bracket which behaves 
as a derivation in each variable with respect to the algebra s t ructure. 

After their discovery, Poisson structures have been explored by S. LIE [37], E . 
CARTAN [10], P . DlRAC [11], and others. They were the basic tool for Lie's work 
and provided for example an appropriate language for the proof of Lie's third 
theorem. For many discoveries of modern symplectic geometry, there are precedents 
in Lie's work which could not have been spelled out without the concept of a 
Poisson structure. Dirac made the fundamental observation tha t Poisson brackets 
provide the right framework in which classical mechanics is seen as an approximation 
of quantum mechanics. He also noticed their importance for classical constrained 
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systems and developed the miraculous notion of Dirac bracket. Poisson brackets 
are nowadays in a period of intense development, cf. e. g. [53, 54]. Among others 
they are used to study collective hamiltonian systems, see e. g. [12]. They have 
been useful even in engineering mathematics . Some references and discussion in this 
direction may be found in [39]. 

The geometry of certain moduli spaces may be described in similar ways as tha t 
of collective hamiltonian systems. Poisson structures then yield geometric insight 
which goes beyond what can be obtained from s tandard symplectic geometry These 
moduli spaces include those of central Yang-Mills connections for a principal bundle 
on a Riemann surface, in particular moduli spaces of semi stable holomorphic 
vector bundles, certain representation spaces, moduli spaces of parabolic bundles, 
and related ones. Work in progress applies these ideas to certain moduli spaces of 
Einstein-Hermite vector bundles. We now explain a special case: 

Let E be a closed (real) surface, G a compact Lie group, with Lie algebra g, and 
£: P —» £ a principal G-bundle. Further, pick a Riemannian metric on £ and an 
orthogonal structure on g, tha t is, an adjoint action invariant scalar product . These 
da ta then give rise to a Yang-Mills theory which has been studied in great detail 
by ATIYAH-BOTT [7]. They showed in particular that , in a sense, it suffices to 
study the geometry of the moduli space N(£) of gauge equivalence classes of central 
Yang-Mills connections. Here a connection A is said to be central provided the 
values of its curvature lie in the Lie algebra of the centre of G. When the bundle f 
is flat the central Yang-Mills connections are precisely the flat ones. In particular, 
for G = SU(2), the moduli space N(£) is that of flat connections coming into play 
in Chern-Simons gauge theory Another important special case is tha t of G = U(a ) , 
the unitary group; the bundle £ is then topologically classified by its Chern class 
(say) k, and the space N(£) is homeomorphic to the NARASIMHAN-SESHADRI moduli 
space N(a, k) of semi stable holomorphic rank n and degree k vector bundles over 
£ (with reference to a choice of holomorphic structure) . In general, these moduli 
spaces still carry additional geometric structures such as e. g. symplectic or Kahler 
ones which are at first well defined only away from certain singularities, though. 
Our program is aimed at extending such structures, suitably generalized, over the 
whole space, its singularities included. Here is the first result. 

T h e o r e m 1. The decomposition of the space N(£) into connected components of 
orbit types of central Yang-Mills connections is a (Whitney) stratification in such a 
way that each stratum, being a smooth manifold, inherits a symplectic structure, in 
fact, a Kahler structure, from the given data. Moreover the data determine an algebra 
C°°(N(£)) of continuous functions on N(£) together with a Poisson structure {•,•} 
which, on each stratum, restricts to the corresponding symplectic Poisson structure. 

A comment might be in order: On each s t ra tum, the algebra C°°(N(£)) restricts 
to the compactly supported functions; obviously we cannot get all smooth functions. 
However the compactly supported functions certainly suffice to recover the symplectic 
Poisson s tructure on a s t ra tum. In general, on a stratified space, an algebra of 
continuous functions which on each s t ra tum restricts to the compactly supported 
functions is referred to as a smooth structure. A stratified space can suppor t different 
smooth s tructures . An example will be given after Theorem 2 below. 

A space with a s tructure of the kind spelled out in the theorem has been 
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christened stratified symplectic space by SJAMAAR-LERMAN [51]. 

REMARK 1. A formal consequence of the theorem is the existence of a smooth 
open connected and dense s t ra tum, referred to as top stratum. In the vector bundle 
case, it consists of the stable points. Its existence in the symplectic context is not 
as obvious as one might believe since a priori we do not have a s t ructure of a 
complex analytic variety at our disposal. 

REMARK 2. It has been known for a while, cf. NARASIMHAN-SESHADRI [46], 
ATIYAH-BOTT [7], tha t an orthogonal s t ructure on the Lie algebra gives rise to 
a symplectic s tructure on the top s t ra tum. In particular, in the vector bundle 
case, for n and k relatively prime, there is only a single s t ra tum, the top s t ra tum, 
and a result of NARASIMHAN-SESHADRI [46] says tha t , the moduli space inherits a 
s tructure of a compact Kahler manifold. Our theorem extends the symplectic par t 
thereof to the general case. In fact, our Poisson s t ructure is defined also at the 
singular points; it encapsulates the mutual positions, of the symplectic structures on 
the s t ra ta . Borrowing some language from algebraic geometry one could say that 
it describes what happens to the symplectic s t ructure under "specialisation". A 
structure of this kind cannot even be spelled out in ordinary symplectic geometry. 
Furthermore, it is known tha t , for general n and k, the spaces N(n,k) have a 
s tructure of a normal projective variety SESHADRI [48], [49]; however, this does 
not shed too much light on the singular behaviour of the symplectic or Poisson 
structures in general; in fact it may happen that the symplectic s t ructure is singular 
whereas the complex analytic one is not. An example will be explained in Theorem 
2 below. 

The Poisson structure gives rise to some interesting Poisson geometry. A special 
case worthwhile studying is that where G = SU(2). In another guise, cf. what was 
said above, after a choice of compatible holomorphic s t ructure on E has been made, 
the moduli space N(f) is then tha t of semi stable holomorphic vector bundles on 
£ of rank 2, degree 0, and trivial determinant . This space and related ones have 
been studied extensively in the l i terature [43 - 49]. In part icular, for genus £ > 2, 
NARASIMHAN-RAMANAN proved tha t the complement K of the top s t r a tum is the 
Kummer variety of S associated with its Jacobien J and the canonical involution 
thereupon [43]. This has the following consequence, established in [25]. 

T h e o r e m 2. For G = SU(2) ; when £ has genus £ > 2, the Poisson algebra 
(t7°°(N(£)),{•, •}) detects the Kummer variety K in N(£) together with its 22i double 
points. More precisely, JC consists of the points where the rank of the Poisson 
structure is not maximal, the double points being those where the rank is zero. 

For genus > 3, the Kummer variety K. is precisely the (complex analytic) singular 
locus of N(f), a result due to NARASIMHAN-RAMANAN [43]. This has been reproved 
in [25] within our framework. When £ has genus two the space N(f) equals complex 
projective 3-space and fC is the Kummer surface associated with the Jacobien of 
E . In the l i terature, this case has been considered somewhat special since as a 
space N(£) is then actually smooth. More precisely, its algebra of smooth functions 
in the usual sense is a smooth structure in the above sense. However, from our 
point of view there is no exception. Qur smooth s t ructure is not the s tandard one, 
and as a stratified symplectic space, N(£) still has singularities, tha t is to say, the 
Poisson algebra (C°°(N (£)) , {•, •}) detects a Kummer surface together with its 16 
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singularities and hence the underlying algebra of functions can plainly not be tha t 
of smooth functions in the ordinary sense; in particular, the symplectic s t ructure 
on the top s t r a tum does not extend to the whole space. It is interesting to observe 
tha t the stratification mentioned in Theorem 1 is finer than the s tandard complex 
analytic one on complex projective 3-space. 

One way of proving these results is by means of suitable local models. These 
local models yield insight interesting in their own right. We explain this briefly 
for the special case where G = SU(2). Let Z -G denote the centre and T C G a 
maximal torus. The space N = N(£) has three s t ra ta 

N = NG U N(T) U Nz 

where N(/r) denotes the points of orbit type (K ) . The top s t r a tum is Nz-

T h e o r e m 3 . Near a point of N(/f), N and (C°°(N ) , {•, •}) may be described in the 
following way: 

K = Z: the space C 3 ^ - 1 ^ with its standard symplectic Poisson structure; 
K = T: a product of Cl with its standard symplectic Poisson structure and of the 
reduced space and reduced Poisson algebra of a system of £—1 particles in the plane 
with total angular momentum zero; 
K = G: the reduced space and reduced Poisson algebra of a system of £ particles in 
3-space with total angular momentum zero. 

For illustration, consider the special case where £ = 2, so tha t , by virtue of the 
Naras imhan-Ramanan result cited above, the space N is complex projective 3-space. 
By Theorem 3, near a point of N(T*), the space N looks like the product of a 
copy of C 2 with the reduced system of a single particle in the plane R 2 . It turns 
out tha t the latter is indeed R 2 , with reduced Poisson algebra generated by the 
coordinate functions a,-., x2 and, which is crucial here, an additional function r 
which is the radius function, so that the usual relation 

xl -p x2 = T 

holds. Notice r is not smooth in the ordinary sense. The Poisson s t ructure {•,•} 
is given by the formulas 

{ x i , x 2 } = 2r, { x i , r } = 2x2 , {x2, r} = - 2 x i . 

Thus we see tha t the algebra C°°(N) contains the usual smooth functions but is 
strictly larger than that of smooth functions on complex projective 3-space in the 
ordinary sense. 

The present paper is intended as a leisurely introduction to the Poisson geometry 
of the mentioned moduli spaces which has been developped in our papers [20 - 28]. 
In Section 2 below we briefly explain the idea of a stratified symplectic space while 
in Section 3, after a very short description of Yang-Mills theory over a surface which 
follows the paper [7] by ATIYAH AND BOTT, we give the construction of suitable 
local models. In Section 4 we explain the resulting (local) Poisson geometry whereas 
in Section 5 a finite dimensional approach is presented. Moduli spaces of parabolic 
bundles [41] are not touched in this paper, cf. [16], [28]. 
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W h a t remains to be done? Well, a compatible complex analytic s t ruc ture on a 
symplectic manifold can be described in terms of a polarization. To extend this 
relationship to stratified symplectic spaces, in [29] we introduced the concept of 
a stratified Kahler space. This is a stratified symplectic space whose s t r a ta are 
endowed with struc tures of Kahler manifolds, together with an additional piece of 
s t ruc ture which describes the mutua l positions of the Kahler s t ruc tures , generalizing 
what was said above about the mutual positions of the symplectic s truc tures on a 
stratified symplectic space. The description of this additional piece of s t ruc ture is 
achieved by means of results in our paper [18], see also [19]. We plan to prove 
that a moduli space of central Yang-Mills connections inherits a s t ruc ture of a 
complex analytic space together with tha t of a compatible stratified Kahler space 
which is integral in an appropriate sense. We note tha t , for a singular Kahler space 
in the sense of GRAUERT [15], a stratified Kahler s t ruc ture in our sense amounts 
to an additional requirement which the local Kahler potentials have to satisfy in 
the singular points. Thereafter we plan to demonstra te tha t an integral stratified 
Kahler space inherits a s t ruc ture of projective variety While it is known from 
geometric invariant theory construc t ions that a moduli space of central Yang-Mills 
connections inherits a s t ruc ture of a projective variety the link of the lat ter to 
the symplectic or more generally Poisson geometry presented here is not completely 
understood. Our program is aimed at yielding a purely analytical construc t ion of the 
projective variety s truc ture, thereby providing a bet ter unders tanding of how this 
s t ruc ture is related with the Poisson geometry We then plan to study holomorphic 
quantization over the resulting stratified Kahler space. Also the closures of the 
s t ra ta of the stratification in Theorem 1 are worth further investigation . These 
are presumably interesting projective varieties; they are detec ted by the Poisson 
s truc ture and generalize the Kummer varieties mentioned before. 

We presented a possible construc t ion of the Poisson s t ruc ture for the first t ime 
at the AMS-meeting on classical field theory in Seattle (USA) in the summer of 
1991 and shortly thereafter in a Berkeley seminar talk. The research program 
has been presented thereafter at various meetings; a brief account will appear in 
[30]. I am much indebted to A. Weinstein for his encouragement to carry out this 
program; in fact, at the Berkeley MSRI workshop on quantization in the spring of 
1989, he suggested to me to relate the results of my paper [18], see also [19], to 
the moduli spaces arising in Chern-Simons gauge theory and related ones. I am 
indebted to M. S. Narasimhan for having pointed out to me the need for an entirely 
analytical construction of the projective variety s t ruc ture on such moduli spaces. It 
is a pleasure to thank the organizers of the 14th Winter School GEOMETRY AND 
PHYSICS for the opportuni ty to deliver this series of lectures. 
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2. S y m p l e c t i c reduc t ion and strat if ied s y m p l e c t i c spaces 

Symplectic reduction of Hamiltonian spaces is a rich source of symplectic manifolds. 
It has been widely applied to the study of Hamiltonian systems with symmetries 
since the days of Jacobi. A general framework for symplectic reduction at regular 
values of a momentum mapping has been set up by MEYER [42] and MARSDEN-
WEINSTEIN [40]. However, in many of the applications one would like to carry out 
reduction at a singular value of a momentum mapping. It is therefore of interest 
to devise a reduction scheme for singular levels of a momentum mapping and to 
study the singularities arising from it. 

Let M be a symplectic manifold, with symplectic s tructure <r, and G a Lie group 
acting on M in a Hamiltonian way, with momentum mapping /J, from M to g*. To 
explain what this means, for X in g, we denote by fix the smooth function on M 
which is the composite of tx and K, viewed as a linear function on g*, and by XM 

the vector field on M determined by X and the G-action. Now the action to be 
hamiltonian with momentum mapping fj, means that 

— /i is G-equivariant, and that 
— for every X G g, we have 

d(»x) = a(XMr). 

The G-action reflects a certain symmetry of the system. For example, consider 
a system of n particles in R 3 , moving with constant angular momentum. Here 
G = 0 (3 ) , its Lie algebra g equals R 3 , with s tandard inner product , so that we 
can identify g with its dual g*, and the manifold M is the corresponding phase 
space, that is, the total space ( T * R 3 ) X n of the cotangent bundle on ( R 3 ) X n , which 
amounts to ( R 6 ) X n , acted upon by G in the usual way; furthermore, with the usual 
notat ion (o i ,p i , . •. ,qn,Pn) € ( R 6 ) X n , the momentum mapping /J, from ( R 6 ) X n to g 
is given by the association 

( < Z l , . P l , - - - . < l n , P n ) >"» <7l A p i + \-qn Apn . 

Picking a value of the momentum mapping amounts to fixing a constant total 
angular momentum. 

Let /J, be a momentum mapping as above, and let o be a point of g*, fixed under 
the coadjoint action. The space 

M0 = fi-\o)/G 

is called the Marsden-Weinstein reduced space at o. By suitably modifying /i we 
may assume that o is the origin. This is the so-called "shifting trick", which allows 
one to talk exclusively about reduction at zero. It is common to write 

Mted=M//G = »-1(0)/G 

for this space. Wha t is the significance of this construction? For any G-invariant 
function h and any element X of g, we have 

{h,/ux}=XMh = 0. 
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In other words, the functions p,x are preserved by the hamil tonian flows of the 
function h. Thus for hamiltonian actions symmetry implies conservation laws. Using 
the momentum map one can cut down the number of degrees of freedom of a 
symmetric hamiltonian system. The reduced space Mred is the one underlying the 
new system. The function h passes to a function on Mred. 

There is a problem here swept under the rug: How do we know whether Mred is a 
smooth manifold at all? Suppose tha t (i) 0 is a regular value so tha t the zero locus 
/ i _ 1 (0 ) is a smooth submanifold of M (not necessarily connected), and tha t (ii) the 
G-action on the zero locus is free. Then Mred will obviously be a smooth manifold. 
Moreover, it will inherit a symplectic s tructure. This is the MARSDEN-WEINSTEIN 
reduction [40]. We explain briefly some of the details: Let (V, u) be a symplectic 
vector space, and let W be a subspace of V. Recall tha t the annihilator W~ (or 
skew complement) of W is the subspace of V consisting of all v so tha t u>(v,w) 
is zero for every w in W. Now W is called isotropic if it lies in its annihilator 
and coisotropic if it contains its annihilator. Likewise a smooth submanifold of a 
symplectic manifold is (co)isotropic provided for every point its tangent space is 
(co)isotropic in the tangent space of the ambient manifold. To see tha t , under the 
present circumstances, Mred inherits a symplectic s t ructure, let p £ / i _ 1 ( 0 ) . Recall 
at first tha t the tangent space Tj , / i_ 1(0) equals the kernel of the tangent map d\ip 

from T P M to g*. In view of the momentum mapping property, the tangent space 
T p / i~ 1 (0) thus consists of all vectors v in TPM so tha t CTP(XM(P),V) -S z e r o for 
every X £ g. In other words: The tangent space Tp^,~l(0) is the annihilator of 
the tangent space Tp(Gp) to the O-orbit Gp through p. Moreover, the lat ter is 
isotropic in M: In fact, for every X, Y in g we have 

ap(XM(p),YM(p)) = d^(YM(p)). 

But fi(p) is zero and hence /i is zero on all of the orbit Gp by equivariance whence 
^ p ( Y M ( p ) ) is zero for every Y £ g. Consequently the O-orbit Gp through p is 
isotropic in TpM. Since the tangent space T p / i _ 1 ( 0 ) is the annihilator of TpGp we 
conclude tha t Tj, / /_ 1(0) is coisotropic in TpM in such a way tha t the restriction 
of the form ap to TJ ,/i~

1(0) vanishes exactly in the vertical directions . Since p was 
an arbi t rary point of the zero locus, we see tha t , under the present circumstances, 
the zero locus / /~1(0) is a coisotropic submanifold of M, the canonical projection 
map from the zero locus to Mred is the projection map - of a principal O-bundle, 
and the restriction cr|/i~1(0) of the form descends to a symplectic form ared so that 

7T*(- r e d ) - - (7 | / i - 1 (0 ) . 

The form crred is the symplectic s t ructure on the reduced space we are aiming at . 

In most interesting cases, zero will not be a regular value. This happens for 
example for the system of n particles in R 3 with total angular momentum zero. 
Under suitable circumstances, a way out is provided by the following result. 

T h e o r e m 2.1 (SJAMAAR-LERMAN [51]). Suppose G compact and /J, proper. Then the 
orbit type decomposition of Mre<\ is a stratification, and the data determine a structure 
of stratified symplectic space, that is to say, a Poisson algebra (C7°°(Mred)j {', -}red) 
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of continuous functions which, on each stratum, restricts to a smooth symplectic 
Poisson algebra in the usual sense. 

As before, on each s t ra tum, the algebra Coc(N(()) restricts to the compactly 
supported functions, which suffices to describe the symplectic Poisson s t ructure on 
tha t s t ra tum. 

We now explain briefly the orbit type decomposition. For each closed subgroup 
K of G let M(K) denote the subspace of points having symmetry type conjugate 
to K, and let 

( M r e d ) ( / o = ( / i - 1 ( 0 ) n M w ) / O . 

Then 

Mred =U(M r e d)(A-). 

Each connected component of (Mred )(/<:), if non-empty, inherits a s t ructure of a 
smooth symplectic manifold. More precisely: For K so tha t (Mred)(A') is non-empty, 
write MK for the smooth submanifold of (M)(K) of points with symmetry K. Then 
the quotient L = NQ(K)/K of the normalizer Nc(K) of K in G by K acts on 
MK in a hamiltonian way so that 0 is a regular value of the momentum mapping, 
and the corresponding reduced space amounts to the space (Mred )(K) • Fur thermore, 
SJAMAAR AND LERMAN prove that the decomposition Mred = U(Mred )(/<:) is a 
stratification . This means that 

— (Mred)(A') lies in the closure of (M red)(H) if a n d o n - y if H is a subgroup of some 
conjugate gKg"1 of K, and that 
— for every point of Mred, a certain precise local cone condition (not spelled out 
here) holds describing a neighborhood of that point in Mred-

The algebra C°°(Mred) is taken to be the algebra (C°°(M))G/lG of C-invariant 
functions C°°(M)G on M modulo the ideal IG of smooth C-invariant functions that 
vanish on the zero locus / i - 1 ( 0 ) . The symplectic Poisson bracket {•,•} on M passes 
to a Poisson bracket {-,-}red on C°°(Mred). This is not at all obvious. It relies on 
the following 

L e m m a 2.2 (ARMS-CUSHMAN-GOTAY [2]). Let f and h be smooth G-invariant 
functions on M and suppose that h vanishes on the zero locus / i - 1 ( 0 ) . Then { / , h} 
also vanishes on the zero locus. 

We include a proof, for the sake of illustration. 

Proof. Since u is a momentum mapping and since / is C-invariant, we have 

{ / / * , / } = KM/ = 0 

for every X G g. Consequently for every X 6 g the function \xx is constant ^ng 
the integral curves of the hamiltonian vector field Xf for / , tha t is, the val of 
/i is constant along the integral curves of Xf. Hence for every ra 6 / i - 1 ( ( the 
integral curve ^ of Xf through m lies in the zero locus / i - 1 ( 0 ) . Since h vanishes 
on the latter, the real function h o (j>fm is identically zero. Differentiation yields 

{/,/.}(m) = 0. 
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This completes the proof. • 

Under circumstances of the present kind, we shall refer to the Poisson algebra 
(C°°(M r ed), {*, *}red) as the Arms-Cushman-Gotay algebra. 

There is a way to make sense of a smooth curve in Mred, cf. [51]. Given a 
Hamiltonian h £ C°°(Mred), an integral curve of h through a point m 0 is a smooth 
curve 7 with 7(0) = mo such tha t , for all functions / G C°°(Mred), 

jtf(-r(t)) = U,h}(i(t))-

T h e o r e m 2.3 (SJAMAAR-LERMAN [51]). Given mo, there is a unique integral curve 
of h passing through mo . Moreover hamiltonian flows exist and are unique and 
preserve the pieces of the decomposition of Mred; and the restriction of a hamiltonian 
flow to a piece equals the corresponding hamiltonian flow on the piece. 

3 . Yang-M i l l s t h e o r y over a surface a n d loca l m o d e l s 

We return to the situation of the Introduction . Thus {: P —» E is a principal 
G-bundle, having s tructure group a compact Lie group G. Moreover, we suppose 
E oriented and endowed with a Riemannian metric, and we write vol for the 
unique volume form of length one in the chosen orientation. Moreover, we pick an 
orthogonal s t ructure on g, tha t is, an adjoint action invariant scalar product , which 
we denote by (•,•). We write ft* = ft*(E,ad(f)) for the forms on £ with values in 
the adjoint bundle 

a d ( 0 : P x G g - + £ . 

Abusing notat ion somewhat, we write 

( v ) : f t * ® f t * - > C ° ° ( E ) 

for the induced Riemannian s t ructure on each ft*. The scalar product on g also 
induces a graded pairing 

A:ftJ'(g)ft* - + f t ' + * ( E , R ) . 

Now the da ta determine a star operator * on ft* which sends an ad(f )-valued j - form 
to an ad(f)-valued (2 —j)-form; this operator is characterized by 

a A *j3 = (a,/3)vol. 

Consider the space A of connections on £. For a connection A we write dA 

for its operator of covariant derivative and KA for its curvature; the lat ter is an 
element of ft2. The da ta give rise to a Yang-Mills theory studied extensively by 
ATIYAH-BOTT [7]. The resulting Yang-Mills equations amount to 

dA * KA = 0. 

Recall tha t a connection is said to be central provided the values of its curvature lie 
in the Lie algebra z of the centre Z of G. Notice when G is not connected z may 
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be smaller than the centre of the Lie algebra g. ATIYAH-BOTT [7] showed tha t , 
for connected structure group G, in a sense, it suffices to s tudy central Yang-Mills 
connections; moreover they showed that , for a central Yang-Mills connection A, its 
curvature looks like 

KA = Xt <g> vol, 

for a constant element X$ in z determined by the topology of the bundle. For 
example, for G = U(n), the unitary group, the bundle £ is classified by its topological 
characteristic class in the infinite cyclic group H2(E,7Ti(L7(n)) which amounts to an, 
integer k, also called degree (in the vector bundle picture), and the element X% 
looks like 

k 
Xz = 2 7 r i - d i a g ( l , . . . , 1) G u(n) . 

n 

The moduli space of central Yang-Mills connections N is now the quotient MJQ of 
the subspace M of central Yang-Mills connections in A divided out by the group Q of 
gauge transformations. This is the space commented on already in the Introduction . 

How does symplectic geometry come into the picture? The da t a yield a bilinear 
pairing (•,•) on ft* given by 

(a,0) = J(a,0). 

This pairing is weakly non-degenerate, meaning tha t its adjoint is injective. In 
particular, we get a weakly symplectic structure a on ft1, and we can view ft2 

as the dual of ft0; the latter is in fact the Lie algebra of the group of gauge 
transformations, whence ft2 appears as the dual of the Lie algebra of infinitesimal 
gauge transformations. The 2-form a is translation invariant and hence yields a 
2-form on the space A of connections, in fact, a weakly symplectic s t ructure. A 
crucial observation of ATIYAH-BOTT [7] is that the assignment to a connection A of 
its curvature KA is a momentum mapping fj, for the action of Q on A, and tha t , with 
the notat ion of the previous Section, the space N arises as the Marsden-Weinstein 
reduced space 

.4X< =/i"1(-Y«®vol)/a 

at X^ ® vol. Notice this makes sense since X% ® vol remains fixed under the 
induced ty-action on ft2, viewed as the dual of ft0. In part icular , the weakly 
symplectic s tructure on A descends to a symplectic s tructure on a certain smooth 
submanifold of N. There are a great deal of technical difficulties to be overcome 
here; in particular, X{ ® vol will in general not be a regular value of the momentum 
mapping. Further , to make sense of the above heuristic approach technically, one has 
to invoke Sobolev spaces, regularity results of elliptic differential equations, Hodge 
theory, slice theorems, and the like. 

Obviously, the SJAMAAR-LERMAN result (2.1) cited in the previous Section is 
not applicable here. Theorem 1 spelled out in the Introduction says tha t the 
statement of the SJAMAAR-LERMAN result is still t rue, though. Thus the space N 
is stratified by orbit types, and the da ta determine a Poisson algebra (C ° ° (N ) , {•, •}) 
of continuous functions which, on each s t ra tum, restricts to a symplectic Poisson 
s t ructure on tha t s t ra tum. This result has been established in a series of papers 
[20 - 24]. 
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A crucial step in the construction of the stratified symplectic s t ructure is provided 
by suitable local models. These local models contain geometric information interesting 
in its own right. We now explain this. 

Let A be a central Yang-Mills connection. Its operator d^ of covariant derivative 
is manifestly a differential on ft*, tha t is to say, (f t*,d^) is a complex. Hence we 
can talk about its cohomology 

n*A = n*(n*,dA). 

Since the holonomies of any central connection yield a representation of the funda­
menta l group 7r of E in the quotient G/Z of G by its centre Z , the cohomology H^ 
may be identified with the Eilenberg-Mac Lane group cohomology H*(7r,g0) where 
<t> denotes the representation determined by A and g^ the Lie algebra g, made into 
a 7r-module via </>. In particular, the cohomology H*(7r,g^) is finite dimensional 
and hence so is H*^. Thus we see tha t , while the complex (ft*,dyi) is certainly 
elliptic, finite dimensionality of B.A may be established without appealing to the 
index theorem. 

The orthogonal s t ructure on g induces a symplectic s t ructure a A on the (finite 
dimensional) vector space H^ and the Lie bracket on g induces a graded Lie bracket 
[ V ] A on H*̂  which, for degree reasons, is symmetric on H ^ . Let ZA C Q be the 
stabilizer of A. After a choice of base point has been made, the group Q® of based 
gauge transformations acts freely on the space of connections whence restriction to 
the point Q identifies ZA with a closed subgroup of G. Consequently ZA is a 
compact Lie group which acts canonically on HA preserving crA and [ V ] A ? and its Lie 
algebra ZA equals H^ . The orthogonal s t ructure on g induces a canonical isomorphism 
between H ^ and the dual zA of ZA preserving the Z^-act ions. Fur thermore the 
assignment to 77 6 H ^ of 0 A ( ^ ) = Ifr*7?]^ yields a momentum mapping QA for the 
Z^-act ion on the symplectic vector space H^ . MARSDEN-WEINSTEIN reduction then 
yields the space H^ = 0^(0)/ZA> 

T h e o r e m 3.1 [20]. The symplectic quotient HA is a local model for N near [A]. 
More precisely, a suitable Kuranishi map identifies a neighborhood of [A] in N with 
a neighborhood of the class of zero in HA. 

We shall say that a point [A] of N is non-singular provided ZA acts trivially 
on H ^ . Theorem 3.1 entails that N is smooth near a non-singular point [A], and 
tha t the da ta yield a symplectic s t ructure on the subspace of non-singular points of 
N. This is the symplectic s tructure constructed by ATIYAH-BOTT [7] by symplectic 
reduction in infinite dimensions. 

A formal consequence of (3.1) is the following. 

Corol lary 3.2 [21]. The decomposition of N according to orbit types is a (Whitney) 
stratification in such a way that each stratum inherits a symplectic structure from 
the data. 

Locally, the Arms-Cushman-Gotay Poisson algebra on the models yields a Poisson 
s tructure near every point of the moduli space N. A single global Poisson s t ructure 
on N which encompasses all these has been constructed in our paper [24]. It may 
be described in the following way: In [22] we constructed a homeomorphism p\,, 
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referred to as Wilson loop mapping, from N(£) onto a certain representation space 
Rep / t ( r ,O ) for the universal central extension T of the fundamental group 7r of 
S. While the space N(£) depends on the choices of Riemannian metric on E the 
space Rep^( r , G) does not. In [23] we constructed smooth structures O°°(N(0) a n ( l 
C°° (Rep^(r , C)) on these spaces, and we have shown tha t p\, is a diffeomorphism 
with respect to these structures. By construction, the space R e p ^ ( r , C ) is the 
quotient H o m ^ ( r , C ) / C of a certain space of homomorphisms H o m ^ ( r , C ) of T into 
C determined by £. For <j> G Hom^(r , C), we denote by gj the dual g* of the 
Lie algebra g, made into a 7r-module via <j> and the coadjoint action. For every 
[</>] G R e p ^ ( r , C ) , a choice of representative <j> G Hom^(r , C) induces a linear map 
\*± from the real vector space fi^jRepAr, C) of differentials at [<f>], with reference 
to C°° ( R e p ^ ( r , C ) ) , into the first homology group Hi(7r,gJ) of 7r with coefficients 
in gj [24 (1.16)], and X*. is an isomorphism if and only if [</>] is a non-singular 
point of Rep^( r , C). In view of [24 (1.17)], X*. is independent of the choice of <j) in 
the sense tha t , given x G G, the corresponding linear map A*^ from Q ^ j R e p ^ T , C) 
to Hi(7r,g* ,) equals the composite of X*. with the isomorphism Kd*(x)\, induced by 
x. The induced coadjoint action invariant symmetric bilinear form (•,•) on g* then 
gives rise to, for every <t> G Hom^(T, C), an intersection pairing (-,-)<(, on Hi(7r,gJ), 
and the corresponding Poisson bracket {•,•} on C°° (Rep / t ( r , C)) will then satisfy 
the formula 

(3.3) {/, hm = (\;(d/[4>]), \;(dh[<j>]))+ 

where f,h G C°° (Rep , t ( r ,C ) ) and where <f> G Hom^(r , C) is a representative of the 
point [4>] G R.ep^(r, C). As a set function, the bracket {•,•} is determined by (3.3). 
This formula is intrinsic in the sense that it does not involve choices except that 
of the representative <f> which has been taken care of by the discussion of the 
dependence of AJ on the choice of <j>. The details of this construction are given 
in our paper [24]. Theorem 3.1 now has the following extension, established in 
[24 (4.3)]. 

T h e o r e m 3 .4 . For every central Yang-Mills connection A, near [A] G N(£)> ^ e 

Arms-Cushman-Gotay Poisson algebra (C°°(H>i), {•, -}A) yields a local model of N(£) 
with its Poisson structure and likewise, near the point p\,[A], a local model of 
Rep ,t(r,C) with its Poisson structure, where p\, refers to the Wilson loop mapping 
from N(£) to Rep(r , C). More precisely, the choice of A (in its class [A]) induces a 
Poisson diffeomorphism (of smooth spaces) of an open neighborhood WA of [0] G H^ 
onto an open neighborhood UA of [A] G N(£)> where WA and XJA are endowed 
with the induced smooth and Poisson structures, and a similar statement holds for 
Rep£(r ,C ) near the point p\,[A]. 

The intrinsic description (3.3) of the Poisson structure has the following conse­
quence, cf. [24 (Theorem 2)]. 

T h e o r e m 3 .5 . The induced action of the mapping class group of S respects the 
Poisson structure. More precisely, its subgroup of orientation preserving elements 
preserves the Poisson bracket on HepJT, G) whereas the orientation reversing elements 
yield Poisson bracket preserving diffeomorphisms from Rep^(r,C) to Rep_^(r, C) 
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where — f refers to the (topologically) "opposite" bundle (which may coincide with 

V-
Another construction of the Poisson structure will come out of the finite di­

mensional approach explained in Section 5 below. The above construction is more 
elementary but less elegant than the finite dimensional one. The advantage of the 
above construction is its invariance properties which entail invariance under the 
mapping class group as just explained. 

The globally defined Poisson structure has another impor tant consequence: Let / 
be a smooth invariant real function on C, and let C be a closed curve in E, having 
start ing point Q. The homotopy class of C induces a homomorphism [C] from Z 
to the fundamental group 7r of E, and the assignment to $ of the real number 
f(<t>([C](l))) induces a real valued function fc on Rep(7r, G) = Hom(7r, G)/G. Let 
f be a flat C-bundle over E. Since [C] lifts to a homomorphism from Z to the 
free group F on the chosen generators, } c yields a function in C°°(Rep^(7r, C)), 
and hence { / c , -} is a derivation of C°°(Rep/t(7r, G)). On each s t r a tum it amounts 
of course to a smooth vector field. The corresponding flow on the non-singular 
part of Rep^(7r,C) has been studied by GOLDMAN in [14], referred to as a twist 
flow. However, the derivation { / c , -} in fact integrates to a "twist flow" on the 
whole space Rep^(7r,C), tha t is, an action of the real line on this space preserving 
the smooth structure. Theorem 2.3 applied to the local model spelled out in (3.4) 
above shows tha t this is locally so, and, using the part i t ion of unity established in 
our paper [23], we can conclude that these twist flows in fact exist globally and 
are unique. 

4. Loca l P o i s s o n g e o m e t r y 

Let A be a central Yang-Mills connection. The star operator endows H^ with a 
complex structure compatible with the symplectic s t ructure a A - Hence H^ inherits 
a s t ructure of uni tary ZA-representation in such a way tha t 0 ^ is its unique 
momentum mapping having the value zero at the origin. Now Theorem 3.4 reduces 
the local Poisson geometry of the space N to what is called the "the s tandard 
example" (2.4) on p . 52 of A R . M S - G O T A Y - J E N N I N G S [3]. This observation is exploited 
in our paper [25]. We now explain some of the underlying ideas. 

Consider a uni tary representation V of a compact Lie group K. Associated with 
it is a unique momentum mapping tx from V to fc* having the value zero at the 
origin [3]. Later we shall take V = H ^ , for a central Yang-Mills connection A o n ( 
and K = ZA, the stabilizer of A in Q, and /J, will be 0,4. For ease of exposition, 
we shall present the situation for arbi trary V and K. 

The K-action extends to an action of the complexification Kc of K on V. The 
idea is to relate the symplectic quotient with the space of orbits of the Kc-action. 
Now the latter is a bad space: There may be orbits which are not closed, and 
hence the orbit space is not in general Hausdorff. The way out is provided by the 
afnne categorical quotient V//I\c, cf. e.g. [47], It is obtained in the following 
way: Consider the algebra C [ V ] A of Kc-invariant complex polynomials; actually it 
coincides with that of K-invariant complex polynomials. By Hilbert 's theorem, this 
algebra has a finite set / i , . . . , / r of generators. These yield a Kc-invariant algebraic 
map / from V to C r which, by construction, factors through the space of Kc-orbits 
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in V. The subspace of closed orbits may now be identified with the affine set in C 
defined by a set of defining relations for the algebra of invariants C [ V ] A . Recall 
tha t the reduced space Vred is the quotient / / _ 1 ( 0 ) / K . The following consequence 
of an observation of KEMPF-NESS [35], cf. §4 of [47], where the zero locus / i - 1 ( 0 ) 
is referred to as a Kempf-Ness set, will be crucial for our purposes. 

L e m m a 4 . 1 . The canonical map Vred —> V//Kc from the reduced space Vred to the 
(affine) categorical quotient V//Kc induced by the inclusion of u _ 1 ( 0 ) into V is a 
homeomorphism. 

Hence as a space, in fact, as a complex affine variety, the reduced space Vreci 
looks like the affine categorical quotient VjJKC. We shall see below tha t , as a 
stratified symplectic space, il looks rather different, though. 

To illustrate how this works, consider the special case where G = SU(2). The 
following discussion will in particular show what is behind the proof of Theorem 3 
above. 

The bundle £ is now necessarily trivial. Let Z C G denote the centre and T ~G 
a maximal torus. We already pointed out that the space N = N(£) has three s t ra ta 

N = NG U N(T) U Nz 

where N(/q denotes the points of orbit type ( K ) . The top s t r a tum is Nz- We can 
now "see" the s t ra ta in the local model in the following way: For a point [A] in 
the top s t ra tum, H^ and H^ are zero, and hence near [A], the moduli space looks 
like a neighborhood of zero in H^ , with the symplectic s t ructure a A- However, H^ 
amounts to a copy of C 3 ^ - 1 ^ , with the s tandard structure. 

For a point [A] in the "middle" s t ra tum N(T)> UP to conjugation, the holonomies 
of a representative A yield a homomorphism <j) from ir to T, and the cohomology 
H ^ amounts to H * ( - , g 0 ) . Now g^ decomposes into a direct sum of t and t1-
where t is the Lie algebra of T which is a copy R of the reals and t1- amounts to 
R 2 , with circle action through the 2-fold covering map onto S O ( 2 , R ) . Moreover, 
H 1 ( - , g ^ ) decomposes into a direct sum of (£(g)C)* and (£- (g) C ) ' - 1 . The action on 
(t®C)e is trivial - in fact, this summand corresponds to the points in the s t r a tum 
N(T) (locally), while the SO(2, R)-representation on (£- (g)C)^ - 1 is hamiltonian, with 
momentum mapping 0 ^ , restricted to (t1- (g> C ) * - 1 . The latter boils down to the 
classical constrained system of £ — 1 particles moving in the plane with constant 
total angular momentum. In particular, reduction at total angular momentum zero 
yields the reduced space we are looking for (locally). 

To be even more specific, let £ = 2 and V = * x (g) C .= R 2 x R 2 . The S O ( 2 , R ) -
representation is the obvious one, that is SO(2 ,R) acts as rotat ion group on each 
copy of R 2 . Wi th the usual coordinates (o,p).G R 2 x R 2 , the momentum mapping 
/i from V to R is given by the assignment to (q,p) of the determinant \qp\. The 
algebra of (real) invariants in R[V] is generated by the three scalar products qq, qp, 
pp, and the determinant \qp\. However, on the zero locus / i - 1 ( 0 ) , the determinant 
vanishes whence the algebra C°°(Vred) is generated by the three scalar products . 

To unders tand Vred as a space, we observe that the extension of the S O ( 2 , R ) -
representation to its complexification amounts to the s tandard SO(2, C)-representat ion 
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on C 2 . This representation has a single invariant, the complex scalar product which, 
with the notat ion w = q + ip, we write ww, and the algebra of complex invariants 
is free. Consequently the affine categorical quotient C 2 / / S O ( 2 , C ) is a copy of the 
complex line CL By virtue of Lemma 4.1, the canonical m a p from Vred to C is a 
homeomorphism. Under this homeomorphism, with the notat ion ww = x\ + 2 x 2 , so 
that xi and x2 are the coordinate functions on C, viewed as the real plane, we 
have 

x\=qq- pp, x2 = 2op, r = qq + pp. 

It is obvious that the algebra C°°(Vred) is as well generated by the coordinate 
functions xi,x2 and the radius function r. Moreover, the complex picture tells us 
that the single obvous relation x2 -f x2 = r 2 between the coordinate functions and 
the radius function suffices, tha t is, is a defining relation for C°°(Vred)- Finally, 
a straightforward calculation of the Poisson brackets between xi,x2,r, viewed as 
functions on the original space V, yields the formulas 

{ x i , x 2 } = 2r, { x i , r } = 2x2, {x2 , r} = —2xi 

already spelled out in the Introduction. See [25] for details. 

A similar reasoning yields a model for a neighborhood of a point in the "bot tom" 
s t ra tum No- It consists of 22* isolated points and, locally, the Poisson algebra is 
that of the reduced classical constrained system of t particles in R 3 with total 
angular momentum zero. Even for i = 2, the reduced Poisson algebra is already 
rather complicated: It has ten generators; in fact, a basis of sp(2) may be taken as 
coordinate functions on sp(2)*; the reduced space may be described as the closure 
of a certain nilpotent orbit in sp(2)*. This relies on the theory of dual pairs [17] 
and work done in [36]; see our paper [25] for details. 

A general study of the smooth structures needed to describe the Poisson geometry 
of our moduli spaces has been undertaken in our paper [23]. In part icular the 
problem arises of determining, at an arbi trary point, the Zariski tangent space 
with reference to the smooth structure. For a general principal bundle £ over 
E, cf. [23 (7.9)], an arbi t rary central Yang-Mills connection A, tha t is, a choice 
of representative of the point [A] of the moduli space N of central Yang-Mills 
connections, induces a linear map A ,4 from H^ to the Zariski tangent space Tr^nN, 
with reference to the smooth s tructure C°°(N) mentioned earlier. This map is 
injective on the invariants (KA)ZA and has kernel the orthogonal complement of the 
invariants. Now the subspace ( H ^ ) Z A of invariants amounts to the tangent space 
of the s t ra tum in which the point [A] lies. Moreover, for the above example where 
G = SU(2) and i = 2, it is shown in [23] tha t , for a point in the middle s t ra tum 
N(T), the Zariski tangent space has dimension 7, while for a point in the bot tom 
s t ra tum NQ, the Zariski tangent space has dimension 10. We have seen above tha t , 
for a point [A] in the middle s t ra tum, ( H ^ ) Z A is of dimension 4, and so is its 
orthogonal complement; hence the kernel of XA is then of dimension 4. Likewise, 
for a point [A] in the bo t tom s t ra tum, ( H ^ ) z * is trivial and the kernel of A^ 
is the whole space H^ . The lat ter has dimension 12 whereas the Zariski tangent 
space has dimension 10. The same discussion applies to the representation space 
incarnation of these spaces. Thus we see tha t , at a singular point [<j>] of a space of 
the kind Rep, t ( r , t7) , the Zariski tangent space T ^ R e p ^ r , G) with respect to the 
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smooth s t ructure C°°(Rep^(r, G)) does not boil down to H 1 ^ , ^ ) . This should be 
compared to what is said on p. 205 of [13]. 

It is obvious that the whole description generalizes to get a Poisson model for a 
neighborhood of an arbitrary point in a general moduli space of central Yang-Mills 
connections. More examples should be worked out! 

5. T h e finite d imens iona l c o n s t r u c t i o n 

Let 
V = (x1,y1,...,xt,y(yr), r = U[xj,yj], 

be the s tandard presentation of the fundamental group 7r of S where £ denotes the 
genus. Write F for the free group on the generators and N for the normal closure 
of the relators, so that 7r = F/N. The choice of generators identifies Hom(F , G) 
with G2t and, furthermore, the space Hom(7r, G) with the pre-image of the identity 
element in G, for the word map 

r:Gu ->G 

induced by the relator. The idea is now to view r a s a momentum mapping. While 
this might appear a bit strange at first, a minor change will fit the picture into 
the appropriate framework: Let O C g be the open G-invariant subset of g where 
the exponential mapping from g to G is regular; notice that O contains the centre 
of g. For example, when G = SU(2), the image of O in G is the 3-sphere with 
the point —1 removed. Write H(V,G) for the space determined by the requirement 
that a pull back diagram 

U(V,G) —-—• O 

v[ i e x p 

Hom(F ,G ) > G 
r 

results, where the induced map from 7i(V, G) to O is still denoted by r. The 
space 7i(V,G) is a smooth manifold and the induced map rj from 7i(V,G) to 
Hom(F, G) = G2i is a smooth codimension zero immersion whence 7i(V, G) has the 
same dimension as G2t\ moreover the above injection of Hom(7r, G) into Hom(F , G) 
induces a canonical injection of Hom(7r, G) into 7i(V,G), and in this way Hom(7r, G) 
will be viewed as a subspace of 7i(V, G). When we combine r , the inclusion of O into 
g, and the adjoint from g to its dual g* of the orthogonal s t ructure on g, we obtain 
a smooth G-equivariant map \x from 7i(V, G) to g* which looks like a momentum 
mapping and has Hom(7T, G) as its zero locus. It turns out tha t a G-invariant 
2-form can be constructed on 7i(V, G) which, on a neighborhood of Hom(7r, G) in 
7i(V,G), amounts to a symplectic structure in such a way tha t (i) /i is a momentum 
mapping, and (ii) the holonomy identifies the moduli space of flat connections on 
the corresponding flat bundle with its stratified symplectic s t ructure mentioned in 
Theorem 1 above with the reduced space 7Z = Rep(7T, G) for fi with reference to 
zero which we now explain. This gives a purely finite dimensional t rea tment of the 
symplectic geometry of moduli spaces of flat connections. More generally, certain 
twisted analogues 7Zx associated to elements X in the Lie a lgebra of the centre of 
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C amount to moduli spaces N(£) of central Yang-Mills connections. Goldman [13] 
constructed a symplectic s t ructure on a smooth, open, connected, and dense subspace 
of 71; Karshon [34] gave the first proof using only finite dimensional techniques tha t 
the symplectic form is closed, and Weinstein [55] (whose construction we follow) 
reinterpreted Karshon's construction in terms of the de Rham-bar bicomplex. The 
construction to be presented extends the methods of [55] and gives a smooth finite 
dimensional space M together with a C-invariant symplectic form and momentum 
mapping in such a way that the moduli spaces IZx result from symplectic reduction 
with reference to X (or what corresponds to it in the dual of g). Such a construction 
is given by [27] (Section 5 and 6) and [33] (5.1). 

To the Lie group C, we associate the de Rham-bar bicomplex (C'(G);d,S) defined 
by Cp,q(G) = Q 7 (C P ) , the two operators d and S being the de R h a m differential 
d:Q*(G*) -> n * + 1 ( C * ) and the bar complex operator S:Q*(G*) -> ft*(C*+1), respec­
tively Its total cohomology gives the cohomology of the classifying space of C [8], 
[50]. For a discrete group n — we shall take n = Forn = 7r — we shall denote the 
chain and cochain complexes of its inhomogeneous reduced normalized bar resolution 
Bn by (C*(n ) ,d ) and (C*(n ) , S), Respectively; see e. g. MAC LANE [38] for details. 
We may form another bicomplex (C-;d ,o~) defined by C ™ = C ' ( n ) ® f t « ( H o m ( I I , C) , 
the two operators d and S being the de Rham differential on H o m ( n , C) and the bar 
complex operator S:C*(H) —> C * + 1 ( n ) , respectively Notice when n = F, the free 
group on 2£ generators, H o m ( n , C ) amounts to G2£. For general 7r, the evaluation 
maps E:UP x H o m ( n , C ) —i> Gp give rise to a sequence of maps from Cp>q to Cp,t/ 

which combine to give a morphism of bicomplexes. 

Denote by r the g-valued left-invariant 1-form on C which maps each tangent 
vector to the left invariant vector field having tha t value. The corresponding right-
invariant form is denoted by r . These are the Maurer -Car tan forms. Next, if a is 
any differential form on C, we denote by Q ; the pullback of a to C x C by the 
projection pj to the j ' t h component. Henceforth we denote the chosen invariant 
2-form on g by " • " . Let 

ft = 2 T - , r"2-

This is an alternating 2-form on G x G. Then E*(Sl) G C 2 ( n ) <g> ft2(Hom(n, C)) . 
To any 2-chain c in C2(n) , Weinstein associated the 2-form uc = (c,E*ft) on 
ft2(Hom(n, C)) , and he observed that this assignment induces a homomorphism 
from H2(n) to the closed 2-forms on H o m ( n , C ) [55]. Now an element K of H2(7r) 
may be expressed in terms of a representative c £ C2(F) having boundary or, tha t 
is, an integral multiple of r determined by K; this relies on the Schur-Hopf formula 
calculating the second homology group of a discrete group. We thus obtain a 2-cycle 
of 7r, which will still be denoted by c. The above construction with n = F yields 
the 2-form LJC on Hom(F , C) . Let 

A = ^ [ r , r ] - r e f i 3 ( G ) . 

This is a closed invariant 3-form so that 

(5.1) dwc = ar*\ e ft3(Hom(F,C)) 
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([27] (18); [33] Proposition 4 .1) . The choice of generators induces an embedding of 
the space Hom(7r, G) into Hom(F, G) and (5.1) entails tha t the 2-form uc, restricted 
to Hom(7r, G), is closed, suitably interpreted in its singularities. 

We now suppose that K is a (suitably chosen) generator. In view of (5.1), dn*uc 

then equals dr*(a) where a is a closed form on 0. Using the homotopy operator 
h tha t enters the usual proof of the Poincare Lemma, let j3 = ha; then a = dp on 
g and hence on 0. Thus we have: 

P r o p o s i t i o n 5 .2 . The 2-form u = n*u>c — r*(/3) on 1-L(V,G) is closed and G-invariant. 

As usual we write i for the contraction operator on forms. An equivariant version 
of the de Rham-bar bicomplex finally provides a proof of the following [27], [33]. 

P r o p o s i t i o n 5 . 3 . The above map /i from 7i(V,G) to g* satisfies, for every Y G g, 
the formula 

iyMZ = d(tiY) 

where as before /.tY: M = 7i(V, G) —> R refers to the composite of p. withY, viewed 
as a linear map on g*. 

Thus formally the momentum mapping property is satisfied, cf. [6], except tha t 
u is not necessarily symplectic since it need not be non-degenerate. By adding /i to 
UJ on 7i(V, G) we obtain in a s tandard way an extension of UJ to an equivariantly 
closed 2-form on li(V,G). 

Now H2(7r) is infinite cyclic, generated by an element represented by a 2-chain 
c of F whose boundary equals r. Trie subspace 0 of g contains the centre z of g, 
and Poincare duality in the cohomology of 7r implies tha t , on a neighborhood JVf 
of the pre-image (r*) _ 1 (z ) in 1-L(V,G), the 2-form u has maximal rank, tha t is, is 
symplectic . Symplectic reduction with reference to zero then yields the usual space 
1Z of representation of 7r in G, while symplectic reduction with reference to suitable 
non-zero central values X corresponding to topologically non-trivial G-bundles yields 
certain twisted moduli spaces TZx- Application of the SJAMAAR-LERMAN result [51] 
then yields the following, cf. [27]. 

T h e o r e m 5 .4 . With respect to the decomposition according to G-orbit types, the space 
1Z and, more generally, each twisted representation space IZx inherits a structure of 
stratified symplectic space. 

Each possible non-zero central value X is precisely of the kind X$ coming into 
play in Section 3 above, where £ refers to a suitable principal bundle, and the 
Wilson loop mapping, that is, the operation of taking holonomies with reference to 
suitable pa ths , yields a diffeomorphism of stratified symplectic spaces from N(() to 
IZx- In other words, we have recovered the moduli space N(£) of central Yang-Mills 
connections as a stratified symplectic space by a finite dimensional construction. 
In particular, for G = U(n), the unitary group, the moduli spaces of holomorphic 
semi stable rank n vector bundles of arbitrary degree arise in this way by finite 
dimensional symplectic reduction. 

T h e o r e m 5.5 . Each stratum of the space 1Z and, more generally, each stratum of 
a twisted representation space IZx has finite symplectic volume. 

The finiteness of the symplectic volumes may also be derived from the local 
models, see [21]. 
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T h e o r e m 5.6. The reduced Poisson algebra is symplectic, that is, its only Casimir 
elements are the constants. 

Again this may as well be derived from the local models. 
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