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16 V. K. DOBREV

1. Introduction and summary of the classical case

1.1. Consider a Lie group G, e.g., the Lorentz, Poincaré, conformal groups, and
differential equations

If = (1.1)
which are G-invariant. These play a very important role in the description of physi-
cal symmetries - recall, e.g., the examples of Dirac, Maxwell equations. It is impor-
tant to construct systematically such equations for the setting of quantum groups
(expected as g-difference equations). The hope is that these equations will have less
singular behaviour than the classical counterparts.

The approach to this problem tised here relies on the following : In the classical
situation the differential operators Z giving the equations above may be described
as operators intertwining representations of complex and real semisimple Lie groups
(38], [40], [59), [16].

To recall the notions, consider a semisimple Lie group G and two representations
T,T' acting in the representation spaces C, C’, which may be Hilbert, Fréchet, etc.
An intertwining operator I for these two representations is a continuous linear
map

I:.C—c (1.2)

such that
IoT(g) = T'(9)oI, VgeG (1.3)

This is what precisely is meant when we say that the equation (1.1) is a G - invariant
equation. Note that kerZ, imZ are invariant subspaces of C, C', resp. If kerZ =0
and imZ = C’, then the representations T' and T" are called equivalent, otherwise
T and T are called partially equivalent. If ker T # 0, this means that the equation
(1.1) with 7 = 0 has non-trivial solutions.

Such equations exist also for more general classes of Lie groups. However, if G
is semisimple then there exist canonical ways for the construction of all intertwining
operators and thus, of the G - invariant equations. [For simplicity we consider mostly
semisimple Lie groups, though the same results are valid for reductive Lie groups,
since only their semisimple subgroups are essential for these considerations.] These
operators are of two types - differential and integral. For the integral intertwining
operators, which we shall not discuss here, we refer to [38] for the mathematical side
and to [27], [30], [28] for explicit examples and applications.

As stated we are interested in the invariant differential operators for which we
refer to [40], [59], [16]. [For early examples and partial cases sce, e.g., [31], [27],
[36], [30], [48], [51], [15], [35], [7], [9], [57], [33], [34], [2], [3]. Note that we do not
discuss here nonlinear invariant operators; for two different approaches to those we
refer to [4](and references therein) and to [10].] There are many ways to find such
operators, however, most of these rely on constructions which are not yet available
for quantum groups. Here we shall apply a procedure [16] which is rather algebraic
and can be generalized almost straightforwardly to quantum groups. This procedure
is recalled in the next subsection.
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1.2. Here we sketch the procedure of [16] illustrating the general notions with
the (double covering group of the) Minkowski conformal group SU(2,2). Let G be a
real semisimple Lie group. (We noted already that we restrict to semisimple groups
for simplicity. For more technical simplicity one may assume that in addition G is
linear and connected.) Let G be the Lie algebra of G. We shall use the so-called
Bruhat decompositions of G

G = NToMapAaN~ (1.4)

(considered as direct sum of linear spaces), where A is a noncompact abelian sub-
algebra, M (a reductive Lie algebra) is the centralizer of A in G (mod A), and
N*, N, resp., are nilpotent subalgebras forming the positive, negative, resp., root
spaces of the restricted root system (G,.4). For the conformal group the subalge-
bras N =, M, A, Nt are the subalgebras of translations, Lorentz transformations,
dilatations, special conformal transformations, resp.

In general, a real noncompact Lie algebra G has more than one Bruhat decom-
position. This is standard material, cf., e.g., [8]. (It is explained also in [16], or in
[20].) Note that P = P = M@ A®NT are subalgebras of G, the so-called
parabolic subalgebras. (The subalgebras P¥ and P~ = MO ADN~ are
conjugate under the Cartan involution.) The parabolic subalgebras with min-
imal dimension are called minimal parabolic subalgebras of G. Let us denote by
Py a minimal parabolic subalgebra: Py = Mo ® Ao ® My. The number of
non-conjugate parabolic subalgebras (counting also the trivial case P = G = M)
is 2, ro = dimAp. The group SU(2,2) has three non-trivial non-conjugate
parabolic subalgebras of dimensions 9,10,11. With the above identification P* are
maximal conjugate parabolic subalgebras; P~ is called usually the Weyl algebra
(comprising the Poincaré algebra and the dilatations).

Let us now introduce the corresponding subgroups of G. Let K denote the
maximal compact subgroup of G, and let X denote the Lie algebra of K. Then we
have the simply connected subgroups A = exp(A), N* = exp(N?*). Further, M
is the centralizer of A in G (mod A). (M has the structure M = MyM,, where
M, is a finite group, M, is reductive with the same Lie algebra M as M.) Then
P = MAN? (and their conjugate M AN ™) are called parabolic subgroups of G.

The importance of the parabolic subgroups stems from the fact that the repre-
sentations induced from them generate all (admissible) irreducible representations
of G. In fact, it is enough to use only the so-called cuspidal parabolic subgroups,
singled out by the condition that rank M = rank M N K; thus M has discrete series
representations.

Let P be a cuspidal parabolic subgroup. Let p fix a discrete series repre-
sentation D* on the Hilbert space V), or the so-called limit of a discrete series
representation (cf. [37]). Let v be a (non-unitary) character of A, v € A*.

We call the induced representation x = Ind§(u ® v ® 1) an elementary
representation of G. (These are called generalized principal series representations
(or limits thereof) in [37)].)
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Consider the space of functions
Cx = {F € C®(G,V,) | Flgman) = ™. D*m™)F(9)}  (15)

where a = exp(H), H € A. The special property of the functions of Cy is called
right covariance [16] (or equivariance). It is well known that C, can be thought
of as the space of smooth sections of the homogeneous vector bundle (called also
vector G-bundle) with base space G/P and fibre V,, (which is an associated
bundle to the principal P-bundle with total space G).

Then the elementary representation (ER) 7X acts in C,, as the left regular
representation (LRR), by:

(TX(@)F)¢") = Flg7'9), 9,9 €GC (1.6)

(In practice, the same induction is used with non-discrete series representations of
M and also with non-cuspidal parabolic subgroups.) One can introduce in Cy a
Fréchet space topology or complete it to a Hilbert space (cf. [37]). Finally, note
that in order to obtain the invariant differential operators one may consider the
infinitesimal versions of (1.5) and (1.6) (cf. the end of this subsection).

The ERs differ from the LRR (which is highly reducible) by the specific repre-
sentation spaces Cy. In contrast, the ERs are generically irreducible. The reducible
ERs form a measure zero set in the space of the representation parameters u, v.
(Reducibility here is topological in the sense that there exist nontrivial (closed) in-
variant subspace.) The irreducible components of the ERs (including the irreducible
ERs) are called subrepresentations.

The importance of the elementary representations stems from the following re-
sult:

Theorem. [41], [39] Every irreducible admissible representation of a real
connected semisimple Lie group G with finite centre is equivalent to a subrepresen-
tation of an elementary representation of G.

Remark: Admissibility is a technical condition which is usually fulfilled in the phys-
ically interesting examples.

The other feature of the ERs which makes them important for our considera-
tions is a highest weight module (HWM) structure associated with them. [It would
be a lowest weight module structure, if we replace N = Nt with N7, as
is actually done in [16].] For this we introduce the right action of G% (the
complexification of G) by the standard formula:

(RF)o) = 5 F(gexp(tX))limg a7

where, X € G¢, F € Cy, g € G, which is defined first for X € G and then is
extended to G¢ by linearity. Note that this action takes F out of Cy for some X
but that is exactly why it is used for the construction of the intertwining differential
operators.

We illustrate the highest weight module structure in the case of the minimal
parabolic subalgebra. In that case M is compact and V), is finite dimensional.
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Consider first the case when M is non-abelian. Let vo be the highest weight vector
of V,,. Now we can introduce €-valued realization C, of the space Cy by the formula:

¢(9) = (vo, F(g)) (1.8)

where (,) is the M-invariant scalar product in V,. On these functions the right
action of G? is defined by:

(Xe)(9) = (vo,(XF)(9)) (1.9)

If M is abelian or discrete then V), is one-dimensional and we set ¢ = F. Part of
the main result of [16] is: 3
Proposition. The functions of the (-valued realization C, of the ER C, satisfy :

Xo = AX)-p, XeHC (1.10a)
Xo =0, Xxeg? (1.100)

where A = A, € (H?%)* is built canonically from ¥, [it contains all the information
from yx, except about the character € of the finite group My, gf, G, are the pos-
itive, negative root spaces of G, i.e., we use the standard triangular decomposition
6% 6@ HT oG, :

Now we note that conditions (1.10) are the defining conditions for the highest
weight vector of a highest weight module (HWM) over G¢ with highest weight A.
Moreover, special properties of a class of highest weight modules, namely, Verma
modules, are immediately related with the construction of invariant differential op-
erators.

To be more specific let us recall that a Verma module is a highest weight module
VA with highest weight A, such that VA = U(G%)vo, where v is the highest weight
vector, U(G?) is the universal enveloping algebra of GZ. Verma modules have the
following universality property: every HWM is isomorphic to a factor-module of the
Verma module with the same highest weight.

Generically, Verma modules are irreducible, however, we shall be mostly inter-
ested in the reducible ones since these are relevant for the construction of differential
equations. We recall the Bernstein-Gel’fand-Gel’fand [5] criterion according to which
the Verma module VA is reducible iff

2(A+p,8) — m(B,8) = 0 (1.11)

holds for some 3 € A*, m € IN, where A™ denotes the positive roots of the root
system (G% H%), p is half the sum of the positive roots A*.

Whenever (1.11) is fulfilled there exists [13] in VA a unique vector v,, called
singular vector, such that v, ¢ Qug and it has the properties (1.10) of a highest
weight vector with shifted weight A —mg :

Xv, = (A—mf)(X)-v,, XeH® (1.12q)
Xv, = 0, Xeg? (1.12b)
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The general structure of a singular vector is [16]:
vy = Ppp(X{,..., X7 )wo (1.13)

where P, is a homogeneous polynomial in its variables of degrees mk;, where
ki € Z come from the decomposition of § into simple roots: 8 = Y k;a;, a; € Ag,
the system of simple roots, X are the root vectors for —a;, «; are the simple
roots, £ = rankG? . It is obvious that (1.13) satisfies (1.12a), while conditions
(1.12b) fix the coefficients of Ppg up to an overall multiplicative nonzero constant.

Now we are in a position to define the intertwining differential operators, cor-
responding to the singular vectors.

Let the signature x of an ER be such that the corresponding A = A, satisfies
(1.11) for some B € At and some m € IN. [If § is a real root, (ie., Blye =0,
where H,, is the Cartan subalgebra of M), then some conditions are imposed on the
character € representing the finite group My [55]]. Then there exists an intertwining
differential operator [16] )

Dpp : C — Cyr (1.14)
where x' is such that A’ = A, = A —mp.

The important fact is that (1.14) is explicitly given by [16]

Drmpp(9) = Pmp(X7,...X7)p(9) (1.15)

where P,,p is the same polynomial as in (1.13) and X']-" denotes the action (1.7).
We stress that these are explicit and compact expressions once the singular vectors
are known. The latter are known for G = sl(n, ), and for a large class of positive
roots for the other simple Lie algebras [19].

One important simplification is that in order to check the intertwining proper-
ties of the operator in (1.15) it is enough to work with the infinitesimal versions of
(1.5) and (1.6), i.e., work with representations of the Lie algebra. Thus, also in the
quantum group setting we work with representations of quantum algebras.

Naturally, the above Verma module constructions are related with the elemen-
tary representations of the complexification G of G, or infinitesimally, of G%. The
corresponding representation spaces (in particular, the right covariance conditions)
are given by (instead of (1.5)) [58] :

Ch = {pc € C®(GY) | pelghn) = M o (g)} (1.16)

where g € G%, h = exp(H), H € H%, n € Gg = exp(gf), A is as in (1.10). Note
also that ¢./¢ = p, and (1.10) holds also for .. Thus, below we shall use the
notation ¢ also for these functions.

This finishes the sketch of the classical results in general. In the next subsection
we present an example.

1.3. In this subsection we follow mostly [27]. In the setting of the previous
subsection we take G = SOe(n + 1,1), the Euclidean conformal group of n -
dimensional Euclidean space, and also its double covering group G = Spin(n+1,1).
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We take n > 3, while for n = 1,2 we refer to Appendix B of [27]. In this case
K = SO(n+1), K = Spin(n+1), M = SO(n), M = Spin(n), dimA = 1,
N* = [R". As in [27] we first take irreducible representations of M labelled by
p = (0,...,0,€) ([n/2] entries), £ € Z, . An alternative labelling (differing by the
values of the half-sum of the positive roots)is: p = {0,1,...,h—2,f+h—1}, where
h = [12'—] Usually these are realized as symmetric traceless tensors F, ... ,, of rank
¢, p; =1,...,n. However, they can be also realized in the space of homogeneous

polynomials of degree ¢

(&) = Fuyrome Eur - Ce (1.17)

on the complex light cone:
Ko = {€€0 & = €+-+& = 0) (1.18)

(summation over repeated indices is understood). Each such function has a unique
harmonic (homogeneous polynomial) extension ¢(¢), ¢ € €™:
o? 02
Ac ¢ =0, A¢ = =— o
¢ #(C) ¢ (9(12 + + ac2
5 . . 1.19
(€)= Furrme Cur - Cue ( )

p€) = &), (€K™

_ Let us denote the signature of the class of ERs we consider by x = [¢, ¢] where
¢ € @ determines the character of A. The reducible ERs from this class are
parametrized by two integers £ € Z,, p € IN. They form four families with the
following signatures:

(6, £(3+2+p—1)] (1.20a)
[(+p, £(3+2-1)] (1.200)

+
Xep

1+
Xep

For fixed ¢,p the four ERs X?;, , Xll:: have the same values of the Casimir operators

and are partially equivalent. Let us denote by étip,

with signature X;Ep , Xltf , resp. The intertwining maps between éZ;) and C~[p and

CZ,: the representation spaces

between CE; and é}; are integral operators, cf. [27]. The intertwining operator
between (f[p and éé; is given by:
da? é['p —)éz; .
(@ o) (@6) = (€Y elmd), pely, (L21)
0

“_8:6,,

ze€R", €€K", ¢V =¢V,, V
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The intertwining operator between x'[; and X?’;’ is given by:
d? Cg’ —>CZ,
(d? @) (z;6) = (D*-V)" p(z:6), @eCt,
zeR", ¢€K", D'V = DiV,

) .
D = ((3-1+€600; — & A, €0 =80, 0 = 3
(1.22)

Note that the operator D¢ (cf. Appendix A of [27], in particular, formula (A.47))
is an interior operator on the light cone IK™, i.e., for any polynomial () we
have:

(D57 ¢(6)) =0 (1.23)

|52=0

We finish this example by stressing that the intertwining differential operators
dP and d'P are just powers of one and the same ezpressions in all cases irrespec-
tively of the rank of the tensors they are acting on, which is in sharp contrast with
the corresponding expressions if one is using the realization F,, . ,, with tensor
indices.

If one is not restricting to symmetric traceless tensors of M = SO(n) then there
are other collections of ERs which have the same values of the Casimir operators and
are partially equivalent. Such collections are called multiplets and for the general
treatment we refer to [14]. Here we restrict to those multiplets of G = SO(n+1,1),
G = Spin(n + 1,1), resp. which are in 1-to-1 correspondence with the (finite-
dimensional) unitary irreducible representations (UIRs) of SO(n +2), Spin(n + 2),
resp. (the compact form of the complexification of G, G, resp.). [These multiplets
are ‘'maximal’ w.r.t. to the number of ERs they contain and they correspond 1-to-1
to the elements of the restricted Weyl group W(G, A), cf. [14].] Let us parametrize
the UIRs of Spin(n + 2) as follows:

T = {mi,...,mp,}, neven, m;€Z[2, |m|<my<- - <my,,

T = {mi,...,mp}, nodd, m;€Z/2, 0<m <my<---<mjy,

) ) (1.24)
(h = [3]). To this UIR corresponds a multiplet of exactly 2h + 2 ERs of

G which have the same values of the Casimir operators and are partially equivalent.
Moreover, there are no other ERs partially equivalent to those (cf., e.g., [14]). In
general, the signature of the ERs of G are labelled as follows:

x = {mi,...,my; c} (1.25)

where the first & entries are the labels of the UIRs of M = Spin(n), and the last
entry labels (as above) the characters of A. (In this notation the ERs induced from
symmetric traceless tensor representations of M are labelled as {0,1,...,¢ + h —
1;¢}.) Accordingly the signatures of the ERs in the multiplet under consideration
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are labelled as:

Xf‘ = {emy,...,my; £m; .}
X;t = {eml,..., Mj_1 Miy1; :i:m,-l}
+
xz = {emi,...,mj_y, mj, mj 5 tm;_}
(1.26)
Xili = {eml,ms,...,miz,m,}_’_l;ﬂ:mz}
+
Xipr = {ema,..., mj, mj 5 £my}
e = +, for n even
11, for n odd
[The signatures in (1.20) X[ip, x';:, correspond to xi, xI, resp.]  Note that in

every multiplet only the ER x] has a finite-dimensional nonunitary subrepresen-
tation. The latter has the same dimension as the fixed UIR of Spin(n + 2) in (1.24)
to which the above multiplet corresponds. The ERs in the multiplet are related by
intertwining integral operators and by 2k different intertwining differential oper-
ators. Let us denote by Ci the representation_ space with signature xi. The
integral operators intertwine the pairs C+ and C .

Gf : ¢ — ¢, Gy : ¢ —)éf (1.27)

1

The intertwining differential operators act as follows:
di : ¢ —C,, i=1,.,h, ¥n

d; : Ch, —Cf, i=1,.,h, V¥n

d; = d'— , T even (1.28)
diyq CB_+1 —CH, meven
diiq ci;— — éi:L+ , neven

The degrees of these intertwining differential operators are given just by the differ-
ences of the ¢ entries:

degd; = degd; = mj , ;—Mj i, = 1,...
ht2 At (1.29)

degdh_H = mgy+m;, neven

The equalities between some intertwining differential operators for n even in (1.28)
mean that these have the same expressions as actual differential operators. This
is possible first of all because these operators are produced by singular vectors
corresponding to the same positive roots of the root system of so(n + 2,&) and
only if one uses the representation spaces ¢ comprised of (@ - valued'functions [14],
(16]. Naturally, d; and dj coincide with d? and d’?, resp., (with p = mj_,—m;),
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whenever they act on ERs which are induced from symmetric traceless tensors of
M = S50(n). The multiplets are shown in Fig. 1, Fig. 2, for n even, odd, resp.; the
double arrows are the integral intertwining operators (1.27), and the other arrows
are the intertwining differential operators (1.28).

For the group SU*(4) = Spin(5,1) the integral operators and the four
different differential operators were given explicitly in [30]. Again the intertwining
differential operators are given by powers of four different basic operators. Using
Wey!’s unitary trick these multiplets may be turned into multiplets describing ERs
of the group SU(2,2), cf. [51]. These multiplets may be‘obtained also from direct
SU(2,2) considerations as submultiplets of the maximal (24-member) multiplets,
cf. [15], and they will be used here in Section 6 in the ¢-deformed case.

1.4. Organization of the rest of the lectures.  Sections 2. and partly 3. review
part of the exposition of [23] for Uy(sl(n)) with general n. Then in Sections 4. and
5. we consider in detail the case n = 4 following part of the exposition of [24]. In
Section 6, following mostly [25] and [26], we use q - conformal invariance to propose
new q - Minkowski space-time and q - Maxwell hierarchies of equations.

2. The matrix quantum group GL,(n) and the dual quantum algebra

In the beginning of this Section we follow [45] and [18]. Let us consider an
n X n matrix M with non-commuting matrix elements a;j, 1 < 14,7 < n, called
also quantum matriz [45]. Let us denote by Aq(n), ¢ € €, the bialgebra with
unit element 14 and generated by the matrix elements a;; with the following
commutation relations [45] (A = ¢—¢71) :

Gie@i; = qa;jaye, £>7 (2.1a)
akjai; = qaijakj , k>1 (2.1b)
akjaie = aieak; , k>, >3 (2.1¢)
Gijake = Gkedij — Najeakj, k>1, £> ] (2.1d)

and the following comultiplication §4 and counit €4 :

n

Salai) = Y ax®ar;, ealaij) = & (2:2)

k=1

This bialgebra has an element D called quantum determinant and given by:

D = Z e(p) a1.p(1)+«+Cn p(n) = z G(p) ap(l),l...ap(n),n (23)
PESn PESH

where summations are over all permutations p of {1,...,n} and the quantum sig-

nature is:
) = JI (= (2.4)

i<k
p(3)>p(k)
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The determinant obeys:
s4(D) = D@D, ea(D) =1 (2.5)
The determinant is central, i.e., it commutes with the elements a;j :
air D = D ai (2.6)

Further, it is assumed that D # 0 and one considers an extension of this bialgebra
by an element D~! which obeys:

DD™' = D7'D = 1,4 (2.7)

where 14 denotes the unit element also in the extension. This extension is called
the matriz quantum group GLg(n). It is a Hopf algebra with antipode defined as
follows. We first define the left and right quantum cofactor matrix A;; :

Z deoo) a a;j a =
3 e(os) 1,p(1) ++ - @ij - - - On,p(n)
p()=j

Z lpoaj) a a a
= @p(1),1 -+ @ij -+ Ap(n),n
worei L3)

Aij

(2.8)

I

where o; and o} denote the cyclic permutations:

oi = {i..s1}, of = {j,...,n} (2.9)

and the notation £ indicates that z is to be omitted. Now one can show that:

Y aij Ay = ) Ajiaje = 6D (2.10)
J 7
and obtain the left and right inverse:
M™ = D'A = AD™ (2.11)
Finally, we can introduce the antipode in GL,(n) :
ya(aij) = D' A; = Aj; D! (2.12)
Until here we followed [45] and [18].  Further we follow [23].

We introduce a basis of GL4(n) which consists of monomials

f = (‘121)m21 cee (a‘n,n—l)m"’"_1 (all)t1 cee (ann)(" (an—l,n)n"_l'" o (a12)n12 =

) (2.13)
where m, £, 7 denote the sets {mi;}, {¢i}, {nij}, resp., mij,€i,nij € Z4+ and we
have used the so-called normal ordering of the elements a;;. Namely, we first put
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the elements a;; with 7 > j in lexicographic order, i.e., if ¢ < k then a;; (¢ > 7) is
before ake (k > €) and ay; (¢ > 1) is before ask (¢ > k); then we put the elements a;;;
finally we put the elements a;; with ¢ < j in antilexicographic order, i.e., if ¢ > k
then a;; (i < j) is before are (k < £) and ay; (t < ¢) is before as (t < k). Note also
that :

fopo = la (2.14)

We need the dual algebra of GLg(n). This is the algebra U, = U,(sl(n)) ®
U,(Z), where Ug(Z) is central in U, [21], [29]. Let us denote the Chevalley generators
of sli(n) by H;, X,-i, i =1,...,n—1. Then we take for the ’Chevalley’ generators of
U=TU,(sl(n)): ki=q"/? k71 =g~ Hil2) XF i =1,...,n— 1, with the following
algebra relations: -

kik; = kiki, kik[' = k7' = Ly, , kiXFE = ¢*9XFk (2.150)

(X X7) = & (KT = k7%) /X, (2.15b)
(XE) XE — 2 XEXEXE + XE(XE)' = 0, li—j|=1,(215)
[(XEXE] =0, li-jl#1, (2.15d)

where c¢;; is the Cartan matrix of sl(n), and coalgebra relations :
) = kF @k

) = XFok + k'oXF
eulkf) = 1, eu(XF) =0

) = kT, w(XE) = gt XE

1

(2.16)

where k} = ki, kI = k:l. Further, we denote the generator of Z by H and the
generators of Uy(Z) by k = gH? k=t = ¢H2 gk = kg = ly,- The
generators k, k™! commute with the generators of U, and their coalgebra relations
are as those of any k;. From now on we shall give most formulae only for the
generators k;, X l-i, k, since the analogous formulae for k', k™! follow trivially
from those for k;, k, resp.

The bilinear form giving the duality between U, and GL4(n) is given by
[23]:

(ki, aje) = & qBuibut/2 (2.17a)
(X, aje) = 841,465 (2.17b)
(X7, aje) = 6j-1,6ie (2.17¢)

(k,ae) = &ieq"? (2.17d)

The pairing between arbitrary elements of U, and f follows then from the
properties of the duality pairing. The pairing (2.17) is standardly supplemented
with

(v, 1a) = eu,(y) (2.18)
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It is well known that the pairing provides the fundamental representation of
Uy -
Fie = (y,ae), v = kX k (2.19)

Of course, F(k)=q'/?I, , where I, isthe unit n x n matrix.

3. Representations of U, and U

This Section follows mostly [23]. We begin by defining two actions of the dual
algebra U, on the basis (2.13) of GL4(n).

First we introduce the left regular representation of U, for which in the g =1
case we need the infinitesimal version of :

*(YYM = Y'M, Y,M € GL(n) (3.1)

Explicitly, we define the action of U; on GL4(n) as follows (cf. also (1.6)):

n(y) aie = (F () M),, = Z F(M),; ase = D (W), aij ) aje

j
. (3.2)
where y denotes the generators of U, and ~J(y) is the antipode action for ¢ = 1.
From (3.2) we find the explicit action of the generators of U :

m(ki) aje = qli+riT0/2 q (3.3a)
T(X}) aje = —8ij aj41e (3.3b)
m™(X[) aje = —biy1,; aj-1e, (3.3¢)
(k) aje = a7/ aje (3.3d)

The above is supplemented with the following action on the unit element of GL4(n):
mk)la = la, #(XF)1la = 0, mk)la = la. (3.4)

In order to derive the action of 7(y) on arbitrary elements of the basis (2.13), we
use the twisted derivation rule consistent with the coproduct and the representation
structure, namely, we take: w(y)py = W(J&g(y))(np ® ), where 5{,9 = oody,
is the opposite coproduct, (o is the permutation operator). Thus, we have:

(ki)pp = m(ki)e - m(ki)p (3.50)
T(XE)pp = m(XF)e-m(ki)p + (ke - m(XE) (3.5b)
w(k)pp = w(k)p - m(k)p (3.5¢)

From now on we suppose that ¢ is not a nontrivial root of unity. Applying
the above rules one obtains:

m(ki)(aje)" = g im0 2 (g ) (3.6a)
m(XF)(aje)" = —bijen(aje)” ajure (3.6b)
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(X7 )(aj0)" = —bit1,5¢naj-1e(aze)" ™ (3.6¢)
m(k)(aje)" = 7"/ *(aze)" (3.6d)

where
cn = ¢" V), [0l =(¢"—q ")/ (3.7)

Analogously, we introduce the right action (for U,(sl(2)) see also [46]) for
which in the classical case (1.7) one needs the infinitesimal counterpart of :

nR(Y)M = MY, Y,M € GL(n) (3.8)
Thus, we define the right action of U, as follows (cf. (1.7)):
mr(y) aie = (MF(y));,, = Y ai F(y)je = Y ai; (y, aje) (3.9)
J J
where y denotes the generators of U,
From (3.9) we find the explicit right action of the generators of U, :

’IrR(k:,') aje = (1(5"‘_6“*’1")/2 a (3.10(1)
FR()&’?—) aje = Giy1,0 Qje—1 (3.100)
(X[ ) aje = bi¢ aje41 (3.10¢)
mr(k) aje = ¢ ajo (3.104)
supplemented by the right action on the unit element:
(k) 1a = 14, 7p(XE)1la = 0, 7wp(k)la = 14 (3.11)

The twisted derivation rule is now given by 7r(y)ey = 7r(du,(y))( ® ¥),
ie.,

mr(ki)p = mwr(ki)p - mr(ki) (3.12a)

TR(XF)ep = mr(XF)e - mr(ki)p +
(3.12b)

+ (k) mr(XE )
mr(k)pp = 7mr(k)p - mr(k)y , (3.12¢)
Using this, we find:

mr(ki)(aje)" = g o102 (g )" (3.13qa)
mR(X;F)(aj6)" = Sit1,ecnaje-1(aze)" " (3.13b)
Tr(X{ )(aje)" = diccn(aje)” lCl],t’+1 (3.13¢)
mr(k)(aje)" = ¢"/*(aje)" (3.13d)
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Let us now introduce the elements ¢ as formal power series of the basis (2.13):

Y = Bmin fm i (3.14)
m, i, REZy

By (3.6) and (3.13) we have defined left and right action of U, on ¢. Asin the
classical case the left and right actions commute, and as in [16] we shall use the right
covariance to reduce the left regular representation. In particular, we require the
right action to mimic properties of a highest weight module, i.e., annihilation by the
raising generators X;' and scalar action by the (exponents of the) Cartan operators
ki, k. However, first we have to make a change of basis using the ¢-analogue of the
classical Gauss decomposition. For this we have to suppose that the principal minor
determinants of M :

Du = Y €lp) a1,01)- - mp(m) =
PESM

= Y elp) @)1 Gpmym » m<n
PESM

(3.15)

are invertible; note that D, = D, D,_1 = Ann. )
Further, for the ordered sets I = {i; < - <i,} and J = {j1 < - < jr}, let
¢} be the r-minor determinant with respect to rows I and columns J such that

65 = Z «(p) Qipays """ Bigyir (3.16)
PES,

Note that £} 7} = D; . Then one has [1] (i,5,£=1,...,n) :

aip = ZBiije, By = &5V DY, Zie = DY, (3.17)
’ )

Big =0 fori < £, Z; =0 for i > ¢, (which follows from the obvious extension
of (3.16) to the case when I, resp. J, is not ordered). Then Z;;, ¢ < j, may
be regarded as a g-analogue of local coordinates of the ¢ - deformed flag manifold
B\GL(n).

For our purposes we need a refinement of this decomposition :

Bie = YuDy, Yie = &5 DY, Dy = DeD;Y, (Do=14) (3.18)

where ffj[, J > £, may be regarded as a g-analogue of local coordinates of the ¢ -
deformed flag manifold GL(n)/DZ.

Clearly, we can replace the basis (2.13) of GL,(n) with a basis in terms of Y,
> £, D¢, Zig, i < L. (Note that Yii= Zii = 14.) Thus, we consider formal power
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series: ) ) |
('5 = Z Mli,ﬁl,ﬁ (}/21 )mn Ces (Yn,n_l)m","—l x
m,?ee:’L (3.19)

x (D)% ... (D) (Znoi )™ 2" .. (Z12)™2

Now, let us impose right covariance (cf. [16] and (1.10b)) with respect to X',
i.e., we require:

TR(X}) @ = 0 (3.20)
First we notice that:
mrR(XF) € =-0, for J = {1,...,5}, VI (3.21)
from which follow:
mR(X})D; = 0, 7r(X})Ye = 0 (3.22)

On the other hand 7g(X;") acts nontrivially on Zj; :
TR(X}) Zje = Sisre ®9* Zj0s (3.23)

Thus, (3.20) simply means that our functions @ do not depend on Zj, . Thus,
the functions obeying (3.20) are:

¢ = Yo bgm (Ya)™ o (Yauo)™m (D)L (Da) (3.24)
l€EZ , mEZy

Next, we impose right covariance with respect to k;, k :
mr(k) ¢ = ¢ ¢ (3.250)
mr(k) ¢ = ¢*¢ (3.25b)

where r;,7 are parameters to be specified below. On the other hand using (3.12aq, ¢),
(3.13a,c) we have:

”R(ki) 65 = qéij/2 gg ) "R(k) 55 = qj/2 55, for J = {1)"'7j}a VI’

(3.26)
from which follows:
7I'R(k:i) Dj = q‘s'v"'/2 DJ‘ , TTR(k‘) Dj = qj/2 D]' , (3.27a)
(ki) Yie = Yie, mr(k)Ye = Yo, (3.27b)
and thus we have:
mr(k) ¢ = ¢ ¢ (3.28a)
mr(k) ¢ = q2i=9"? (3.28b)

Comparing right covariance conditioas (3.25) with the direct calculations (3.28)
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we obtain ¢; = r;, for 1 < n, E;':l j€; = 7. This means that r;,7 € Z and that
there is no summation in ¢;, also £, = (7 —E?:_II ir;)/n. Thus, the reduced functions
obeying (3.20) and (3.25) are:

5 = 3 wm Fa)™ oo (Fane)™ = (D)™ . (Dacy)™ (D) (3.29)

MEZy

5 ~ n—1 .
where £ = (7 — Y. ._, iri)/n.
Next we would like to derive the U, - action 7 on ¢ . First, we notice that
U acts trivially on D,, = D :

nXE)D = 0, n(k)D = D (3.30)
Then we note: ‘ } 3
n(k) D; = ¢ Dj, n(k)Yje = Y (3.31)
from which follows: )
nk)¢ = ¢*¢ (3.32)

Thus, the action of U involves only the parameters r;, 1 < n, while the action
of Uy(Z) involves only the parameter 7. Thus we can consistently also from the
representation theory point of view restrict to the matrix quantum group SL4(n),
i.e., we set:

D = D' =1, (3.33)

Then the dual algebra is U = Uy(sl(n)). This is justified as in the ¢ = 1 case [16]
since for our considerations only the semisimple part of the algebra is important.
(This would not be possible for the multiparameter deformation of GL(n) [56], [53],
since there D is not central. Nevertheless, we expect most of the essential features
of our approach to be preserved since the dual algebra can be transformed as a
commutation algebra to the one-parameter Uy, with the extra parameters entering
only the co-algebra structure [21], [29].)
Thus, the reduced functions for the U action are:

HT.D) = Y tim (Faa)™ . (Fua)™n0 x

MmEZy
x (D)™ ...(Dpey)™t = (3.34a)
= @3(Y) (D1)" ... (Duey)™ (3.34b)

where ¥, D denote the variables Y;;, i > ¢, Di,i<n. _
Further we note the commutation relations of the Y;; and D; variables:

'

YiVij = qVijYie, i>0> (3.35a)
Yi;Vij = qVijVj, E>i>j (3.35b)
?kjf/,'g = f/,'gf/kj , k>1>14 >3 (3.356)

}}k[ﬁj = f/,‘j?k[ + )\y,‘[ffkj , k>1,0 >7, 1 75 4 (335d)
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i/kiff,‘j = q_lfl,‘jf/k,’ + q—l/\f/k]’ , k>1>7 (3356)
YﬂD,‘ = D,‘Yje y ] >0>1 (3.360)
YjeD; = qDiYje, j>i>¢ (3.36b)
YiD; = DiYje, i>j>1 (3.36¢)

where in (3.35d) we use Yj; = 0 when i < . Note that (3.35a — d) may be
obtained by replacing a;e with Yi, in (2.1a — d). Note that the structure of the
q - deformed flag manifold for general n is exhibited already for n = 4, while for
n = 3 relations (3.35¢,d) are not present. The commutation relations between the
Z and D variables are obtained from (3.35), (3.36), by just replacing Y: by Zi, in
all formulae. -

Next we obtain:

(ki) D; = ¢ %> D; (3.37a)
n(X})D; = =&, Yj1,; D, (3.37b)
nX;7)D; = 0 (3.37¢)
(ki) Vie = qilimdu—dinctiid y, (3.384)
m(X;) YJ[ = —& f/j+1,l + Sip g Oiena/? f’z+1,e f/je +

. L (3.38b)

+ dit1e (q_l Yie-1r — Yoo th)

m(X7) Yo = —6ip1y ¢ %2 Y 0, (3.38¢)

These results have the important consequence that the degrees of the variables
D; are not changed by the action of U. Thus, the parameters r; indeed characterize
the action of U , i.e., we have obtained representations of U, and it is easy to
check that 7 satisfy (2.15). To obtain the representations more explicitly one just
applies the above formulae to our basis using the twisted derivation rule (3.5). In
particular, we have:

(ki) (D))" = ¢ "/ (D))", neZ, (3.39a)
m(X}) (D))" = —éijcn Y/j+l,j (D;)*, neZ, (3.390)
(X)) (D;)" =0, neZ, (3.39¢)

m(k) (Vje)* = q2CGni=ds=fimctdid () - n ez, (3.40a)
(X)) (Y0 = —6ij en (YVie)" ™' Yigre +

+ Sig1,6 Cn (q‘l Yie—1 (Yie)" ™' = Yoo (}7}1)") +
+ bie T e Vi (Vi)™ n€ Zy (3.400)
m(X7) (YVje)" = —6ipr,j ¢ 0™ ey Yisie (Vo)™™' , n€ Zy, (3.40c)

en = UM/ [n]q (3.41)
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It is easy to check that = satisfy (2.15).

We shall denote by C; the representation space of functions in (3.34) which
have covariance properties (3.20), (3.25a). The representation acting in C; we
denote by 7 doing also a renormalization to simplify things later, namely, we set:

we(ki) = w(ki),  w(XF) = TV a(XE) (3.42)

Then 77 also satisfy (2.15).
Further, since the action of U is not affecting the degrees of D;, we introduce

(as in [16]) the restricted functions $(Y) by the formula which is prompted in
(3.34b) :

=<

(

&

) = (AP)Y) = ¢(Y,Dy=---=Dpy = 1a) (3.43a)
) = pm (Y21)™2 .. (Vg™ (3.43b)

Y
=i

We denote the representation space of $(Y) by C} and the representation
acting in C; by #; . Thus, the operator A acts from C; to C; . The properties
of C; follow from the intertwining requirement for A [16]:

7 0o A = Ao 7; : (3.44)

We have defined the representations #z for r; € Z. However, notice that
we can consider the restricted functions $(Y') for arbitrary complex r;. We shall
make these extension from now on, since this gives the same set of representations
for Uy(sl(n)) asin the case ¢ =1.

For the more compact exposition of the representation formulae we shall need

below also the following operators (corresponding to each )7]1) :

Mje (V) = > s Mje (Ya)™ ... (Vanog) ™o (3.45q)
ﬁ'LEZ+

Tie (V) = Y pm Tie (Va1)™ .. (Vo)™ (3.45b)
mEZ+

M]’( fm = (ffgl)mm . (Y/je)mjl-‘-l ce (?n,n_l)m"'"_l (346&)

Tje fm = ™" fm (3.46b)

fm = (Ya1)™ ... (Y pq)™mn=t (3.46¢)

Using this we define the g-difference operators by:
~ e 1 - 1 -1 -
Die (V) = 5 Mt (Tie-Tie') ¢(7) (3.47)
from which follows:

,b]_e fﬁl - [mjl]q (}'}21)m21 o (th)m“—l L (?‘n,n—_l)mn,n—l (3.48)
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Of course, for ¢ = 1 we have ’bﬂ — 0Oy;,, = 0/0Yje. (Note that the above
operators for different variables commute, i.e., with these we have actually passed
to commuting variables.)

For the intertwining operators between partially equivalent representations we
need the action of 7gr(X;) on Yj, and D,. Using (3.10) and (3.12) we obtain:

TR(X;)(De)" = biecn (De)" Ze,041 (3.49a)

mR(X7) (Vi)™ = bie ¢"7°/ [n]g (Yie)" ™" Yier1 Der D7? Doy (3.499)

where, as usual, we use ?jj = 14.= Dy. We shall use also the repeated action of
wr(X;") so in addition we need:

TR(X]) Zie = Sie Zierr — 85 ¢ Z5 500 Zie + Sio1 Dy T g0
3750)
3.51)

(
WR(ki) Z]‘[ — q(¢5;+1,j—-6.‘]'+5u—5.‘+1,1)/2 Zjl (

4. The case of U,(sl(4))

In this Section we consider in more detail the case n = 4, following mostly [24].
[For n = 2,3, resp., we refer to [22], [23], resp.]

It is convenient (also for the comparison with the ¢ = 1 case) to make the
following change of variables:

Ya1 = Y1 —q¥aYaz, Yu = Vi —qVaiVa,

3 N N 3 (4.1)
Yao = —¢¥n, Y = qYws, Yij =Y, for (ij) = (32),(42) .
Using (3.35) we have:

YieVij = 7YY, 4>2i>0>52>1, (4.20)
Yi;Yij = ¢7%2Y,Y,, 42k>i>j5>1, (4.2b)
YauYss = YaoVy +AYa1Yse, (4.2¢)
YaiYjin = YiaYai, (i) =(23),(32), (4.2d)
YiiVi; = ql_26‘31/,‘jyk,‘ — (—1)6‘3/\ij , 4>2k>i>3532>1, (4.2¢)

(each of (4.2a,b,e) has four cases). Note that (3.36) holds also for Yj, replacing

Yj¢. Note that for ¢ a phase (|g| = 1) the g - flag manifold in the Y coordinates is
invariant under the anti-linear anti-involution w acting as:

w(YJ) = Y5_¢,5_J‘ . (43)

Thus it can be considered as a ¢ - deformed flag manifold of the quantum group

SUL(2,2).
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The reduced functions for the U action are (cf. (3.34)):
@(Y,D) = Z Hijktmn @ijklmn

1,5,k,6,mn€Z

(Ya1)' (Y1)’ (Ya2)® (Yar)* (Yaz)™ (Yas)" x

x (D)™ (D2)™ (Ds)"™

Pijkemn

Now the action of U,(sl(4)) on (4.4) is given explicitly by:

wr(k1) Gijkemn = ¢ FTUTRHEM=TI2 G

qk+(—i+j+m—n—r2)/2 ~

7ir(k2) Pijktmn Pijktmn

. - — ikt ltm—rs)/2 =

#r(ks) Gijkemn = g HITRHEM=/Z G tmn

P —1(—jtk—t+m)/2 4

#e(X7) Bijkemn = g VHITETEM/2 ) B kemn

4 g TGk () G 1 k=1, emn

11— 14 (j—k+—m)/2 N
e (0 PN TH A

ro—k+(i—j—m+n)/2 [l

To(XT) Pijkemn = g lg Pic1,j+1,ktmn +

+ q(i+j+m—n)/2 [] —1+k+m—n-— T2]q @ij,k+l,!mn(+
(4.

+ q—r2+(—i+j+k+3m—-3n)/2 [e]

4 FTretCHIAmE 2 (] G ke md et

7+(XT) Gijkemn = — g itk —tom)/2 (7]q @i j=1,k,e41,mn —

_ qra—l—n+(3j+k—3l.’—m)/2 [

—14+(—j—k+¢ 2 ~
+ q Hi=kttm)/ [n—'f‘g]q Pijkem,n+1 >

#r(XT) Gijkemn = g TIHETEMIZ (]

+ qi+2+(—f+k—£+m)/2

q @i—l,jkt’mn +

7]q Bii—1,k+1,tmn +

4+ g PHGREm 2 ] Gk b1 mtn

- _ q(—i+j——m+n)/2

7:(X5 ) Gijkemn (klq Pijk-1,emn >

q Pij+1,kb—1,m+1,n +

klg Gijk—1,6,m+1,n +

35

(4.4a)

(4.4b)

(4.5a)
(4.5b)
(4.5¢)

(4.6a)

6b)

(4.6¢)

(4.7a)

(4.7b)
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—n+(—j—3k+£+3m)/2 [K]q 951

T7:(X3 ) Gijkemn = — ¢ i,j4+1,k 6—1,mn —

— IR s e me i — (4.7¢)

ql+(—j—k+(+m)/2 [n]q Saijklm,n—l .
It is easy to check that #(k;), #-(XF) satisfy (2.15).
Then we consider the restricted functions (cf. (3.43)):

oY) = Z Hijkemn Pijktmn (4.8q)
1,5,k ¢, mn€Z4

Pijkbmn = (Ya1)" (Ya1)? (Ya2)F (Ya1)® (Ya2)™ (Yaz)" . (4.8b)

As a consequence of the intertwining property (3.44) we obtain that @;jremn
obey the same transformation rules (4.5), (4.6), (4.7), as @Gijkemn-

Recall that we consider the representations 77 for arbitrary complex r; and
we know from the general analysis of [23] that whenever some m; = r; + 1 or
mij = mi+---+mj, (1 < j) is a positive integer the representations are reducible
and there exist invariant subspaces. We give now two simple examples.

Let m; =7 + 1 € IN. Then it is clear that functions ¢ with pijkemn =0 if
1 > m; form an invariant subspace since:

ﬁ',:(X1+) ‘Iarl,jkfmn = q(]+m_[—2_k)/2 [k]q (rarl,j-f-l,k—l,fmn +

+ q(j+e-k—z—m')/2 (4.9)

[m]q 95"1 Jke+1,m—-1n

and all other operators in (4.5), (4.6), (4.7) either preserve or lower the index :. The
same is true for the functions ¢. In particular, for r; = 0 the functions in the
invariant subspace do not depend on the variable Y3;.
Analogously if m3 =r3+1¢€ IN the functions ¢ with p;jkemn =0 if n > m3
form an invariant subspace since:
#2(XT) Bijkemrs = — ¢EITEDR (]G ke mr —

_ gkH3itm=3t-2)/2 (4.10)

[m]g Pijk-1,6,m+1,rs >

and all other operators in (4.5), (4.6), (4.7) either preserve or lower the index n, the
same holding for the functions . In particular, for r3 = 0 the functions in the
invariant subspace do not depend on the variable Yj3.

It will be convenient to use also the following notation for the coordinates of
the flag manifold:

E=Yn, z=Yn, u=Ysn, w=VYy, y=VYn, n=>Yy. (411

The above notation we shall employ also for the operators (3.45), (3.47). In
terms of the latter operators we rewrite the transformation rules (4.5), (4.6), (4.7)
for the functions ¢ as follows :

wo(kr) $(F) = ¢/ Te (TTu)? (TLT,) 72 G(Y) (4.120)



q-DIFFERENCE CONFORMAL INVARIANT OPERATORS AND EQUATIONS 37

) $(¥) = ¢ T (TTy)V? (TeTy) 2 (), (4.12b)
fr(ks) (V) = ¢ Ty (TT,)'? (TTu) /% ¢(Y) (4.12¢)
O BT) = () a7 M ()T ()™ (T a7 Te) 947 +
+ ¢ M, Dy Te (TeT,)M? (TuTw)™Y? ¢(Y) + (4.130)
+ ¢ 7Y M, Dy Te (ToTw)'? (TLT,) " $(Y)

w(XF) (V) = ¢ My De T, (TeT,)'? (ToT,) ™' (V) +
+ (1/)) Mu (TETy)1/2 (TzTn)_l/2 X
x (q"?TITuTy(TgT,,)_I—q”TET,,(TITuTy)‘l) (V) + (4.13b)
+ ¢ My My Dy (Tp TT3)? (TeT2) 72 4(Y) +

+ g7 M, Dy T (TT,) (TT,) 72 4(F) |

F(XF) @(Y) = - ¢ My J ()Y (TWTy) 72 (V) -
g~ My ﬁu Tr;— (TagTu)l/2 (Tg;Ty)_l/z B(Y) + (4.13¢)

+ (12 ¢ My (T (LT) T2 (67T, - ¢ T;0) $(¥)

(X7) @(Y) = q D¢ (T.T,)V? (ToTw) "% (¥) +

=N
=

+ ¢ My, D, T¢ (T.T,)'/* (T.T,)"Y/? $(Y) + (4.14a)
+ ¢ My Dy Te (T.T,)"/* (T.Tu) ™7 4(Y)

T(X7) ¢(Y) = — Du (TTy)'? (TeTy) 72 $(Y), (4.14b)
T(X7) ¢(Y) = — My Dy T, (TuTy)? (TT2) ™/ $(Y) -
— M, Dy T;' (TuTy)"? (T Tu)™? ¢(Y) - (4.14c)

~ ¢ Dy (TuT)"* (T.TW) 7 $(¥) .

5. Intertwining operators

This Section reviews mostly [24]. The general prescription for finding the in-

b
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tertwining operators is as in the classical case (cf. also [23]). In order to apply this
procedure we need the explicit action of 7g(X;") on our functions. First we have to
calculate the action on the new basis Yj,. We have instead of (3.49b):

Yit1:)" ' Diy1 D7 Dioy, i=1,3 (5.1)

mR(X7) (Yie)" = (=1)°% 8ig Sir,5 " 7V/2 ]y x
_1\¢ q(n—2)(£’—l)+l/2 [n]q YZ[ (}/jl)n—l Y'jx D2 D1_2 ,

(
mr(Xy) (Yie)" = (=1)

where we again use Dy = Do =Y;; = 14, Yje =0 for j < /.
Using (5.1) and (3.49a) we obtain:

-\ ym1,Mm2,m3 _ i;j—k—l—m+(m1—2)/2 . ~my—2,mo+1,mg3
ﬂ-R(XI ) ijkfmn - q [’]q ‘pi—l,jkl’mn + (5 9 )
.Zza
(m1-2)/2 1], gmum2.ms o
+9q [m1 — 1], Pijkemn 12
—\ smy,m2,m3 __ 2k+€+m—n+(ma—2)/2 [ ~mi+1,ma—2mz+1
Tr(X;) Pijkemn =4q [7]q Pit+1,j—1,kémn +
k+€+m—n+(ma—4)/2 ~my+1,mo—2,mz+1
+q z (Klg @55 %1 emn +
k—j+2m—n+(mo—4)/2 ~mi+1,mo—2,mz+1
+ q [e]q (Pi+1,jk,l—l,m,n+l (5 2b)
m—n+(ma—6)/2 ~m,+1,my—2,maz+1 :
+ q [m], Pijklm—1,n+1

2m—n+ —4)/2 smi+1,ma—2,mz+1
—-q¢m (m2=)/2 (k]q [€]q (19:',1]'1+1,km—21,l—71n,?n,n+l +

—-2)/2 ~ ,ma,m
b oy ), R s
- ~my,ma,mg _ _n+(mz—2)/2 ~my,mo2+1,mz—2
mr(X;3) Pijkemn =4q ¢ [n]q Pijkem,n—1 +

(5.2¢)

gD g 1], G s

where we have labelled the functions also with the representation parameters
ms = 7, + 1. As in the classical case [16] the right action is taking out from
the representation space Cz, and while some of the terms are functions from other
representation spaces (depending on which X is acting), there are terins involving
the Z ;¢ variables which do not belong to any of our representation spaces. The terms
with Zje vanish exactly when m, € IV and we take (mg(X;))™ [16], [23]. Indeed,
we know from the general prescription (cf. (1.15), [16], [23]) that if m, € IN then
there exists an intertwining operator IJ*+ = (rr(X, ))™*. We have the following
intertwining properties:

my — my
Il O Tmy,ma;mg = T—m;,my2,m3 © 11 , m €N
nmo — mao
" 0y imayma = Tmig—mames © Iy -, m2 €N, (5.3)

mg — m3a
13 O Mmy,ma,m3 = Tm;,ma3z,—m3 O 13 y m3€ N
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The explicit expressions for two of these operators are:

b ) N ) m i— l ! Y ) )
(X )™ G = (g L oy (64
(WR(X—))ms 3Mm1,Mm2,Mms  __ ma(i—m3/2) [n]q! 5™M1,M23,~M3 (5 5)
3 (Pz]klmn q [n _ m3]q! ijkfm,n—mgy :

Having in mind the preceding discussion let us introduce the following g-
difference operators (using notation (3.45), (3.47), (4.11)):

I, = —¢™™ 2D, T, (T,T.T,T,) " (5.6a)
I, =gqim2=9/2 ((I M D, T, + D, +
+ M¢ My Dy, (TeTWw)™ ' Ty + ¢ My, D, (TuTw)™ =  (5.6b)
— A\ M, ¥y Dy o (TLT0)' T,) Tu T T, T
Iy = ¢ms=d2 D, T, (5.6¢)
It is not difficult to see that if m, € IN we have:
e o= e o= (rR(XT)™ . (5.7)

Let us consider now the intertwining operators corresponding to the two non-
simple non-highest roots a2, crg3 which are realized when mj, € IV, mo3 € IV, resp.
In these cases the intertwining operators (up to an overall multiplicative constant)
are given by :

I{;:marXi_"‘-kﬂXj—mﬂX,-_k,
kgo k (rr(X)™T (rr(X))™ (7R(X])) (5.80)
m=m;;, (ij)=(12),(23),
[mi]q m _
a = (_1)kam (k),,’ k=0,...,m, a#0,  (5.8b)

or equivalently, by :

m o= ma'ﬂ'Xj—)m—kﬂX,'_m"er—ka
; k (TrR(XS) (rrR(X7)D™ (mr(X})) (5:80)

m = myj , (ZJ) = (12),(23)’

(VK [m;] m _ '
a = ()t (k)q k=0,...,m, a' #0,  (5.8d)

where we are using the singular vector given in formula (27) of [17].
Let us illustrate the resulting intertwining operators in the cases m;3 = 1,
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ma3 = 1. We have (after a suitable renormalization) :

Halmp=1 = —[mi =1 7r(X7) mr(X3) + [mu]g 7r(X) 7r(XT) , (5.9a)
%My, M2, i—j— k - ~mp—1,my—1,mz+1
1112 goijllclrrnn?nmslmm:l = ‘121 7 my =1 (q + [7]q ‘Pi,jl—l,ke;n A

—j—l+m ~my—1,ma—1,m3+1\) _
+ q [€lg ik e—1mmt1

i—j—n—my—3 [- 4 ~my—1,mp—1, 1
= T G (M Gl ST

+ [k]q ~mi—1,ma—1mz+1 + (59b)

Pi—1,j.k—1,tmn

—j-4m ~my—1,ma—1,m3+1
+ q (€], Pijk,e—1,m,n+1 +

—k—t—1 smy—1,ma—1,mz+1
+q [m]q Pi-1,jke,m—1,n+1

—k—0 ~ -1, -1, +1
— T [kl (g BTN )

Dlmas=1 = [1 = malg 7r(X5) 7r(X;) + [malq 7r(X7) mr(X) (5.10a)
1112 @?}iﬁ?mslnuﬁl = - qk+£+m+n_l [ms —1]g (q—k_e_l [m], @?}LZ::;le,—nl'ma_l +

—j—l+m smi+l,mza—1,mg—1
+ q (€] Pit1,jk,b—1,mn

—k—e smy+1,ma—1,ma—1
- q oA (k]q [€]q ‘PT;H,k"?l,z—'ln,::nn) -

k4+£+m+m3z—2 k+1 1. ~my+1,mo—1,mg—1
+ q [n]q (q [7]q Pit1,j—1,kbm,n—1

(5.100)
smy+1,ma—1,ms—1
+ [Klq S";;,lk—x,’?wi,n—nlla +
—g—0 ~mi+1,my—1,ma3—1
+ g7 e, ‘P:r-:-ll,jkrzil,m:s +
—k—f— ~my+1,ma—1,mz—1
+ q e [T‘ll]q Lpz"r;llcl,mlnlz,n e -
—k—2¢ smi+1,ma—1,mz—1
- q A [k]q [K]q ‘r’:',lj1+1,l:l-21,(—ql,inn) :
Using the operators I, the above formulae can be rewritten as:
Bolmp=1 = [L=milg hi b + [ b I, (5-11a)

1112|m12=1 = [ml - 1]q (q i)r T. + Mn ﬁw (TrTw)-l Ty) Tiz (TITII)_l -
- q—ml—l (q Mf 'ZA)l T, + ﬁu +
o o (5.11d)
+ Mg My Dy, (Tsz)_l T, + ‘1—1 M, D, (TuTw)_l -

— A M, M, D, Dy (TuTw)™" T,,) De Te (T.T,) ™"
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1213|m23=1 = [1 - m3]q ig iz + [777.3]q iz i3 ) (512(1)
I;3|m23=1 = - q_l [m3 - 1]‘1 (q—l i)‘.'/ (TuTw)_l + ME ﬁw (TITw)_l Ty -

~ AM Dy Dy (W) T, ) T T T, Ty +
+ gme? (q ME D, Tu + Du + (5.12b)
+ Mg My, Dy, (T,T,)' T, + ¢~ M, D, (T.Ty,)™" —

— AN Ny Dy Doy (TT0) ™ T,) Dy Tu T Ty

6. New q - Minkowski space-time and q - Maxwell equations hierarchy
from q - conformal invariance

6.1. The present Section reviews mostly [25] and in the last subsection [26].
We start with the ¢ = 1 situation and we first write the Maxwell equations in an
indexless formulation, trading the indices for two conjugate variables z,z. This
formulation has two advantages. First, it is very simple, and in fact, just with the
introduction of an additional parameter, we can describe a whole infinite hierarchy
of equations, which we call the Mazwell hierarchy . Second, we can easily identify
the variables z,Z and the four Minkowski coordinates with the six local coordinates
of a flag manifold of SU(2,2), or of SL(4) with the appropriate conjugation. Thus,
one may look at this as a nice example of unifying internal and external degrees of
freedom.

Next we give the ¢ - analogs of the above constructions. We recall that the
specifics of our approach is that one needs also the complexification of the algebra in
consideration. Thus for the ¢ - conformal algebra we can use the U,(sl(4)) apparatus
of Sections 4 and 5. Thus, we can propose new ¢ - Minkowski coordinates as part of
the appropriate ¢ - deformed flag manifold. Using the corresponding representations
and intertwiners of Uy(sl(4)) we can finally write down the infinite hierarchy of ¢ -
Maxwell equations.

6.2. It is well known that Maxwell equations
0"F,, = J,, O"'F,, =0 (6.1)
or, equivalently
OkEr = Jo (=4mp), OoEx — eremOeHm = Ji (= —47jk), 62)
OcHy = 0, OoHy+éeremOEm = 0,

where Ey = Fyo, Hr = (1/2)ekemFem, can be rewritten in the following manner:

WFE = Jo, OoFE tickem0FE = Ji, (6.3)
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where

FEf = Ex+iHy . ' (6.4)

Not so well known is the fact that the eight equations in (6.3) can be rewritten
as two conjugate scalar equations in the following way:

I F*(2) = J(z,2), (6.5a)
I" F7(2) = J(z,2), (6.5b)
where
_ 1/ _
It = 20, + 0, — 5(226+ + 20, + 205 + a_)a, , (6.6a)
_ 1/_ _
I- = 20, +0, — §(zza+ 428, + 70, + a_)a; , (6.6b)
Ty =293, v=x —1T9, U =7xTy+1T9, (6.7a)
Ot = 0/0xy, 8, =08/0v, 0;=0]dw, (6.7b)
Ft(z) = 22(Ff +iF}) - 2:Ff — (Ff —iF)), (6.8a)
F~(3) = 7%(F] —iFy) —23F; — (F] +iFy), (6.8b)

J(z,3)

Il

52(Jo+ Js) + 2(Jy —idy) + 2(Ji +id2) + (Jo— J5) ,  (6.8¢)

where we continue to suppress the z,, resp., 4,v,9, dependence in F' and J. (The
conjugation mentioned above is standard and in our terms it is : It «— I,
Ft(z) «— F~(2).)

It is easy to recover (6.3) from (6.5) - just note that both sides of each equation
are first order polynomials in each of the two variables z and z, then comparing the
independent terms in (6.5) one gets at once (6.3).

Writing the Maxwell equations in the simple form (6.5) has also important
conceptual meaning. The point is that each of the two scalar operators It , I~ is
indeed a single object, namely it is an intertwiner of the conformal group, while the
individual components in (6.1) - (6.3) do not have this interpretation. This is also
the simplest way to see that the Maxwell equations are conformally invariant, since
this is equivalent to the intertwining property.

Let us be more explicit. The physically relevant representations TX of the 4-
dimensional conformal algebra su(2,2) may be labelled by x = [n1,n2;d], where
ni, n, are non-negative integers fixing finite-dimensional irreducible representations
of the Lorentz subalgebra, (the dimension being (n; + 1)(n2 + 1)), and d is the
conformal dimension (or energy). To these representations correspond (via Weyl’s
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unitary trick) ERs of Spin(5,1) which would be labelled as {(n; — n2)/2, 1+
(n1 4+ n2)/2, d —2}, cf. (1.26). Then the intertwining properties of the operators
in (6.6) are given by:

I Cct—C°, IToTt = T°oIt, (6.9a)
I":C”"—C°, I"oT™ =TI, (6.9b)
where T® =TX", a=0,+,—, C*=CX" are the representation spaces, and the

signatures are given explicitly by:
xt=102,021, x =100,22], x°=[1,1;3], (6.10)

as anticipated. Indeed, (n1,n2) = (1,1) is the four-dimensional Lorentz represen-
tation, (carried by J, above), and (n1,n;) = (2,0),(0,2) are the two conjugate
three-dimensional Lorentz representations, (carried by Fki above), while the con-
formal dimensions are the canonical dimensions of a current (d = 3), and of the
Maxwell field (d = 2). We see that the variables z,z are related to the spin prop-
erties and we shall call them ’spin variables’. More explicitly, a Lorentz spin-tensor
G(z, %) with signature (ny,n2) is a polynomial in z, Z of order n;,n,, resp.

Formulae (6.9), (6.10) are part of an infinite hierarchy of couples of first order
intertwiners given already in [30] for the Euclidean conformal group SU*(4), and
then for the conformal group SU(2,2) in [51], [15]. (Note that [30], [51] use a
different approach, while [15] already uses the essential features of [16] in the context
of the conformal group.) Explicitly, instead of (6.9), (6.10) we have [15] :

I . Cct—C°, ItoTtH =T0orI}, (6.11a)
I; : C,—CY, I7oT; = Tlol; (6.11b)

where T® = TXn, C® = CXn, and the signatures are:
X =[n+2,n;2], xn=[n+22, xX\=Mh+Ln+153], neZ, (6.12)

while instead of (6.5) we have:

ITT F:(Zvi) = Jn(zyg) ) (613(1)
I Fr(2,2) = Ju(2,2), (6.13b)
where
I = "+2(za +6)—l(226 +20,+70,+0-)0. , n € Zy (6.14a)
n 2 + v 9 + v v — ) + (0.
_ n+2 1/_ _
I; = 0= (o0s +05) — 5 (2204 420, +205+0-)0: , n € Zy (6.140)

while Ff(z,7), F;(z,%), Ju(2,%), are polynomials in z,z of degrees (n + 2,n),
(nyn+2), (n+ 1,n + 1), resp., as explained above. If we want to use the notation
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with indices as in (6.1), then F}(z, #) and F}; (z, Z) correspond to F,, a4,....a, Which
is antisymmetric in the indices p, v, symmetric in ay, ..., a,, and traceless in every
pair of indices, while J,(z,Z) corresponds to Jyu ay,....a, Which is symmetric and
traceless in every pair of indices. Note, however, that the analogs of (6.1) would be
much more complicated if one wants to write explicitly all components. The crucial
advantage of (6.13) is that the operators I¥ are given just by a slight generalization
of I* = IF. In another form these operators may be obtained [51] from those for
the Euclidean conformal group in [30] using Weyl’s unitary trick. The Euclidean
counterparts of (6.12) are ng y X3 o x; , in the notation of (1.26) with h =3, and
(m1,m2,m3) = (0,1,n+2), while the Euclidean counterparts of (6.11a,b) are d;" ,
d¥ , in the notation of (1.27).

We shall call the hierarchy of equations (6.13) the Maxwell hierarchy . The
Maxwell equations are the zero member of this hierarchy.

To proceed further we rewrite (6.14) in the following form:

1
I = 5((”+2)1112 - ("+3)1211) : (6.15a)
1 .
I; = 5((n+2)Lh - (n+3)k) (6.15)
where
I] = 8; 5 12 = 228+ +26v +265 +6_ , 13 = 32 . (616)

We note in passing that group-theoretically the operators I, correspond to the three
simple roots of the root system of sl(4), while the operators IF correspond to the
two non-simple non-highest roots [15], [16].

This is the form that we generalize for the ¢ - deformed case. In fact, we can
write at once the general form, which follows from (5.11a), (5.12a) (cf. also (5.6)) :

1

JF = 5([n+2]q1;'12‘1 ~[n+ 3 417) (6.17a)
1

odi = (I + 2081~ [n + 3,81 . (6.17b)

It is our task (using the previous Sections) to make this form explicit by first
generalizing the variables, then the functions and the operators.

6.3. The variables z4,v,7,2,Z have definite group-theoretical meaning, namely,
they are six local coordinates on the flag manifold Y = SL(4)/B, where B is the
Borel subgroup of SL(4) consisting of all upper diagonal matrices. (Equally well
one may take the flag manifold SL(4)/B~, where B~ is the Borel subgroup of lower
diagonal matrices.) Under the natural conjugation (cf. also below) this is also a flag
manifold of the conformal group SU(2,2).

We know from Sections 3. and 4. what are the properties of the non-
commutative coordinates on the SLy(4) flag manifold. We make the following
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identification (compare with (4.11)) :

zy=w=Yn, z_=u=Ysy, v=z=Ys, 0v=y=Ys (6.18q)
z={=Yn, z=n=Yy, (6.18b)

for the ¢-Minkowski space-time coordinates and for the spin coordinates, which we
denote as their classical counterparts. Thus, we obtain for the commutation rules
of the g-Minkowski space-time coordinates (cf. (4.2)) :

T4V = qilvzi, T4V = qilﬁxi s

(6.19)

T4T_ —T_Ty = AvD v = VU .
+ + )

As expected, relations (6.19) coincide with the commutation relations between
the translation generators P, of the g-conformal algebra [20]. It is also easy to notice
that these relations are as the GL,-1(2) commutation relations {45], if we identify
our coordinates with the standard a,b, c, d generators of GL,-1(2) as follows:

_ a b _ T4
o) - () -
The ¢-Minkowski length is defined as the GL,-1(2) q-deterx;linant :

by = detg-n M = ad—gbc = ziz_—qiv, (6.21)

and hence it commutes with the ¢g-Minkowski coordinates. It has the correct classical
limit £y=y = 2} — &*%.
We know from (4.3) that for g phase (|¢| = 1) the commutation relations (6.19)

are preserved by an anti-linear anti-involution w acting as :
wlzg) = 22, wl) =10, (6.22)

from which follows also that w({,) = £, .

Remarks :
1. Note that relations (6.19) are different from the commutation relations of g-
Minkowski space-time (with ¢ real) in [11], [54], [43]. Recently, [44], it was shown
that the g-Minkowski space of [11], [54], [43] can be obtained by a quantum Wick
rotation (twisting) from a g-Euclidean space. The latter is also related to GL4(2),
as our g-Minkowski space, however, for ¢ real and under a different anti-linear anti-
involution: @g(a) = d, ¥g(b) = —¢'¢, i.e., for the matrix M (cf. (6.20)) this is
the unitary *, [44], while with our conjugation (6.22) M is hermitean.
2. Another proposal for deformed space-time may be obtained by extension of a
new operator realization of SU(2) quantum group representation matrices over non-
commuting coordinates [6].
3. In the framework of algebraic field theory different proposals for quantum space-
times were put forward in [42], [32].
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The commutation rules of the spin variables z, z between themselves, with the
g-Minkowski coordinates and with the ¢g-Minkowski length are (cf. (4.2)) :

zz = zz,
1 —

T4z = ¢ zTy, T_z = qzz_ — v,

-1
vz = q zv, Uz = qzU0— AT4 ,

1 (6.23)

Zzy = qr4zZ, Zx_ = q T_Z4 AU,
v = ¢ it ey, z0 = qiz,
2y = Lyz, Zly = L,z

Certainly, the commutation relations (6.23) are also preserved (for g phase) by the
conjugation w which acts (cf. (4.3)) by : w(z) = z. Thus, with this conjugation
Y, becomes a flag manifold of SU,(2,2).

From (4.4) we know the normally ordered basis of the g - flag manifold ), con-
sidered as an associative algebra :

Gijkemn = 20l 2k 2L e i gk 6mone Z, . (6.24)

Let us denote by Z, Z, and M, the associative algebras with unity generated

by z, z, and x4, v, v, resp. These three algebras are subalgebras of ), and we notice
the following structure of ), :

YV, &2 Z&aM>Z, (6.25)

where AG B denotes the tensor product of A and B with A acting on B.

We introduce now the representation spaces CX , x = [nj,n2;d] . The
elements of C*, which we shall call (abusing the notion) functions, are polynomials
in z, Z of degrees ny, ng, resp., and formal power series in the ¢ - Minkowski variables.
(In the general U,(sl(n)) situation the signatures nj,n, are complex numbers and
the functions are formal power series in z, z too, cf. (3.43b).) Namely, these functions
are given by:

(15"1,712(?) = Z /*L?jlk’?:m Pijktmn (6.26)
ikt mn€Zy
i<ny, n<ng
where Y denotes the set of the six coordinates on J, .  Thus the analogs of Ff,

Jn, cf. (6.13), are :

oFf = oni2a(Y), (Fi = Gnns2(Y), ¢Jn = Gngrna(Y). (6.27)

Next, as in (3.45), (3.46)), we introduce operators M,, T., where & = z,
+,v, 0, z, and M, acts on @;jkemn by increasing with 1 the index 1, j, k,4,m,n,
resp., for k = z,v, —,+,, Z, resp., while T, acts on @;jkemn by multiplying it with
g?, where p = 1,7,k,¢,m,n, resp., for kK = z,v,—,+,7, Z, resp. Then we define the
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g-difference operators by (cf. (3.47)) :

o _ 1 - _
DeplV) = 1 M7 (T-T7) 9(7) (6.28)
Finally, we write down explicitly the operators qIflh in (6.17). This can be
done by substituting I, from (5.6) in our variables using (6.18), or by using directly
(5.11b), (5.12b) (up to normalization and substituting our variables and representa-
tion parameters) :

2
q . N _ _
I = 5 [n+2l (q D, T- + M; Dy (T,T4)™! T,—,) T (TT:)™' -

1 o i
g2 (q M, D, T- + D_ +

2
+ M, M; Dy (T,Ty)™' Ts + ¢ ' M; Dy (T_Ty)™! -
— ANM, M; D_ Dy (T-Ty)™ T,-,) D, T, (T,T;)~" (6.29)

oIn = g [n+2] (q~1 Dy (T-T4)™' + M. Dy (T,T4)™' Ts -
— AM, D_ Dy (T-T{) ' Ts ) T T, T, T; +
+ %q"+3 (q M, D, T- + D_ +
+ M, M; Dy (T,Ty) Ts + ¢~ Mz Dy (T_Ty)™' —
— AM, M; D_ Dy (T-Ty)™ T.—,) DT T, T (6.29%)

Clearly, for ¢ = 1 the operators in (6.29) coincide with (6.15).

With this the final result for the ¢ - Maxwell hierarchy of equations is (cf.
(6.27)) :

JT JFF =T, (6.30a)
oln oFy = ¢Jn (6.300)

Note that our free ¢ - Maxwell equations, obtained from (6.30) for n = 0, and
¢Jo = 0, are different from the free ¢ - Maxwell equations of [52], [47]. (This is
natural since they use different ¢ - Minkowski space-time from [11], [54], [43].) The
advantages of our equations are: 1) they have simple indexless form; 2) we have
a whole hierarchy of equations; 3) we have the full equations, and not only their
free counterparts; 4) our equations are q - conformal invariant, not only g - Lorentz
[47], or q - Poincaré [52], invariant. (In fact, it is not clear whether the ¢ - Lorentz
algebras of [11], [54], [43], [49] or the q - Poincaré algebra of [50] are extendable to
q - conformal algebras (often easy ¢ = 1 things fail for ¢ # 1).)

6.4.  The material in this subsection appeared first in [26]. We start by noting
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that formulae (6.13), (6.11), (6.12) are part of a much more general classification
scheme (discussed in the classical Euclidean conformal group case in subsection 1.3
above, and in [15], [16]) involving also other intertwining operators, and of arbitrary
order.

A subset of this scheme are two infinite two-parameter families of represen-
tations which are intertwined by the same operators (6.14). Explicitly, instead of
(6.11), (6.12) we have:

Iy o CH  —C o IH LoTH =T (oIt ,(63la)
2 117°2

+
ny,n, ny,n; nin ni,n, ny,ny n,n;

I~ _:C_ _—C% _, I'_ _oT_ _ =T°C _ol_ _(6.31b)
ny,n, ny,n, h] g ny,n, ny,ng, n,n, ng,ny
\? x®
where T, , =T "11'"3, ce, . =C "1i'"2i, a =%, or ¢ = 0%, and
ny,ny ny,ny
) +_ o+
ny —n
X:;‘,n; = [nf,n3; ;_2__2_ +1]
N nf € N, nf € Z, , (6.32q)
ny —n
Oy = Inf — Lt 41T )
_ _ _ n, —n;
Xntiny = [ny.ngs % +1]
B B ny € Zy, n; €N, (6.32b)
0- :[n-+1n-_1.u+2]
Xnpng T TR T H T .

while instead of (6.13) in the ¢ = 1 case and (6.30) in the g-deformed case, we have:

qul} F:;Lln;(z,i) = JS}"n;(z,z") , (6.33a)
Jd_F_ _(2,2) =J2 _(2%), (6.33b)
2 172 1°7%2

where  I%,, oI _, are given by (5.11) (or (6.14) for ¢ = 1), while F:lti ni(z,i),
8! 2 12
Jgf o2 (z,7), are polynomials in z, Z of degrees (nE,nd), (nEF1,nF £1), resp. The
1772

Euclidean counterparts of y* . x°F ., resp. are (in the notation of (1.26) with
nj’,n;’ nf,n;‘

h = 3), X3 » X3, resp.,or Xxi, X7, resp., depending on the values of n,nJ,

while the counterpart of (6.11a) is dj , cf. (1.27). Analogously, the Euclidean

- 0- - s
counterparts of Xp= =1 Xp= - T€SP., ar€ Xy , X3 , Iesp., O X3 , X7 , T€Sp.,
1772 172

depending on the values of n],n; , while the counterpart of (6.11b) is dj .

The crucial feature which unifies these representations is the form of the oper-
ators ¢IE, which is not generalized anymore in equations (6.33).

We shall call the hierarchy of equations (6.33) the generalized q - Maxwell

hierarchy . The q - Maxwell hierarchy is obtained in the partial case when
X(r)zi ot = X?:: o x% which fixes three of the four parameters: nj — 2 = nj =
19772 1772

ny =n, —2=n.
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Another one parameter subhierarchy of the generalized q - Maxwell hierarchy
is obtained if we set nf: = n2i =n € IN, then

x;‘;n = Xpn = [n+1,n+1;1] Ex?lo, (6.34a)
XE = [n¥Flnt12) = x7, (6.34b)

cf. (6.12). This hierarchy will be called the potential q - Maxwell hierarchy .
The reason is that the lowest member obtained for n =1 (and ¢ = 1) consists of
the equations:

6[;LAu] = Fuu . (635)

We also mention the equations obtained from the generalized q - Maxwell hier-
archy for the minimal possible values of the parameters, namely, for nf =n; =1,
ny =ni =0, i.e., the two conjugate q - Weyl equations.
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Figure Captions

Fig. 1. Partially equivalent ERs and intertwining operators for Spin(n+1,1) with
ne€2lN, h = n/2. ’
Fig. 2. Partially equivalent ERs and intertwining operators for Spin(n+1,1) with

ne€2lN+1, h = (n—1)/2.
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