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RENDICONTIDEL CIRCOLO MATEMATICO DIPALERMO 
Seгie II, Suppl. 43 (1996), pp. 95-101 

ON LOCAL F L A T N E S S OF M A N I F O L D S W I T H A H S - S T R U C T U R E S 

Andreas Cap, J a n Slovak 

Abstract. The AHS-structures on manifolds are the simplest cases of the so called 
parabolic geometries which are modeled on homogeneous spaces corresponding to a 
parabolic subgroup in a semisimple Lie group. It covers the cases where the negative 
parts of the graded Lie algebras in question are abelian. In the series [Cap, Slovak, 
Soucek, 94, 95], the authors developed a consistent frame bundle approach to the 
subject. Here we give explicit descriptions of the obstructions against the flatness 
of such structures based on the latter approach. In particular we recover the results 
proved in [Baston] for complex manifolds in the real smooth setting. 

A M S Classification: 53C10, 53C05 

1. INTRODUCTION 

This note is an addendum to the series of papers [Cap, Slovak, Soucek, 94, 95]. In 
the second paper of this series we have shown how to construct a canonical Cartan 
connection on a manifold with an almost Hermitian symmetric structure, and we 
observed that the classical theory of prolongations of G-structures implies that such 
a structure is locally isomorphic to the homogeneous flat model if and only if this 
canonical Cartan connection has zero curvature. 

The curvature of the canonical Cartan connection naturally splits into three parts 
according to the 11 |-grading of the Lie algebra under consideration. Using the known 
results about the Spencer cohomologies and the calculus for Cartan connections de­
veloped in [Cap, Slovak, Soucek, 94], it is rather easy to analyze, which of these 
parts are true obstructions and which vanish automatically. Moreover, for each of the 
structures in question we can compute these obstructions explicitly in terms of any 
of the underlying linear connections belonging to the distinguished class. 

We will use the notations of [Cap, Slovak, Soucek, 94, 95], and citations starting 
with I or II refer to the corresponding items in parts I and II of this series. 

2. |1|-GRADED LIE ALGEBRAS AND SPENCER COHOMOLOGY 

2.1. We start with a semisimple real | l | -graded Lie algebra g = g_i © go © gi and 
consider the Spencer cohomology H*(g_i, g), which is just the Lie algebra cohomology 

The paper is in final form and no version of it will be submitted elsewhere. 
Second author supported by the grant Nr. 201/93/2125 of the GACR. 



96 ANDREAS ČAP - JAN SLOVÁK 

of the abelian Lie algebra g_i with coefficients in the module g. The standard complex 
for computing this cohomology is given by Ck := A*g_i* ® g with the differential 
d : Ck -> Ck+1 defined by 

k 

d^xo^.^x^^Y^i-m^^i^^^Xi,...^,)], 
i=0 

where we view Ck as the space of fc-linear maps g- i* —> g. 
Now the grading of g clearly induces a grading on each of the spaces C*, by 

putting Ck,e := A*g_i* ® g^ for £ = —1,0,1. Obviously the differential d satisfies 
d(Ck,e) C Ck+1,e~x. Thusweget an induced grading on the cohomology H*(g_i,g) = 
0 , H * ' ' ( g _ i , g ) . ^ 

Note that go is a Lie subalgebra of g, the adjoint action makes g_i and gi into 
go-modules, and the differential d is actually a homomorphism of go-modules for 
the induced structures. In particular, this implies that the cohomology spaces are 
go-modules. 

2 .2 . It is well known (see [Ochiai, lemma 3.3]) that for a semisimple | l | -graded Lie 
algebra g = g_i ©g 0 ©fli, the Cartan Killing form induces an isomorphism gi = g_i* 
of go-modules. Now let {&} be a basis of g_i and let {Q} be the dual basis of g i . 
Following [Kostant], we define an operator d* : Ck,e -» Ck~1,e+1 by putting 

dWXu-..,Xk-i)~~]KiMt»Xu'--Xk-i)] 
i 

It can be shown, see [Ochiai, proposition 4.1], that the operator d* is the adjoint of d 
with respect to a certain inner product on the complex C*. In particular, this implies 
that the kernel of d* and the image of d are complementary subspaces. 

2 . 3 . The construction of the adjoint operator d* and the resulting Hodge theory 
for the Spencer cohomology is a crucial step in the computation of this cohomology, 
which was first done in [Kostant], see also [Ochiai, section 5]. What we will need in 
the sequel is just which components of the second cohomology are nontrivial. This is 
determined in [Baston] in the complex case, and by [Ochiai, lemma 2.4] the result is 
the same in the real case. 

3 . AHS-STRUCTURES AND THE CANONICAL CARTAN CONNECTION 

3 . 1 . Let g be a | l | -graded Lie algebra as above, and let G be a connected Lie group 
with Lie algebra g. By P , _?o and B\ we denote the Lie subgroups of G corresponding 
to b := go © gi , go and gi , respectively. 

Now let Po —* M be a first order Po-structure on a smooth manifold M which 
has the same dimension as g_i . In [Cap, Slovak, Soucek, 95] we have shown how 
to construct from this a principal bundle P —> M with structure group S , which is 
called the first prolongation of P0 -> M. Moreover the projection P -> M factors 
over Po and P —r Po is a principal P i -bundle . Note that in the case of projective 
structures this prolongation cannot be constructed from the first order part (which 
actually contains no information) but it has to be chosen as an ingredient of the 
structure. 



ON LOCAL FLATNESS OF MANIFOLDS WITH AHS-STRUCTURES 97 

3.2. Recall the definition of a Cartan connection on P —> M. This is a g-valued one 
form UJ G $V(P,0) such that 

(1) CJ(CX) = X for all X G b, where (x denotes the fundamental vector field 
corresponding to X. 

(2) (rb)*uj = Ad(b~1)ouj for all b G P , where rb denotes the right principal action 
with b and Ad denotes the adjoint action. 

(3) UJ\TUP : TUP —> g is a bijection for all u G P. 

The curvature if G ft2(P,g) of such a Cartan connection is defined by the structure 
equation du) = — \[<JJ,OJ\ + K. In 1.2.1 we have shown that the curvature is completely 
described by the function K : P —> g*_t A g l j ® g, which is defined by K(U)(X, Y) = 

K(u>-HX),x>-HY))(u). 
3.3. In the second section of [Cap, Slovak, Soucek, 95] it is shown that for all struc­
tures but the one dimensional projective ones, there is a unique Cartan connection w 
on the first prolongation P —r M, such that 0*(K-I(U)) = 0 and 0*(KO(U)) = 0 for all 
u G P , where we split « = «_i + «o + K\ according to the grading of g. This is called 
the canonical Cartan connection. Since d*(K\(u)) is automatically zero (the relevant 
d* has values in the zero space), the canonical Cartan connection is characterized by 
the fact that d* o K = 0. 

For any group G as above, there is a canonical flat model of the corresponding 
structure. This is the homogeneous space G / P , and the bundle G —> G/B is the first 
prolongation of the flat structure. In this case, the canonical Cartan connection is 
the Maurer-Cartan form, and the Maurer-Cartan equation says that this has zero 
curvature. Moreover, an AHS-manifold is locally flat, i.e. locally isomorphic (as a 
Bn-structure) to the flat model if and only if its canonical Cartan connection has 
zero curvature, see II.2.4. 

3.4. Next recall from 1.2.4 the Bianchi identity for the curvature of any Cartan con­
nection: 

£ ( [ « ( * , Y), Z\ - K(K.!(X, Y), Z) - V*ZK(X, Y)) = 0, 

cycl 

where X^cycl denotes the sum over all cyclic permutations and X, Y, Z G 0- i - Now 
the first term in this equation can be rewritten as 

-\Z,K(X, Y)\ + [Y,K(X,Z)\ - [X,K(Y, Z)\ = -(8K)(X, Y,Z). 

Splitting the resulting equation for OK according to the grading of 0 we arrive at the 
following four equations (recall that 8K£ has values in ge-i): 

(1) (dK-1)(X,Y,Z) = 0 

(2) (dK0)(X,Y,Z) = - £ ( K _ I ( « _ I (X,Y),Z) + V"ZK-1 (X,Y)) 

cycl 

(3) (dK1)(X,Y,Z) = -y£{K0(K-1(X,Y),Z) + V»ZK0(X,Y)) 
cycl 

(4) o = -V^(Kl(K_1(x,y),z) + v^i(x,r)) 
cycl 
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Here V" denotes the absolutely invariant differentiation introduced in 1.2.3. 
Using these formulae it is now fairly easy to discuss, which parts of the curvature 

of the canonical Cartan connection are actual obstructions to local flatness and which 
vanish automatically as follows: First we see that for the component rc_i we have 
8K-\ = 0, so K-i is a Spencer-cocycle in C 2 ' - 1 . On the other hand, d*K-\ = 0 and 
the kernel of d* is complementary to the image of d. Thus we see that rc_i vanishes 
automatically if H2'~1(0-i,fj) = 0, and is a true obstruction otherwise. 

Next, let us assume that K _ I = 0. Then, according to equation (2), this implies 
that no is a cocycle, so as before we conclude that this vanishes automatically if 
H2'°(g_i,g) = 0 and is a true obstruction otherwise. 

Finally, if both K-\ and KQ vanish then the equation (3) shows that K\ is a cocycle, 
so this vanishes automatically if H2,1(Q-I,Q) = 0 and is a true obstruction otherwise. 

3 .5 . We shall give explicit expressions for the obstruction terms in terms of any of 
the connections from the so called distinguished class of connections on Po -> M. 
The connections in this class are in bijective correspondence with the space of all 
£?o-equivariant sections of P -> Po and they can be parameterized by 1-forms on M. 
This bijection is given by mapping a section a to the connection with connection form 
<j*<jjQ £ fi1(Po,So), where LOQ is the go-component of the canonical Cartan connection 
on P -> M , see 1.3.6 and II.1.7. 

There is also an alternative description of the distinguished class of connections in 
all cases except the projective structures: Recall that since Po —r M is a first order 
_?o~structure one can assign a torsion to any principal connection on this bundle, 
which can be viewed as a smooth function P 0 -> $-_* A g*_x ® g_ i , see II.1.7. The 
distinguished connections are then precisely those for which the torsion in each point 
is 9*-closed. Moreover, there is only one possible torsion function in each case, so 
all connections in the distinguished class have the same torsion (in fact this torsion 
function is the structure function of the _?o_structure Po -> M), and the pullback of 
this function to P is precisely the component K-i of the curvature of the canonical 
Cartan connection. For example, in the case of the conformal pseudo-Riemannian 
structures the distinguished connections are exactly the Levi-Civita connections of 
the metrics from the conformal class. 

On the other hand, having given a connection 7 from the distinguished class and 
the corresponding section a : Po —> P , we can form the induced Cartan connection 7 
on P —> M , see 1.3.7. The pullback of the curvature of this induced Cartan connection 
to Po is just the curvature and torsion of 7, see 1.3.8. 

3 .6 . From the above discussion it is clear that the first obstruction to local flatness 
(corresponding to K _ I ) is the existence of a torsion free principal connection on Po —> 
M. 

Now let us assume that this first obstruction vanishes, take a torsion free connection 
7 on Po —> M corresponding to a section a: Po -> P and let 7 be the induced Cartan 
connection on P —» M. The difference between this induced Cartan connection and 
the canonical one is described by the deformation tensor T £ C°°(P, g_i* ®0i ) which 
is always a pullback of a tensor on Po, see 1.3.9. Formulae (4), (5) and (6) of 1.3.10 
give an explicit description of the effect of the deformation tensor on the curvatures 
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(K is the 'deformed' curvature): 

(5) (K.1-K.1)(U)(X,Y)=0 

(6) (KQ - K0)(U)(X, Y) = [X, T(u).Y] + [T(u).X, Y] 

(7) (K! - Kl)(u)(X,Y) = VxT(u).Y - V$T(u).X + T(U)(K^(X,Y)) 

Moreover, in the torsion free case the equivariancy properties of the curvature com­
ponents derived in 1.3.8 are 

(8) K0(U)(X, Y) = Ko(a(p(u)))(X, Y) 

(9) Kt(u)(X,Y) = [KO(<T(P(U)))(X,Y),T(U)} 

where T(U) G QI is given by the equality u = cr(p(u)).exp(T(u)). Thus if the torsion of 
the canonical Cartan connection is zero, then it suffices to compute K0 on cr(Po) C -P, 
where we already know that the curvature of 7 is just given by the curvature and 
torsion of 7. Furthermore, by the construction of the canonical Cartan connection as 
that one with 9*-closed curvature, the achieved 0o_part K0 coincides on o"(Pb) exactly 
with the trace—free part of the curvature of the underlying connection 7, the so called 
Weyl curvature tensor. 

4 . OBSTRUCTIONS AGAINST LOCAL FLATNESS 

In section 3 of [Cap, Slovak, Soucek, 95] we have computed explicitly the defor­
mation tensor Y giving the canonical Cartan connection for several real forms of the 
main complex series of the AHS-structures, in terms of the Ricci curvature tensor of 
a chosen distinguished connection 7. In this section we derive the explicit results on 
the obstructions for these individual structures. The splitting into the various cases 
is dictated by the different second cohomology groups. On the other hand, as men­
tioned above the vanishing of the second cohomologies is independent of our choice 
of the real forms, thus the discussion below applies to all of them, for a classification 
list see [Ochiai, section 7]. In particular, the obstruction coming from K-I is always 
the torsion of the underlying linear connections, while the one corresponding to K0 

is always their Weyl curvature (the trace free part of the curvature). Let us notice, 
that all the found obstruction tensors are invariants of the structures in question. 

Let us first start with the $l(p + q) series, the corresponding structures are called 
almost Grassmannian (the fiat models are the Grassmann manifolds). We do not 
discuss the case of one-dimensional projective structures, since there is no canonical 
Cartan connection in this case. As stated before we take the results on the second 
cohomology from [Baston, table 2]. 

4.1 . Two—d imensional projective structures . This is the special case p = 1, 
q = 2 of an almost Grassmannian structure, see 1.3.3, so g = s[(3, R) . In this case the 
cohomologies H2'"1(g_i,g) and -9"2,0(9-i,fl) are trivial, while _9"2,1(g__i,fl) is nonzero. 
Thus in this case, there always is a torsion free connection 7 in the distinguished 
class on P0 -» M (in fact P0 is the whole first order frame bundle PXM), and the 
only obstruction comes from K\. Writing UJ = 7 — T o 6-\ for the canonical Cartan 



100 ANDREAS CAP - JAN SLOVAK 

connection, we get from II.3.9 the formula Tjk = Rljlk + R\.k for the uniquely defined 
deformation tensor, where Rx-kl means the curvature tensor of 7. By (9) the g i -
component of the curvature of 7 is trivial on cr(P0), so that (7) gives the curvature 
component R\ of the canonical Cart an connection: 

(10) R1(u)(X,Y) = V £ r ( u ) . K - V £ l > ) . F . 

Considering T as a tensor on P0 (which we actually already did above) we see from 
1.3.8.(1) that we may replace the invariant differentials V^ (still on cr(P0)) by covariant 
derivatives with respect to 7. Using the Bianchi identity for principal connections 
and the Ricci tensor Rjk = Rljlk of 7 yields R\-k = Rjk — Rkj, and so we obtain 
Tjk = 2Rjk — Rkj- Thus, the coordinate expression for the only obstruction against 
the flatness of a two-dimensional projective structure is the tensor 

(11) tjki = 2Rjk]i - Rkfri + 2Rji-k - Rij-k-

Notice that if the chosen connection happens to be a Riemannian one, than the tensor 
tjki is the symmetrization of the first covariant differential of the Ricci curvature. 

4.2 . Higher d imensional projective structures . Now we deal with the cases 
p = 1, q > 2 of almost Grassmannian structures, see 1.3.3, so g = sl(q + 1,R). In this 
case the cohomologies H2'_1(g_i,g) and H2,1(g_i,g) are trivial, while H2'°(g_i,g) 
is nonzero in general. Thus in this case, there always is a torsion free connection 7 
on Fo —> M in the distinguished class, and the only obstruction against the flatness 
comes from n0. Thus the vanishing of the Weyl curvature tensor Wl-kl of 7 (cf. the 
end of 3.6) is equivalent to the local flatness of the projective structures in dimensions 
greater than two. 

4.3 . Structures related to the quaternionic manifolds . We deal with another 
special case of the almost Grassmannian structures where g = s t (2 ,g ,R) , q > 2. 

First assume q = 2 (so that we consider a real form of so(6,C)). Only the coho-
mology i-f2 ,0(g_i,g) is nonzero. Thus the only obstruction against the local flatness 
is the Weyl curvature tensor of any of the underlying linear connections on P0. 

If q > 2, then the cohomology H2,1(g_i,g) is trivial, while both H2'""1(g_i,g) and 
i f 2 ' ° (g_i ,g) are nonzero in general. Thus there are two tensors which obstruct the 
flatness of the structure: the torsion and the Weyl curvature tensor of any of the 
underlying linear connections on P0. 

4.4. Higher d imens ional Grassmannian structures . In the cases of g = $l(p + 
q,R), 3 < p < q, the only nonzero second cohomology is H2,_1(g_i,g). Thus the only 
obstruction against the flatness is the torsion of the underlying connections. This 
means that the structure in question is locally flat if and only if it admits a torsion 
free linear connection. 

Now the remaining structures from the main series: 

4.5. Conformal Riemannian structures . The Lie algebra in question is g = 
$o(p + l , g + 1,R), where p-f-</ = ra>2is t - e dimension of the manifolds. In the 
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case of three-dimensional conformal pseudo-Riemannian structures the only nonzero 
second cohomology is H2,1(g_i,g), so that we are in a situation analogous to that of 
two-dimensional projective structures. Thus the only obstruction comes from K\ and 
it is given by formula (10). However, now the deformation tensor V is the tensor 

Thus we get the well known obstruction against local flatness, the Cot ton-York tensor 
1 ij,k — I ik,j-

If the dimension is bigger than three, then the only nonzero second cohomology is 
H2,0(g_i,g) and so we have recovered the well known fact that a conformal pseudo-
Riemannian manifold of dimension m > 4 is locally (conformally) flat if and only if 
the Weyl curvature of one (and thus any) Riemannian connection from the conformal 
class vanishes. 

4 .6. A l m o s t Lagrangian structures . The corresponding Lie algebra is g = 
5p(2n,R), the manifolds are modeled over 5 2 R n . The three-dimensional case (i.e. 
n = 2) is isomorphic to that one of the three dimensional conformal Riemannian 
structures, so the appropriate obstruction is the Cotton-York tensor. 

In all higher dimensions, the only nonzero second cohomology is H2'_1(g-i,g), 
thus the only obstruction is the existence of a torsion free linear connection of the 
structure . 

4 .7. A l m o s t spinorial s tructures . Now g = so(2n,R) , n > 5 (the lower di­
mensional cases coincide with some previous, ones, e.g. we get the six-dimensional 
conformal Riemannian structures for n = 4). Also in this case the only nonzero sec­
ond cohomology is H2,_1(g_i,g). Thus the almost spinorial structures are locally flat 
if and only if they admit a torsion free linear connection. 

We have not studied in detail the cases of the | l | -graded exceptional Lie algebras, 
but the general theory applies as well. 
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