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ON LOCAL FLATNESS OF MANIFOLDS WITH AHS-STRUCTURES

Andreas Gap, Jan Slovik

Abstract. The AHS-structures on manifolds are the simplest cases of the so called
parabolic geometries which are modeled on homogeneous spaces corresponding to a
parabolic subgroup in a semisimple Lie group. It covers the cases where the negative
parts of the graded Lie algebras in question are abelian. In the series [Cap, Slovak,
Soutek, 94, 95], the authors developed a consistent frame bundle approach to the
subject. Here we give explicit descriptions of the obstructions against the flatness
of such structures based on the latter approach. In particular we recover the results
proved in [Baston] for complex manifolds in the real smooth setting.

AMS Classification: 53C10, 53C05

1. INTRODUCTION

This note is an addendum to the series of papers [Cap, Slovék, Soucek, 94, 95]. In
the second paper of this series we have shown how to construct a canonical Cartan
connection on a manifold with an almost Hermitian symmetric structure, and we
observed that the classical theory of prolongations of G-structures implies that such
a structure is locally isomorphic to the homogeneous flat model if and only if this
canonical Cartan connection has zero curvature.

The curvature of the canonical Cartan connection naturally splits into three parts
according to the |1|-grading of the Lie algebra under consideration. Using the known
results about the Spencer cohomologies and the calculus for Cartan connections de-
veloped in [Cap, Slovék, Soucek, 94], it is rather easy to analyze, which of these
parts are true obstructions and which vanish automatically. Moreover, for each of the
structures in question we can compute these obstructions explicitly in terms of any
of the underlying linear connections belonging to the distinguished class.

We will use the notations of [Cap, Slovék, Souéek, 94, 95], and citations starting
with I or II refer to the corresponding items in parts I and II of this series.

2. |1|-GRADED LIE ALGEBRAS AND SPENCER COHOMOLOGY

2.1. We start with a semisimple real |1|-graded Lie algebra g = g—1 ® go ® g1 and
consider the Spencer cohomology H*(g-1, g), which is just the Lie algebra cohomology
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of the abelian Lie algebra g_; with coefficients in the module g. The standard complex
for computing this cohomology is given by C* := A¥g_;* @ g with the differential
9: C* - C*k*! defined by

k
0p(Xo, .., Xk) i= Y (1) [Xi,0(Xo,.., Xi ..., X)],

=0

where we view C* as the space of k-linear maps g_;* — g.

Now the grading of g clearly induces a grading on each of the spaces C¥, by
putting C*¥¢ := A*g_,* ® g, for £ = —1,0,1. Obviously the differential 0 satisfies
d(Ck*) c C¥+1.t=1 Thuswe get an induced grading on the cohomology H*(g—1,9) =
®eH* " (g9-1,9).

Note that go is a Lie subalgebra of g, the adjoint action makes g_; and g; into
go—modules, and the differential 9 is actually a homomorphism of go—modules for
the induced structures. In particular, this implies that the cohomology spaces are
go—modules.

2.2. It is well known (see [Ochiai, lemma 3.3]) that for a semisimple |1|-graded Lie
algebra g = g_; ® go @ g1, the Cartan Killing form induces an isomorphism g; =~ g_1*
of go—modules. Now let {£;} be a basis of g_; and let {{;} be the dual basis of g;.
Following [Kostant], we define an operator 8* : CF:¢ - C*¥~1:¢+1 by putting

0" (X1, ., Xko1) = Y _[Gir (& X, - X))

It can be shown, see [Ochiai, proposition 4.1], that the operator 0* is the adjoint of 3
with respect to a certain inner product on the complex C*. In particular, this implies
that the kernel of 0* and the image of 0 are complementary subspaces.

2.3. The construction of the adjoint operator 0* and the resulting Hodge theory
for the Spencer cohomology is a crucial step in the computation of this cohomology,
which was first done in [Kostant], see also [Ochiai, section 5]. What we will need in
the sequel is just which components of the second cohomology are nontrivial. This is
determined in [Baston] in the complex case, and by [Ochiai, lemma 2.4] the result is
the same in the real case.

3. AHS-STRUCTURES AND THE CANONICAL CARTAN CONNECTION

3.1. Let g be a |1|-graded Lie algebra as above, and let G be a connected Lie group
with Lie algebra g. By B, By and B; we denote the Lie subgroups of G corresponding
to b:= go @ g1, go and gy, respectively.

Now let Py — M be a first order By—structure on a smooth manifold M which
has the same dimension as g—;. In [Cap, Slovdk, Sougek, 95] we have shown how
to construct from this a principal bundle P — M with structure group B, which is
called the first prolongation of Pp — M. Moreover the projection P — M factors
over Py and P — Py is a principal B;-bundle. Note that in the case of projective
structures this prolongation cannot be constructed from the first order part (which
actually contains no information) but it has to be chosen as an ingredient of the
structure.
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3.2. Recall the definition of a Cartan connection on P — M. This is a g-valued one
form w € Q'(P, g) such that

(1) w(¢x) = X for all X € b, where {(x denotes the fundamental vector field
corresponding to X.

(2) (r®)*w = Ad(b~!)ow for all b € B, where r® denotes the right principal action

with b and Ad denotes the adjoint action.

(3) w|r,p: TuP — g is a bijection for all u € P.

The curvature K € Q2(P,g) of such a Cartan connection is defined by the structure
equation dw = — —[w w]+ K. In 1.2.1 we have shown that the curvature is completely
described by the function & : P — g*; A g*; ® g, which is "defined by k(u)(X,Y) =

K(w™1(X),w™ (V) ().

3.3. In the second section of [Cap, Slovék, Sougek, 95] it is shown that for all struc-
tures but the one dimensional projéctive ones, there is a unique Cartan connection w
on the first prolongation P — M, such that 9*(k—1(u)) = 0 and 9*(ko(u)) = 0 for all
u € P, where we split kK = K_1 + ko + K1 according to the grading of g. This is called
the canonical Cartan connection. Since 9*(x1(u)) is automatically zero (the relevant
0* has values in the zero space), the canonical Cartan connection is characterized by
the fact that 0* ok = 0.

For any group G as above, there is a canonical flat model of the corresponding
structure. This is the homogeneous space G/B, and the bundle G — G/B is the first
prolongation of the flat structure. In this case, the canonical Cartan connection is
the Maurer—Cartan form, and the Maurer-Cartan equation says that this has zero
curvature. Moreover, an AHS-manifold is locally flat, i.e. locally isomorphic (as a
Bo-structure) to the flat model if and only if its canonical Cartan connection has
zero curvature, see I11.2.4.

3.4. Next recall from 1.2.4 the Bianchi identity for the curvature of any Cartan con-
nection:

Z([K(X’ Y),Z] - k(k-1(X,Y), Z) - V3s(X,Y)) =0,

cycl
where Ecycl denotes the sum over all cyclic permutations and X,Y,Z € g_;. Now
the first term in this equation can be rewritten as

_[Z,K‘(va)] + [YaK'(sz)] - [X7K'(Y’Z)] = _(aK‘)(Xv Y’ Z)

Splitting the resulting equation for O« according to the grading of g we arrive at the
following four equations (recall that Ok has values in ge—1): )

(1) (0k-1)(X,Y,Z2) =0
(2) (Oko)(X,Y,2) = = > _(k-1(k-1(X,Y), Z) + Vgr_1(X,Y))
cycl
(3) (0k1)(X,Y,Z) = = > (ko(k-1(X,Y), 2) + Viro(X,Y))
cycl
(4) 0=-> (k(rk-1(X,Y),2) + Vgr1(X,Y))

cycl
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Here V¥ denotes the absolutely invariant differentiation introduced in 1.2.3.

Using these formulae it is now fairly easy to discuss, which parts of the curvature
of the canonical Cartan connection are actual obstructions to local flatness and which
vanish automatically as follows: First we see that for the component x_; we have
Ok_; =0, so k_; is a Spencer—cocycle in C?~1. On the other hand, 8*x_; = 0 and
the kernel of 0* is complementary to the image of 3. Thus we see that x_; vanishes
automatically if H2~1(g_;,g) =0, and is a true obstruction otherwise.

Next, let us assume that x_; = 0. Then, according to equation (2), this implies
that ko is a cocycle, so as before we conclude that this vanishes automatically if
H?9%(g_;,g) = 0 and is a true obstruction otherwise.

Finally, if both £_; and ko vanish then the equation (3) shows that x; is a cocycle,
so this vanishes automatically if H?!(g—;,g) = 0 and is a true obstruction otherwise.

- 3.5. We shall give explicit expressions for the obstruction terms in terms of any of
the connections from the so called distinguished class of connections on Py — M.
The connections in this class are in bijective correspondence with the space of all
Bo—equivariant sections of P — Py and they can be parameterized by 1-forms on M.
This bijection is given by mapping a section o to the connection with connection form
a*wo € (P, go), where wy is the go—component of the canonical Cartan connection
on P — M, see 1.3.6 and II.1.7.

There is also an alternative description of the distinguished class of connections in
all cases except the projective structures: Recall that since Py — M is a first order
By-structure one can assign a torsion to any principal connection on this bundle,
which can be viewed as a smooth function Py — g—,* A g*; @ g—1, see IL.1.7. The
distinguished connections are then precisely those for which the torsion in each point
is 0*—closed. Moreover, there is only one possible torsion function in each case, so
all connections in the distinguished class have the same torsion (in fact this torsion
function is the structure function of the By-structure P, — M), and the pullback of
this function to P is precisely the component k_; of the curvature of the canonical
Cartan connection. For example, in the case of the conformal pseudo-Riemannian
structures the distinguished connections are exactly the Levi-Civita connections of
the metrics from the conformal class.

On the other hand, having given a connection v from the distinguished class and
the corresponding section o : Py = P, we can form the induced Cartan connection 4
on P — M, see 1.3.7. The pullback of the curvature of this induced Cartan connection
to Py is just the curvature and torsion of «, see 1.3.8.

3.6. From the above discussion it is clear that the first obstruction to local flatness
(corresponding to k_1) is the existence of a torsion free principal connection on Py —
M.

Now let us assume that this first obstruction vanishes, take a torsion free connection
~ on Py = M corresponding to a section o: Py — P and let 4 be the induced Cartan
connection on P — M. The difference between this induced Cartan connection and
the canonical one is described by the deformation tensor I' € C*°(P,g_1* ® g1) which
is always a pullback of a tensor on Py, see 1.3.9. Formulae (4), (5) and (6) of 1.3.10
give an explicit description of the effect of the deformation tensor on the curvatures
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(% is the ‘deformed’ curvature):

(5) (ko1 —R-1)(u)(X,Y) =0
(6) (ko — o) (u)(X,Y) = [X,['(u).Y] + [[(v).X,Y]
(7) (k1 — R)(u)(X,Y) = VEI(u).Y — V§I'(u).X + T(u)(r-1(X,Y))

Moreover, in the torsion free case the equivariancy properties of the curvature com-
ponents derived in 1.3.8 are

(8) ko(u)(X,Y) = ro(a(p(u)))(X,Y)
9) r1(w)(X,Y) = [ro(a(p(u)))(X, Y ), 7(w)]

where 7(u) € g is given by the equality v = o(p(u)).exp(7(u)). Thus if the torsion of
the canonical Cartan connection is zero, then it suffices to compute g on o(Pp) C P,
where we already know that the curvature of ¥ is just given by the curvature and
torsion of 4. Furthermore, by the construction of the canonical Cartan connection as
that one with *—closed curvature, the achieved go—part xg coincides on o(Pp) exactly
with the trace—free part of the curvature of the underlying connection «, the so called
Weyl curvature tensor. ’

4. OBSTRUCTIONS AGAINST LOCAL FLATNESS

In section 3 of [Cap, Slovak, Soutek, 95] we have computed explicitly the defor-
mation tensor I' giving the canonical Cartan connection for several real forms of the
main complex series of the AHS-structures, in terms of the Ricci curvature tensor of
a chosen distinguished connection «. In this section we derive the explicit results on
the obstructions for these individual structures. The splitting into the various cases
is dictated by the different second cohomology groups. On the other hand, as men-
tioned above the vanishing of the second cohomologies is independent of our choice
of the real forms, thus the discussion below applies to all of them, for a classification
list see [Ochiai, section 7]. In particular, the obstruction coming from x_; is always
the torsion of the underlying linear connections, while the one corresponding to ko
is always their Weyl curvature (the trace free part of the curvature). Let us notice,
that all the found obstruction tensors are invariants of the structures in question.

Let us first start with the sl(p + q) series, the corresponding structures are called
almost Grassmannian (the flat models are the Grassmann manifolds). We do not
discuss the case of one-dimensional projective structures, since there is no canonical
Cartan connection in this case. As stated before we take the results on the second
cohomology from [Baston, table 2].

4.1. Two-dimensional projective structures. This is the special case p = 1,
q = 2 of an almost Grassmannian structure, see 1.3.3, so g = s[(3,R). In this case the
cohomologies H*~!(g_1,9) and H?(g_,, g) are trivial, while H?!(g_, g) is nonzero.
Thus in this case, there always is a torsion free connection v in the distinguished
class on Py — M (in fact P, is the whole first order frame bundle P! M), and the
only obstruction comes from x;. Writing w = 4 — ' 0 §_; for the canonical Cartan
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connection, we get from II.3.9 the formula I';z = R.’i et Rfjk for the uniquely defined
deformation tensor, where Rj;; means the curvature tensor of v. By (9) the g;-
component of the curvature of 4 is trivial on o(FPp), so that (7) gives the curvature
component K of the canonical Cartan connection:

(10) R1(u)(X,Y) = VIT(v).X — ViT(u).Y.

Considering I' as a tensor on Py (which we actually already did above) we see from
1.3.8.(1) that we may replace the invariant differentials V¥ (still on ¢(Pp)) by covariant
derivatives with respect to 4. Using the Bianchi identity for principal connections
and the Ricci tensor Rjx = R;-,k of ~ yields Rfjk = Rjr — Ryj, and so we obtain
Tjr = 2Rjr — Ry;. Thus, the coordinate expression for the only obstruction against
the flatness of a two—dimensional projective structure is the tensor

(11) tjkt = 2Rji;0 — Rijy + 2Rjix — Rujik-

Notice that if the chosen connection happens to be a Riemannian one, than the tensor
tjx is the symmetrization of the first covariant differential of the Ricci curvature.

4.2. Higher dimensional projective structures. Now we deal with the cases
p =1, ¢ > 2 of almost Grassmannian structures, see 1.3.3, so g = sl(q + 1,R). In this
case the cohomologies H*~1(g_y,g) and H*!(g_1,g) are trivial, while H%°(g_,,g)
is nonzero in general. Thus in this case, there always is a torsion free connection +
on Py — M in the distinguished class, and the only obstruction against the flatness
comes from kg. Thus the vanishing of the Weyl curvature tensor Wj“ of v (cf. the
end of 3.6) is equivalent to the local flatness of the projective structures in dimensions
greater than two.

4.3. Structures related to the quaternionic manifolds. We deal with another
special case of the almost Grassmannian structures where g = sl(2,¢,R), ¢ > 2.

First assume ¢ = 2 (so that we consider a real form of so(6,C)). Only the coho-
mology H?%(g_,,g) is nonzero. Thus the only obstruction against the local flatness
is the Weyl curvature tensor of any of the underlying linear connections on Py.

If ¢ > 2, then the cohomology H?!(g_y,g) is trivial, while both H>~1(g_1,g) and
H?9(g_,,g) are nonzero in general. Thus there are two tensors which obstruct the
flatness of the structure: the torsion and the Weyl curvature tensor of any of the
underlying linear connections on FPj.

4.4, Higher dimensional Grassmannian structures. In the cases of g = sl(p +
¢,R), 3 < p < g, the only nonzero second cohomology is H>~1(g_1,g). Thus the only
obstruction against the flatness is the torsion of the underlying connections. This
means that the structure in question is locally flat if and only if it admits a torsion
free linear connection.

Now the remaining structures from the main series:

4.5. Conformal Riemannian structures. The Lie algebra in question is g =
so(p+ 1,9 + 1,R), where p + ¢ = m > 2 is the dimension of the manifolds. In the
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case of three-dimensional conformal pseudo-Riemannian structures the only nonzero
second cohomology is H%''(g_1,g), so that we are in a situation analogous to that of
two—dimensional projective structures. Thus the only obstruction comes from x; and
it is given by formula (10). However, now the deformation tensor I' is the tensor

-1
Tij = —(Rij -

m—2

5,']'
2(m—1) )

Thus we get the well known obstruction against local flatness, the Cotton—York tensor
Pijik — Dik;j

If the dimension is bigger than three, then the only nonzero second cohomology is
H%°(g_;,g) and so we have recovered the well known fact that a conformal pseudo—
Riemannian manifold of dimension m > 4 is locally (conformally) flat if and only if
the Weyl curvature of one (and thus any) Riemannian connection from the conformal
class vanishes.

4.6. Almost Lagrangian structures. The corresponding Lie algebra is g =
sp(2n,R), the manifolds are modeled over S?R". The three-dimensional case (i.e.
n = 2) is isomorphic to that one of the three dimensional conformal Riemannian
structures, so the appropriate obstruction is the Cotton-York tensor.

In all higher dimensions, the only nonzero second cohomology is H?~1(g_1,9),
thus the only obstruction is the existence of a torsion free linear connection of the
structure.

4.7. Almost spinorial structures. Now g = s0(2n,R), n > 5 (the lower di-
mensional cases coincide with some previous.ones, e.g. we get the six-dimensional
conformal Riemannian structures for n = 4). Also in this case the only nonzero sec-
ond cohomology is H?'~1(g_;,g). Thus the almost spinorial structures are locally flat
if and only if they admit a torsion free linear connection.

We have not studied in detail the cases of the |1|-graded exceptional Lie algebras,
but the general theory applies as well.
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