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COHOMOLOGY AND CONNECTION ON SL-BUNDLES

Christian Gross

1. INTRODUCTION

Given any fiber bundle B(M, F,G), the projection 7: B — M induces an homomorphism of
the DE-RHAM cohomology groups 7*: H*(M) — H*(B), since the exterior derivative d of
differential forms commutes with pullbacks. Nevertheless this homomorphism neither needs
to be injective nor surjective, as the example of the HopPF fibration m:S® — S§2 shows. In
general, spectral sequences are needed to construct the cohomology of the bundle from those
of the base and the fiber, and to answer the question whether some closed w € A(F) lives to
the bundle and one thus finds [@] € H*(B), such that w is the restriction of & to the fibers.

Now let any connection I on the associated principal bundle P(M, G) be given. I' defines
horizontal and vertical projections of differential forms on any associated bundle B(M, F,G).
It is only natural to ask if — given any w € A(F) that lives to the bundle — such & can be
found, which is anyhow adapted to I". In view of this question we will prove an answer for
G 2 S given any left LIE group action L:S'x F — F, such an adapted @ exists for any S!-
invariant w € A(F) only if w lives to any S'-bundle, that comes along with L, independently
of the base manifold and the transition functions. On the other hand, & exists, if the zig-zag
produced by w in the spectral sequence, is of a certain form.

Finally, we apply our results to the skyrmion bundle in theoretical nuclear physics,
which generalizes the ungauged SKYRME model® in order ot treat interactions not only
between baryons and mesons but also with electromagnetic fields, that are described by a
MAXWELL connection on the associated principal bundle.

2. CONNECTIONS ON PRINCIPAL S!-BUNDLES

For any fiber bundle B(M, F,G) with bundle manifold B, base manifold M, fiber F' and
LIE group G, let m: B — M denote the projection onto the base and {(Ux, %¥a)}aca @ bundle
atlas, where 4 = {U,}aea is an open cover of M and ¢,: 7~} (Us) = Ua X F:b — (m(b), ma(b))
define local projections mq: 7~1(U,) — F onto the fiber. For the left effective LIE group ac-
tion L:G x F — F, we write Ly(f) = 74(g), where Ly: F — F and 74:G — F are differen-
tiable for all g € G and f € F. For all o, 8 € A with Upp := U NUs £ 0, gop:Usp = G
means the C*-map defined by g,p(z) := Talr-1({e}) © (Wpla-1(4ap)) "1+ F = F.

This paper is in final form and no version of it will be submitted for
publication elsewhere.
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Recall that any connection I' on a principal bundle is uniquely defined by a connection
1-form Wt € A, (P, L(G)). For G = S! we can identify L{G) and R. Then the curvature
2-form QF € A,(P) simply reads Q' = dwF. If 04,5: Uy = 71 (U,):z = 97 (z, f) denote
local sections for all @ € A and f € F, then w' and QF define local 1-forms A* € A;(U,)
and 2-forms F* € A,(U,) by

A" = 0o lemrwn) € AUL),  F7 = 0o @lemswn) € A(Ua) (211)
(we write the group operation in S! additively, so 0 is the neutral element). We have’

Theorem 2.1 If T is a connection on P(M,S') and {(Us, ¥«) }aca is a bundle atlas for P,
then for all a, 8 € A with Usp := U, NUp # 0 and for all x € Upp:

F* = dA®, dF* = o, (2.2)
Ay, = Alu,, + dgpa = APy, — dgap,  F°u,, Fly,, (2.3)

Vice versa, if for a bundle atlas {(Ua,¥a)}aca on the principal bundle P(M,S') a fam-
ily {A* € A;(Uq, @) }aca 1s given such that (2.8) holds, then there ezists one unique connec-
tion T' on P(M,S"') such that A* = 0% ((w" |+ (v,)) for all a € A.

So the F* constitute a global F' € A,(M).

Every connection I on P(M, G) induces horizontal and vertical projections A, v of vector
fields and differential forms on every associated bundle B(M,F,G) = P xg F. For S
invariant differential forms x on F,i. e. Lyx = x for all g € S1, we obtain:

Theorem 2.2 Let I' be a connection on P(M,S!) and B(M, F,S") an associated bundle.
For any S!'-invariant x € A,(F) define v € A,_,(F) by

v (B, EPY) = g (B, F0,dry (1)) for all f € F, F® € DY(F).

For any U, € U denote x* := n*x, v* := 7*v. Then on all Uys # 0

Il

X X' +dgapAv,  Xv = X"+ A A = X+ A AV = Xy,
v = v = VP = Py = b
Thus xv and v define global S*-invariant, vertical forms on B. dx = 0 yields dv = 0, too.

So vertical projection v: A(B) — A(B) on the bundle not only maps global forms to
global forms but also these locally embedded S'-invariant forms on the fiber to global vertical
forms on the bundle. This result remains true for any G-bundle, yet the projected forms do
not look that simple any more, but require higher powers of A®.

3. SPECTRAL SEQUENCES

For a countable ordered good cover Y = {Uy}aea of M (which means that all finite
intersections Usq..a, = Ugo N ++*NUa,, p € Ny are diffeomorphic to R"), let C(r~'44, A)
denote the CECH-DE-RHAM double complex? (Figure 1)

C(r ', A) = EB CP(r~4l, A;), where CP(r7'4l,A,) = H Ag(m7 (Uag--ary))-

P,9€No o< <ap
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Figure 1: The CECH-DE-RHAM complex for a bundle B
q

0 — Az(B) —TF I:I‘AZ(W_IUQO) HA2(7r_1UO(aC!x) H'AZ(“_IUaoouaz)

ap<ay o<y <az

0~ AB) % | TTAGE ) | TLA(E Uages) | 1AL Unara)

ap<ay ap<lay<az

0 — -AO(B) _7; ;EI'AU(W—IUOIU) H-AD(ﬂ—anoax) H‘Ao(ﬂ-_IUC(OGlQQ)

ap<ay ap<a1<az

We have two commuting differential operators: on the vertical lines we have the exterior
derivative d, and on the horizontal lines we have é defined by (“~” denotes omission)

p+1

(6o -apn = D (100 & eyt 1 Wagayys) Y0 = [ wagray € [] AT (Uageoay))-
3=0 ap< - <ap ao< - <ap

D := D'+ D", with D’ := ¢ and D" := (-1)?d, is the differential operator for the single

(graded) complex with C(r~'U, A)* = @B,1q-n CP(m7'4, A;). Figure 2 shows a D-closed

element ® = ¢, + @2 + @3 and a D-exact element U = ) + P+ 13 = D=, where = =

S +&+E6+Ea

D®=0 <= d¢1=0,0¢+dp;=0, d¢,—dps=0, &¢3=0,
U=DZ <= d6i=0, 6§ +dé =11, 86 —dés =1by, 8+ dEy =13, 064 =0.

Figure 2: D-closed and D-exact elements in a double complex

q
0
!
3 0 & — ¥
! !
2 é— 0 & — e
ey X k
1 ¢2 —= 0 & —— s
| %
0 $s — 0 € —~ 0
0 1 2 3 4 5 6 p

The possibility to compute H*(B) by spectral sequences relies on the fact that the
D-cohomology of the CECH-DE-RHAM complex and the DE-RHAM cohomology of B are
isomorphic:?
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Theorem 3.1 (Mayer-Vietoris Principle) Let n~'{ be an open cover of B, then the
restriction map #: A(B) = [], A(r~}(Us)) C C(n14, . A) induces an isomorphism:

r*: H*(B) = Hp(C (v, A)), H"(B)— Hp(C(r~'4,.A)).

The inverse map that collates together the components of an element in the CECH-DE-
RHAM complex into a global form on B is less intuitive. For any partition of unity {pa}aca
subordinate to i define K:CP(r~ i, A;) = CP~ (14U, A,) by

(KW)ag—-apy = Z PaWaag--ap_i1 (3.1)

a€EA
then we have K 4 §K =id and the following Collating formula:2
Theorem 3.2 Let o = Ef:o o; € C(r~ 4, A" with o; € C* (7', A,_;) and Do = 8 =
" B with B; € C¥(m~ U, Anyi_i), and define K by (3.1). Then

n n

fl@) =Y (-D"K)'a; = Y K(-D"K)'Biyy € C°(n7'4, A,)

i=0 1=0
is a global form on B (resp., the restriction of such a form to the sets 1=*(U,)). The induced
maps f* and r* on the cohomology level are inverse isomorphisms.

Figure 3 illustrates how the components a3 and 4 of & and  are mapped onto elements
in C°(r~'4, A3). For a global form on B, all components o; and §8; must be mapped like
this.

Figure 3: Illustration of the Collating formula

q
K(D"K)Bs 4 (- D"K)%,
3| D)%,
4
| _K(D"K)Ba- (D"K)%s
2| _KOD"K) s+ (D)%
DH‘
1 KD'KBs ~\—(D"K)Bs
KD"Kaz <+ (D"K)as
0 —Kﬂ4 1 ﬂ4
—I<CV3 -—1— Q3
0 1 2 3 4 p
%

For any double complex the sequence K, := @;5, @®,5o K", p € Ny is a filtration by
the columns of K with associated graded complex

GK = P K,/Kpir = P [(@K”"’) +K,,+1] .

PENo pENo >0
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Obviously the induced differential operator on GC(r~, A) is just (—1)7d.

Let {E,, D, };en, denote the spectral sequence for the CECH-DE-RHAM complex: Ey =
GC(nr~'Y, A) and E,,, = H} (E,), where D,: EP9 — EP+na-r+1 js the differential operator
induced by D on E,. If ER becomes stationary, i. e. E, = E,, for all r > R, we denote Er by
E,, and say that the spectral sequence converges to some filtered complex H if F,, & GH.
B € C(m~'4,.A) “lives to” E, iff it represents a cohomology class [§], € E,, i. e. if 8 is
D;-closed in Ey,...,E,_;. Then f is d-closed and we get a “zig-zag” E =&+ ...+ &_; of
elements & € C(r~ 14, A) with & := 8 and

le" = 65, = —Dll€i+11 Z = 0, ceay T — 2 (3.2)

(cf. Figure 4). Since D,[8], = [6§,-1)- = [X]+, D is given by & at the end of the zig-zag.

Figure 4: Illustration of the Differential operator D,: D,[&), = [6&-1]r = [X]-

Er2——

Er—l__’x

Now LERAY’s theorem states that {E,, D,},en, converges to H*(B):%°

Theorem 3.3 (Leray’s Theorem) If B(M, F,G) is a fiber bundle and 4 = {Us }oca is a
good cover of M then there is a spectral sequence converging to H*(B) with E, term

o= [ HE o) T HE

| @e<<ay @< <ap
If H*(F) is finitely generated and in addition M simply connected or B = M X F', then
E%? = HP(M, HY(F)) = H?(M) ® H*(F) @ Tor[H?*'(M), H'(F)).
Finally, we find the following result:?

Theorem 3.4 For any closed form w € A(F), there ezists a closed & € A(B), such
that w is the restriction of @, iff w lives to Eqya, & € iff 6 zig-2a9 E = &+ ...+ & of
elements & € C*(r~'4U, A,_;) ezists, with & = w, and 6§ = 0.
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4. I-ADAPTATION OF THE DIFFERENTIAL FORMS FOR S!-BUNDLES

Once a zig-zag for w has been found, Theorem 3.2 exhibits representatives & for the coho-
mology groups of the bundle. Yet we would like to obtain forms that are anyhow adapted to
['. To this end, suppose Z =& + -+ - + &, is a zig-zag for a closed S'-invariant w, € A,(F),
where every §; is of the type (ao/ - - /o; indicates that one may use any trivialization)

(Ej)an'“uj = dg'—";‘“;—x ARRERA dquao A (Xg—zj)aolm/aj

with .Xé‘Qj € Ag—2;(F) and d(X{;t;(j-{-l)) = Vg_zj from Theorem 2.2. Since w, is Sl-jmvaria.nt,
all x;_,; can be chosen S'-invariant, otherwise use the HAAR measure [g, L}x}_5; dg to
achieve this. One checks that

(651')00"'0“1 = dga;+1a,' A+ Adgaya, A Vg—zj—lv

so = indeed is a zig-zag for w,. vy_,._, be zero such that xj_,, is global (and vertical) and

8¢, = D,41|wg]r41 = D= = 0. Then Theorem 2.1 and Theorem 2.2 yield that the following
['-adapted differential form

(wh = ZF“ A F®A(X)_q5)%v (4.1)

J

is the one we are looking for: it is global, it reproduces w,, when restricted to the fibers, and
it is closed, because d(xf] 25V) = dxé_gj +FA Vg-zj_r Thus it represents [w7'] € HI(B).

Since any principal fiber bundle over a (paracompact) manifold M admits a connec-
tion I',” we have proven the following theorem:

Theorem 4.1 Let L:S'X F — F be a left LIE group action and wq € Ay(F) be S'-invariant.
Ifx{;_zj € Ay_2i(F),7=0,...,r, can be found, with d( q_2] _2) = V}_g;_, from Theorem 2.2,
xS = w, and Vj_,,_, = 0, then for any fiber bundle B(M, F, S!), that comes along with L,
independently of the base manifold M and its transition functions, w lives to B and defines
a cohomology class in H(B). For any connection I' on the associated principal bundle,
wf € A(B) in (4.1) is a representative for that cohomology class.

We conjecture that this condition for the existence of such an I'-adapted representative
is not only necessary but also sufficient. E. g., if & with (d€;)ap = (660)ap = dgpa A V)_,
exists for any S'-bundle, then x}_, with dx}_, = v2_,; exists and (£1)ap = dgpa A (X}_5;)*/"
Induction should show that this holds for any j.

5. APPLICATION TO THE SKYRMION BUNDLE

In order to apply our results to the skyrmion bundle in theoretical nuclear physics, let
us briefly recall the main topological features of the SKYRME model® as an effective field
theory related to quantum chromodynamics (QCD) by its underlying symmetry. In this
ungauged SKYRME model, the meson fields 7¢ on space-time M generate differentiable func-
tions U: M — SUy,. defined by (N denotes the number of flavors in QCD)

NZ-1
U=exp(i Y, n®A)  with X, = (X)'e CV"*Nr Tr(),) =0.

a=1



COHOMOLOGY AND CONNECTION ON §'-BUNDLES 129

The vacuum is represented by the unit matrix 1 € SUy,. Requiring 7°(r) — 0 and thus
U(r) = 1 for r = oo one can compactify euclidian space R?, resp., space-time R*%, so that
the meson fields constitute functions U: R x S2 — SUp,., resp., U:S* — SUy,..

Let L:=U~'dU = U'dU and R:= (dU)U~! = (dU)U' € A,(U,,, C**™) denote the
left, resp., right invariant currents: C™*™-valued 1-forms that are invariant under mul-
tiplication with constant elements of U,, from the left, resp., from the right and obey
L(X)(1) = R(X)(1) = X for all vector fields X € D'(U,,) with X(1) = X € u,, = L(U,,).
For any constant @ € C™*™, we define A7 and pf € Ax(Up,, C) by

A =Tr(QLF) :=Tr(QLA---AL), p2:=Tr(QR*):=Tr(QRA---AR),
k

k

These are left, resp., right invariant complex-valued k-forms on U,,; for Q = 1 we have
wi i= A} = pl = Tr(L¥) = Tr(R*) € Ap(Un, ©),

which are invariant under all multiplications. Obviously wy = 0. The forms w4, are closed
since the MAURER-CARTAN identities dL = =L A L, dR = R A R yield

dLZl+1 — —LZH-Z, dR2l+1 — R2'+2, dL2l+2 — dRZH—Z — 0’ (5.1)
dUL*) = UL, d(L*UY) = -L*'Ut, UL =d(L*HUuh =0. (5.2)

Moreover, wy41 generate the DE-RHAM cohomology H*(SU,,,C), resp., H*(Uy,, C).
In the SKYRME model, baryons appear as topological soliton solutions of the meson
fields. Their number B can be computed by an integration over the space manifold:

1
B(U) = /53_241r2

Compactification of space-time is crucial: normally there is no guarantee that the integral
in (5.3) is an integer, but for spheres we have the following Index theorem:!

1 3 ‘ .
Xy — _ L *Adz? k. .
Urws /m 241r2”2k:=lTr(L.L,Lk) de' Adzi A do (5.3)

Theorem 5.1 For every map U:S?*~! — U,, the integral
Y
n(U) = /sz-— (%) Zg;_—ll))'!U*wg"_l is an integer.
The assignment [U] — n(U): 73,-1(Usn) = Z is an isomorphism for m > n.

n (n-1)!

We are thus able to identify (5) Gnot) Wan—1 With the generators of the integer valued
cohomology of the unitary groups. At any time the meson fields respresent elements of the
homotopy groups m3(Un, ) & Z for Np > 2; the integer characterizing the homotopy class is
a topological invariant, the “topological charge” B(U).

The vacuum map represents the zero element, and so B(U = 1) = 0. For proton
and neutron we have B = 1, for their antiparticles B = —1. Annihilation of proton and
antiproton corresponds to the “addition” of their maps within the homotopy group and
generates a mesonic field of topological charge B = 0.

The meson fields obey the field equations derived as EULER-LAGRANGE equations from
a lagrangian L(U, dU) by variation of the action integral I'(U) = [.LdV. The latter splits
into two parts: one of them (N¢ denotes the number of colors in QCD),

~ . , NG
I‘,.N(U)_,\/m(U) w owith A= oS,

(5.4)
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describes the anomalous processes of QCD: one uses 74(SUy,) = 0 and extends U to a
differentiable map U’: D®* — SUj; from a five-dimensional disc D® whose boundary 0D° is
space-time S*. The topological quantization of the coupling constant A in (5.4) is again a
consequence of Theorem 5.1, and of the requirement that for any extension U’ the result has
to be unique.!®

It is well known that electromagnetic fields can conveniently be described by a MAXWELL
connection I' on a principal U;-bundle over space-time M. Since P(M,U,) & P(M,S?), we
can apply our results. Yet for compatibility reasons we will extract the electromagnetic
charge e such that ie U; = S, resp., ieu; = R. Then the gauge potentials A* and the gauge
field F are related to the connection 1-form and the curvature 2-form as in (2.1) (apart
from this additional factor ie). The homogeneous MAXWELL equations then simply take the
form dF = 0, cf. (2.2). Non-triviality of the bundle is always related to the appearance of
magnetic monopoles. In fact, observe that (2.3) yields that a global gauge potential A exists
iff the bundle is trivial.

For the purpose of treating interactions between electromagnetic fields on the one hand
and mesons, resp., baryons on the other hand, we have to gauge the SKYRME model and
introduce the skyrmion bundle as follows:* 5 instead of considering maps U: M — SU,, we
now think of the meson fields as of global sections in a bundle B(M,SU,, U,) associated to
P(M,U,). The left action of U; on SU,, is given by the inner automorphisms

LU) = m(g) = e*Ue* 9,

which do not effect the vacuum being diagonal symmetry operations. @ is the hermitian
n X n-matrix containing the quark charges in units of e (again n = 2, resp., 3)

2 90 % 0 0
Q:(a _l)’ resp., Q=10 —% 0
3 0 0 -1
Thus the transition functions are U%(z) = e~*9=#(=)Q [P (z) eti*9=#(*)Q. So not only vac-
uum U = 1is a global section but every U(z) = €'X(*)? with a differentiable map x: M — S™.
Since w1, p2 and A2 are Uj-invariant and dry(X) = —ieX [Q, U] for all X € u;, Theo-
rem 2.2 yields:

Lemma 5.2 wy v, p,Qv and /\,Qu for 1 € Ng are global forms on B and we have:
Wt = wiy, — (214 1)ie A" (pg?, -23),
(pF)* — ie A% A E Y Tr(QULI-'QL*-iUt)e,

1

(p3) v
(A*v = (AF)* —ie A"/\Z (= 1y TH(QULI-'QL*-iut)e,
(Pfan)™0 = ()" “”‘"/\sz Tr(QRIT\QR*'~— QL \UIQU L1,
(AF41)%v = (AJ4)* —ie A® /\Z Tr (QULI-'QL* -3yt - QLI-'QL¥+14)=,

(% — A3 = (o5 — AN, (% +29)7v = (o2 + AP)",
(P + 2A9)%v = (pF + 2$)® — 2ie A* ATr [Q*(R? - L) + Q dU' AQ dU]®

e ! . i
ORI = (P +AT4)" — 2ie A /\Ej=1 Tr(QUL¥'QL*~**ut)e

Il

—ie AAY_ Tr(QRMQRY-Y - QLUQLM-Y)e.
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Analogous relations — with dgas instead of A* — hold for the transformation rules, proving
that pS — XS, and p? + A are global forms on B.

For calculations we need the action integral and the topological charge for the skyrmion
bundle. Thus w; and w; have to be lifted to the bundle in order to get forms w, resp., wf
on B, whose pullbacks by the mesonic sections U: M — B can be integrated over space-time,
resp., the space manifold only. The topological charge B4 (U) for the skyrmion bundle is then
defined analogously to (5.3). In view of Theorem 4.1, we can read the following differential
forms Xj(_jy41 € Az2(1-5)+1(SUs) from (5.1), (5.2) and Lemma 5.2:

X;l-l = (204 1)(9?[-1 + Ag—l)’
Q’ Q? I-2 2§~1, p2A—2j-2 2-1,y7 20-2j-2
@+ 1) 200875+ A1) + 3, THQRYTIQRY-%2 4 QLU-IQLA-%?)

+ Z;‘:‘l TH(QUL¥-'QLY~%-2U + QULZj-2QL2!—2j—1U1)] )

Il

2
X21-3

This yields the following corollary to Theorem 4.1:

Corollary 5.3 Gauge invariant generalizations of ws and ws adapted to T' and generating
cohomology groups isomorphic to R on every bundle B(M,SU,,, U,), where U; acts on SU,,
by inner automorphisms, are

WA = wavtie FAxlv = [wS—3ie A%A (0§ — A9)]+3ie F A (o + AF),

WA = wsv+ie FAxIv+ (ie)’)FAFAX Y = [w - 5ie A A (pf = 2$)]
+5ie F A {(pS + A9)* — 2ie A* A TH{Q*(R? - L?) 4+ Q dU' AQ dU]*}
+5(ie)2 FAF A 202" + A)® + TH(Q dU QU — QUQ dU")?).

These forms coincide with the ones found by “trial-and-error” in the literature.l% 6 The
integral over U*w$! gives the topological charge, and the integral over U*w¢ is the anomalous
action for the skyrmion bundle. Nevertheless these forms are not unique in the sense that
they are the only possible generalizations of type (4.1). An additional term

r (ie)'F' AdTr(QUIQU), r € R,

may be added to w4, ,, and this is still of the given type, because d Tr(QU'QU) is global, U;-
invariant and vertical.® One could even add any F' A da with & = L¥a € Ao(SU,). In order
to exclude these, one needs further physical requirements like parity invariance, equality of
the numbers of F’s and Q’s, etc.

These forms now allow for the treatment of the monopole-induced proton decay within
the skyrmion bundle. In fact, although we have proven that w# is a correct closed differential
form for the topological charge, and although the integer valued cohomology group induced
by ;35w is isomorphc to Z, the number of baryons B4 (U) is not topologically conserved
any more, whenever magnetic monopoles are present. This is due to the fact, that in contrast
to the ungauged SKYRME model, the Index theorem 5.1 does not apply any more. There is
no possibility to compactify space to an S?, so the topological charge can vanish through the
monopole singularities.?
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