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Yang-Baxter deformations of complex simple Lie algebras 

Mirko Liidde * 

June 3, 1996 

Abstract 

It is possible, given any solution of the constant Yang-Baxter equation, to 
construct an algebra by replacing the standard relators of complex simple Lie 
algebras by their braided analogs. In particular the one-parameter deformations 
Uq(g) of Drinfeld and Jimbo arise as images of the Yang-Baxter algebras. 

The present text is based on a talk given at the winter school at Srni, January, 14</l 

to 2 1 s ' , 1995. It is an elaboration on some of the ideas presented in the author's thesis 
[3] and in [4]. The use of graphs and of a certain braid bimodule in these publications 
has been eliminated in favor of a simpler algebraic approach. 

1 Yang-Baxter operators 

In this first section, we gather some preliminaries on the Yang-Baxter equation. An 
overview on the Yang-Baxter equation can be found in [2]. For a definition of the 
braid groups Bn and the respective notation used in the following, the reader should 
consult the last section of the present text, where the definitions have been collected 
for convenience. 

A Yang-Baxter space is a vector space V together with an invertible linear map 
T G Aut(\7 ® V) that satisfies the (permuting, unparametrised and quantised) Yang-
Baxter-equation on V ® V ® V, T i T 2 T i = T 2 T i T 2 . The index i indicates, Tt- acts 
onto the tensorfactors i, 1 + i. 

* Graduiertenkolleg 'Geometrie und Nichtlineare Analysis', Institut für Reine Mathe­
matik, Humboldt Universität zu Berlin, Ziegelstrasse 13a, D-10099 Berlin, Germany, 
email:'luedde@mathematik.hu-berlin.de' 
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1 Let T(ea®eb) = <Ia,6'(e&®ea) with <la.& £ C\{0} . Then T is a Yang-Baxter operator 
for the space with base {ea;a £ {1 , . . . ,Z )}} . In particular, the permutation operator 
obtained by </a,& = 1 is a Yang-Baxter operator. 

2 If V is a Yang-Baxter space, for any n > 1 V®n becomes a left module over the braid 
group Bn by the representation TL £ Hom(Bn, Aut(V®n)), mapping TL : 77 i-> T/. 
Similarly, a right action can be defined (that in general does not commute with the left 
action) with the anti-representation TR = TL o Rev, where Rev : Bn -+ Bn reverses 
braids, Rev(r{) = 77, Rev(a(3) = Rev (/3) Rev (a). 

The right-action of a braid a onto a vector u = £i--,1",,net-1...t-n is given by a matrix 
(in matrix notation we. sometimes omit the index 'It') 

ua = TR(a)(u) = £ W
< 1 • • i " T ( < ; ; £ e j , . . j n , (1) 

with {etl)...)tri = etl ® . . . ® et-n; ik £ { 1 , . . . n}} being a base of V®n. The matrix repre­
sentation (a homomorphism, not 'anti') of braids induced by the right representation 
(an anti-homomorphism) on the tensor product therefore is determined by 

1 \T . ; t i , . . . , t„ - °ti,...,t|_i 1 i / , . i - M
0 i 2 + i,...,in' \z) 

r(*(3)tt = E ^ ( < : t W ) t t (3) 

3 I/(V,T) is a Yang-Baxter space, the pair (V*,T*) with the dual space V* and the 
pullback T* £ Aut(V* ® V*), T*(</> ® ij>) = (</) ® ip) o T, for </>, i\> £ V*, also is a Yang-
Baxter space. For the induced representations we have (a £ Bn) T*L(a) = TR(a)* 
andT*R(a) = TL(a)*. 

The left action of a braid a onto a covector <j> = ^ e 1 ' " ' , n ^ l M i t l is given by 

a 4 = T«(a)*(^) = E^l"^(Q)t±^^n (4) 

with {c*1 »-'*"; ik £ { 1 , . . . n}} being the dual of the base of V®n. 

4 I/(V, T) is a Yang-Baxter space, there is an operator T(T) £ j4tt£(jT(V) ® T(V)) 
that turns the tensor algebra T(V) into a Yang-Baxter space. T(T) is uniquely deter­
mined by the components Tkil(T) : V®k ® V®1 -+ V®1 ® V®fc

; 

A; 

^ , / ( " f ) ( V ® U ; ) = ( V ® l t f ) ( n r-+*-m,l+*+--m), (5) 
771 = 1 

T0,/(T)(l®uv) = (u>®l), (6) 

Tk,0(T)(v®l) = ( 1 ® V ) , (7) 

/or v £ V®k, w £ V 0 / (where the braid acts from the right onto the vector in V®(k+l^ 
via the action induced by T). 

The braid successively transports the first k tensor factors to the right of the last / 
factors, starting with the kth factor and proceeding to the left. This means, the first 
k and the last / strings are 'packed together' and it makes obvious the validity of the 



YANG-BAXTER DEFORMATIONS OF COMPLEX SIMPLE LIE ALGEBRAS 1 9 1 

Yang-Baxter equation. The operator is invertible, since it is a product of invertible 
ones. A 

The braided commutator on the tensor algebra T(V) is the map [,]T(T) : T(V) x 
T(V) -> T(V) given by [v, W]T(T) = vw-T(T)(v®w). If T is chosen as the permutation 
of the tensor factors, the braided commutator coincides with the usual commutator in 
the tensor algebra. The braided commutator on the dual algebra T*(V) is the pullback 
of the braided commutator on T(V), [<j>, IP]T(T)* = <j)ij) — T(T)*(<j) ® ?/)). 

5 The braided commutator is bilinear (therefore descends from T(V)xT(V) to T(V)(& 
T(V)), is braided skew-symmetric and is a braided derivation, 

[T{T)-l{v®w)]T(T) = -[t; ,u;]T ( T)-i , (8) 

[U,VW]T(T) = [u,v]T(r)W + [ T ( T ) ( U ® V ) ® U ; ] T ( T ) . 2 - (9) 

[UV,W]T(T) = u[v,w]T(r) + [u®T(T)(v®w)]T(T),u (10) 

(The index i on the bracket means the commutator acts onto the ith and the (1 + i)th 

factor in the product space T(V) ® T(V) ® T(V).) 

2 The Yang-Baxter algebra 

Now we will define what we call the 'Yang-Baxter algebra'. Consider the complex 
tensor algebra Y on the set 

{Tb
a, f

b
a,U

d
c,Uj,Fe,E

f;l<a,b,c,d,e,f< D}. (11) 

On the subalgebra generated by the elements Fa (E
b, respectively) define the braided 

commutators 

[Fai,Fa2...Fan] = Fai...Fan-^
R(ri,n)

b
a\:;t (12) 

= TR(l-rhn)(Fai...Fan), (13) 

[Ean...Ea2,Eai] = Ean...Eai-Y^^R(rn,i)ll:Z'Ebn...Eh (14) 

= T ^ ( i - T n j l ) * ( F ; a " . . . F ; a i ) . (15) 

The ordering of the indices in the dual representation has been reversed compared 
to the equations in the last section. In the representation to be introduced later on, 
the rightmost operator acts onto the leftmost vector in a tensor product. This is 
in contrast to the action of tensor products of dual vectors onto tensor products of 
vectors, which gave rise to the equation as given before. 

6 Let zi+n = n£=o(l ~" Tn-k,nTn)braid!(n) (see the last section for notation). Let 
Yy be the quotient of the complex tensor algebra Y by the ideal generated by the set 
E fb

cTb - 81, E T£Tb
a - 61, E U§Ub - 6a, E U£Ub - 8^, and 

Y,1h
dfT

d
cT

b
a - £ f f i T ^ , (16) 

ETllMut - £ & X T W (17) 
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Er/TU'tfi - ^uirjTz, (is) 
J2Tb

eE°Tb - y j T ^ , (19) 
Y.ui&us - E?tiEC, (20) 
J2fc

dFaT£ - J2FCT% (21) 
J2Ub

cFaU
b - "£F„Ta% (22) 

EbFa-YJFcT%Ed - (Sb
a-^UX). (23) 

Furthermore, for all (dual) vectors v = Su'1""'1+"e,-1...,-I+n € y®(1+n)> 
$ = E e . i . . . i 1 + „^. i . i+n £ y.®(i+n)( o 6 e j / f n 5 

T*Wn)(t>) = 0, (24) 
Tfl(*1+nr(£) = 0 (25) 

let the generalized Serre-relators 

£ v.-....i,+„ . [F i i , [ j ^ . . . , [Fin, F . i +J .. .]] , (26) 
i 

£ [ [ . • • [£i,+», £•""],..., ^2],£••'] • ̂ . . ,1+n (27) 

be in the ideal, respectively. Then Y? is not the trivial algebra {0} nor the unital 
algebra C . 

In the next section, we will construct a representation Y? —> End(VV) of this algebra, 
where the vector space Vr has dimension bigger than D. The subalgebra of End(Vr) 
obtained in this way is strictly larger than the one generated by 0,1 £ End(Vr). A 

The ideal defining the Yang-Baxter algebra as a quotient can be constructed for 
any map T £ End(T7 ® V). It does not necessarily need to obey the Yang-Baxter 
equation nor does it need to be invertible, either. But these requirements will make it 
possible to construct a representation of the algebra and to prove its non-triviality. 

3 The representation of the Yang-Baxter algebra 

Here we will prove non-triviality of the algebra defined in the previous section by 
constructing a linear representation for it. In the course of the proof, we will, without 
derivation, refer to several combinatorial identities holding in the ring of the braid 
group. These identities have been collected in the last section. 

7 Let V®° = C I , z0 = 1, VT = ®n=0T
R(zn)(V®n). Then there are linear operators 

in End(Vr), uniquely determined by (v = uzn £ Vy , u £ V®n) 

Tb(v) = T R ( z n )^ + n T R ( r 1 , 1 + n ) ( e 0 (8 ) U ) (28) 

Tb(v) = TR(zn)<t>b
ir

R(T-i+n)(u®ea) (29) 

Ub
a(v) = T f l(zn)^T f i(T1 + n i l)(U<g>e a) (30) 

Ub
a(v) = T R ( z n ) ^ + n T f i ( r f +

1 n , i ) ( e a® u ) (31) 
Fb(v) = tR(z1+n)(eb®u) (32) 

Ec(v) = <f>\rR(zn)(u) (33) 
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<j)b is the dual vector (j>b = (e&)* acting onto the j t h factor of the tensor product and by 
convention, <t>b(l) =- 0. 

It has to be shown that the action of Tb, Tb, Uf, U* and Fe does not depend on 
the choice of the representative u, which is defined only up to elements in the kernel 
of T H (z n ) . Also Ec must leave invariant the subspace Vr < T(V). Due to the 
properties of zn (see the last section) we have Tb(uzn) = <^+ nTH(r i t i+n)(e a ® (uzn)), 
and similar for T, U, U. The equation Fh(uzn) = (e\>®(uzn)) YA=\ ri,*(l — AJ.,i+n)> shows 
the independence from the choice of the representative u. Again due to the properties 
of zn we have Ec(uzn) = (0iOi5Z£r1

1(l — iii,n)~iti))zn-ii s u c n that the image under Ec 

is in Vy. • 

8 There is a homomorphism Yy —> End(Vc) uniquely determined by mapping the 
generators of the Yang-Baxter algebra to the linear operators introduced above. 
As has already been indicated before, we will make use of several identities in the ring 
of the braid group. In order to shorten the present proof, these identities have been 
collected in the last section. It has to be shown that the map defined on the generators 
of the algebra sends the generating elements of the defining ideal of Yt to zero in 
End( VT) . We therefore check the relations on an arbitrary vector v = uzm £ Vy. The 
relations showing that T, T and U, U are mutual inverses are clear from the definition. 

tda%T!U{(v) = " (34) 

= (^„) a i-0"TR(T1 + n i l)^. ; . t f rTf;?TR(T1 ,1 + n)X-X /^1 . . .c„ (35) 

= (u^)ai-0"TR(Tn+2,2r1T2,n+2)f0 ' i-
Ca;{eCl...c„ (36) 

= («Zn)ai-a"TR(r1,1+nr1+nr1+n,1)f0V;;.c
0"n

/
frec,..Cn (37) 

= K r ^ T V ^ T ^ ^ j , (38) 

= TcpX(v)- (39) 
The proof of the remaining relations involving only T, T and U, U proceeds in a 
similar fashion and is omitted. 

EcTb
a(v) = (40) 

= (uz„)°1-a"T f l(r1,1+n)^ :i"n
6e62... f rn (41) 

= (^„) a i - < , "T^ 1 T f t (T 1 , n ) 6 -"^e f r , . . f r n (42) 

= rZJ&ZnP-'-e^ (43) 
= Ta':dT

b
eE

d(uznr-a"eai...an. (44) 

Uc
bFa(v) = (45) 
= Uauai"-a"rR(z1+n)a^

bXnebl...bl+n) (46) 
= «0 ' "--T«(Tn + a i l)*^TB(*i+„)S:. i1

I
+

+ ;e ( J , . J l + B (47) 
= u-«"^T B (T 1 + ^ 1 )S;^T^T f l (z 1 + n ) fc ;J + ;e B , . . B 1 + l l (48) 
= rr^iu'^r^n^)^:^^^^^^) (49) 
= Ta'°dFeUt(v). (50) 
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E"Fa(v) = (51) 

= -56(u0l"-0-TR(T_(_n)f:T1,.(l - W4+„)fc^+»e»,.._1+J (52) 

= Eb(uai-a" (53) 

Tfi{T2(_n)[l - /.M+n + Tl __ r2,.(l - / . M + J ] } . ^ " (54) 
•_2 

e6,..i>i+n) (55) 

= (^.-ClcXc)W+ (56) 

+wa,..a.TR (2n)c,., ;TH ( r i £ ^ ^ _ A.M+fl))^+»e ia.._ i+B (57) 
t=2 

= (*_-lJc
6r0

c)>) + (58) 

+ua,..a„TH ( zn )c,.,„ T 6,C i T H ( g ^ . ( i _ R f l ) ) ^ C t l . . A n (59) 
t = l 

= . ( * _ - c.-7)(») + T6;c
ClI

rc(«01--0"TR(zn)ov::;ec,..Cn) (60) 
= (*_ - Ub

cT
c
a)(v) + T0;

c
0Fc£

dK'-^Tfl(zn)0V;.c0;ec,..Cn). (61) 

Here again we used certain properties of the braid ring element zn, which are explicitly 
stated in the last section. Let us turn to the Serre-relations. 

[Fh,[...,[Fin,Fh+n]...]](v) (62) 
= (T*(l - r u + n ) . . . TR(1 - rn,1+n)(Fh ... Fh+n))(v) (63) 

= (T«(n(l-T1+n_M+B))(£i I...F i l+J)(i;) (64) 
1=1 

= (Cf1...t1+n ® ^)(1 - rn>i+n) . . . (1 - Ti.i+nJZn+m+l (65) 

= (ct1 . . . .-1 + n®u)^i+nc, (66) 

for suitable e by the properties of zn. Thus we obtain, 

[Fh,[..., [Fin, Fh+n]...]](.) = (T*(z1+n)(elV.,I+n) ® u)e, (67) 

such that the condition (24) guarantees validity of the first Serre relation. In order to 
prove the second Serre relation let m > 1 + n. Then 

[[...[£*+-, E%...,E%Eh](v) (68) 
= [TR(l-r1 + n , lr.. .TR(l-r1 + n ,nr(E''+-.. . _*•)](«) (69) 

= [T«(n(l-r1+n.)r(_y>+-....B'»)](») (70) 
i=i 

= £«'+-... _•* (uzm f l ( 1 - T 1 + B J ) ) (71) 
j=i 

m-i 
= ^'+-..._i-''(«(ri(l-Tm./.m-1Tm.1) (72) 

1=1 
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•braid(m - 1, m - n - 2)Tn+2 (braid! (m - n - 2))braid!(l + n) (73) 

•n ( l -n + n , ; ) ) ) (74) 
3=1 

In the last step we used a property of zm and an identity in the braid ring. A further 
identity for zn shows, 

[[...[&"», E%...,E%E^](v) (75) 
m - 1 

= ^+-. . . JB
1 ' (u(n(l-Tm- , ,m- iT»_1) . (76) 

•braid(m - 1, m - n - 2)Tn + 2 (braid! (m - n - 2)) • (77) 

•*i+»)) (78) 

such that the second Serre relation holds under the condition (25). A 
At least the preimage of the Yang-Baxter algebra, in which the Serre relators have 

not yet been set to zero, carries the structure of a bialgebra. 

9 (Conjecture) The maps A and e, with A(Tb) = J2Tb® Tc, A(fa
6) = £.fa

c ® fb, 
A(Ua

6) = EUc®Ub, A(Ub) = J2Ub®Uc, A(Fa) = l®Fa + J2Fb®Tb, A(Ea) = 1 ® 
Ea+^Eb®U£ ande(Fa) = e(Eb) = 0, e(Tb) = e(Ub) = 6b

a extend to a comultiplication 
and counit, respectively, for the Yang-Baxter algebra. 

It must be checked that the maps extend to homomorphisms of algebras, 
A G Hom(FT,5 /T®>T) and e G Hom(F T ,C) . Furthermore it must hold, (A®id)oA = 
(id® A)o A and mo(id®e)o A = mo(e®id)o A = id (m is the product in I T ? id the 
identity map), e indeed extends to a homomorphism, since it maps the defining ideal 
I to {0}, as can be seen from the relations. Also A extends homomorphically, sending 
I to I ® 7, at least without consideration of the Serre relations. The restrictions on A 
and e are verified straightforwardly. £ 

4 g-deformed Lie algebras 

Here we show that the well-known g-deformed complex simple Lie algebras arise as 
homomorphic images of the Yang-Baxter algebras, if the Yang-Baxter solution T is 
chosen in a simple way. For an overview on (/-deformed Lie algebras, one might consult 
[2]. 

10 Let a Yang-Baxter operator be given by T a 6 = qaib • 6a - 8c with qa>b = <1&,a £ 
c \{0}> 9a,a 7-= 1. / / the map on the set of generators of Yr Tb,Ub i-r Ka • 6b

a, 

Ea i-> (1 - q'DX+Kl'2, Fa i-> X-K\l2 extends to a homomorphism YT -> Z of 

algebras, then in Z we have KaKcKa = Kc, KaX^Ka = g + H 1 • X + W , X^X+ -

X+X^ = Sajb i/2~7-gi/2 • If it extends to a homomorphism of bialgebras, we find 

A X + H = X+l-ftoKW + K^QX+l-), AKa = Ka®Ka, e ( X + H ) = 0, e(Ka) = 1. 
If qa,b — q(x<X}XbW2, with the scalarproduct (•, •) in the root space of a complex simple 

Lie algebra with simple roots {Xa} and the Cartan matrix Catb = 2x°'*b(, then the 
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Serre relations are valid in Z, 

[Fa,...}
l-c«>(Fh) = 0,ifa^b, (79) 

[...,Ea]l-c«>b(Eb) = 0,ifa^b. (80) 

Here the commutator is the deformed one as defined before. 

The relations between the Cartan generators Ka, the eigenvalue relations between 
the Cartan elements and the ladder operators and the relations between the ladder 
operators X+l~ are consequences of the corresponding relations in the Yang-Baxter 
algebra. The Serre conditions (24,25) expressed with the given Yang-Baxter matrix 

map to the equation ~~7_o'6(l ~~ cLaa(ll,b) ~~ 0- This is always valid, since Cayb = 
2(Aa,A6)/(Aa,Aa). * 

5 Combinatorics in the braid ring 

Finally we collect the definitions and combinatorial results on the braid group and 
it's integral ring which have been used in the third section. Due to lack of space, the 
proofs have been omitted. All of them proceed by induction or simply by inspection 
but nevertheless some of them are quite intricate. The 'classical' overviews on the 
braid group are [1], [5]. 

The braid group Bn is the group generated by the set {r t;z G { l , . . . , n — 1}} 
modulo the relations of Artin T-XTJ = TjTi, if | i — j |> 2, and rt-Ti+t-rt = Ti + t r t r i + t . 
We will use the abbreviations (i < j , i,j, k,l £ { 1 , . . . , n}) r t j = r t - r i + t . . . rj_2Tj_i, 
Tj,i — Tj-lTj-2 • - • T i + t T t , fik,l = Tk,lTl,k-

We define the braid factorial taking values in the integral ring of the braid group, 
as braid!(0) = 1, braid!(l + n) = braid!(n) __}li Ti+n,t- We also need a braid general­
ization of the binomial coefficient, 

A : - l 

braid(n,0) = 1, braid(n, k) = ">"] J J r t f c_ j i n_j. 
l<ti< . . .<t f c<n j=o 

11 Let there be maps Dn : Bn -> Bn, ZJn(rt) = rn_ t , Dn(af3) = Dn(f3)Dn(a) (a 
rotation of the braid graph about an angle TT with an axis perpendicular to the drawing 
plane), Rn G Aut(Bn), Rn(Ti) = Tn-i, Rn(af3) = Rn(a)Rn(/3) (a rotation of the braid 
graph about an angle n with an axis in the drawing plane parallel to the orientation of 
the graph), and let 2~,n £ Hom(Bn, H/+n_i) be the translation T)n(rt) = r / + t _i . Then 

braid(n,k) = Rn(braid(n,n — k)), (81) 

braid(l + n,k) = braid(n, k — 1) + braid(n, k)ri+n?i+n_fc, (82) 

braid!(n) = braid(n, k)T^_k+l(braid!(k))braid!(n - k) (83) 

= T?;£(braid!(n-k))braid!(k)- (84) 

-Dn(braid(n,k)), (85) 
m . m I 

n(- -Tl+m-J . .mT r a ) = X H ' 6 ™ ' < * K 0 I I (7"l+—n,mTm), (86) 
fe=l / = 0 n = l 



YANG-BAXTER DEFORMATIONS OF COMPLEX SIMPLE LIE ALGEBRAS 197 

n(l-rn_ f c ,n) = n^(-)lbraid(n-l,l)l[Tn-ktn. (87) 
fc=i /=o fc=l 

Due to the following, the braid factorial and binomial are true generalizations of 
the familiar quantities. 
12 The homomorphism of groups Bn —> C\{0} . rt- i-> q maps braid!(n) i-+ n?=i ^E4" = 

»!, £4 „!, braid(n,k) » ^ g - - = [ J ] ^ ( J ) 
Now we turn to the important elements zn of the integral braid ring, recursively 

defined as z\ = 1, z\+n = T\*n(zn) 5_r=i r i , t(l — A*.fi+n)- It should be noticed that this 
definition is similar to the recursive definition of the elements #i+n = T2

1+n(0n)/*i,i+n> 
d\ = l. It is known that 8n generates the center of _?n, [5]. zn can be regarded as the 
result of 'cutting' the element 9n into pieces by a particular type of Fox-derivative. I 
do not yet know the relevance of this observation. 

13 zn - £ 7 - / ( 1 - W i n)r i f iT2(zn_i) = ( n E f t l - rn_ t>_irn
2_i))6rairf/(n - 1) = 

braid!(n)IYj~l(l-Tntj), (1 - r / _ i | / ) ( l - r / _ 2 , / ) . . . ( l - r i f / ) * / + m = zxr, forn >l,m>l, 
I > 2 and some r in the braid ring. 
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