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Yang-Baxter deformations of complex simple Lie algebras

Mirko Liidde *
June 3, 1996

Abstract
It is possible, given any solution of the constant Yang-Baxter equation, to
construct an algebra by replacing the standard relators of complex simple Lie
algebras by their braided analogs. In particular the one-parameter deformations
U,(g) of Drinfeld and Jimbo arise as images of the Yang-Baxter algebras.

The present text is based on a talk given at the winter school at Srni, January, 14t
to 21°%, 1995. It is an elaboration on some of the ideas presented in the author’s thesis
[3] and in [4]. The use of graphs and of a certain braid bimodule in these publications
has been eliminated in favor of a simpler algebraic approach.

1 Yang-Baxter operators

In this first section, we gather some preliminaries on the Yang-Baxter equation. An
overview on the Yang-Baxter equation can be found in [2]. For a definition of the
braid groups B, and the respective notation used in the following, the reader should
consult the last section of the present text, where the definitions have been collected
for convenience.

A Yang-Baxter space is a vector space V together with an invertible linear map
T € Aut(V ® V) that satisfies the (permuting, unparametrised and quantised) Yang-
Baxter-equation on V@ V ® V, T1T,;T; = T;T,T,. The index ¢ indicates, T; acts

onto the tensorfactors 7,1 + 3.
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1 Let T(eaQe€b) = qap-(es@e€,) with qop € C\{0}. Then T is a Yang-Bazter operator
for the space with base {eq,;a € {1,...,D}}. In particular, the permutation operator
obtained by g, = 1 is a Yang-Bagter operator.

2 IfV is a Yang-Baxzter space, for anyn > 1 V®" becomes a left module over the braid
group B, by the representation YL € Hom(B,, Aut(V®")), mapping TL : 7 — Y.
Similarly, a right action can be defined (that in general does not commute with the left

action) with the anti-representation YR = YT o Rev, where Rev : B, — B, reverses
braids, Rev(m;) = 1, Rev(aB) = Rev(B)Rev(a).

The right-action of a braid a onto a vector u = 3" uft-n €i,..i, 1S given by a matrix
(in matrix notation we sometimes omit the index 'R’)

ua—TR(a )(u) = Zu” ‘"T Z: n]:eJn dns (1)

with {e;,, i, =€, ®...®¢€;,;ix € {1,...n}} being a base of V®*. The matrix repre-
sentation (a homomorphism, not ’anti’) of braids induced by the right representation
(an anti-homomorphism) on the tensor product therefore is determined by

J1gee, ]n _ J1re le! JUJ14L CI241ee0dn
T(Tl):l, win 611, olle 1T1, ll+,6t2+1 ..... in ! (2)

Y(ep)ih = Y T( 1) 3)

3 If(V,7T) is a Yang-Bazter space, the pair (V*,T*) with the dual space V* and the
pullback T* € Aut(V*@V*), T*(¢ @ %) = (¢ Q) oY, for ¢, € V*, also is a Yang-
Bazter space. For the induced representations we have (o € B,) T*E(a) = TR(a)*
and T*F(a) = TL(a)*.

The left action of a braid a onto a covector ¢ = Y- e1ing; : is given by
ap = THa =Y eI T ()i by i (4)

with {eft"~in; 4, € {1,...n}} being the dual of the base of V",

4 If (V,T) is a Yang-Bagter space, there is an operator T(T) € Auwt(T(V) ® T(V))
that turns the tensor algebra T(V) into a Yang-Bagter space. T(Y) is uniquely deter-
mined by the components Ty () : VOF @ V& — Vol @ V&

k
Ty (T)(vew) = (v@w) 1:[1 Todk—m,14+k+l-m ) (5)
Tou(T)(1®@w) = (w@l), - (6)
Tro(M)(v®1) = (1®v), (7)

forb € V® w e V® (where the braid acts from the right onto the vector in V&Kk+)
via the action induced by T).

The braid successively transports the first k tensor factors to the right of the last !
factors, starting with the k** factor and proceeding to the left. This means, the first
k and the last [ strings are 'packed together’ and it makes obvious the validity of the
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Yang-Baxter equation. The operator is invertible, since it is a product of invertible
ones. &

The braided commutator on the tensor algebra T'(V) is the map [,]r¢r) : T(V) x
T(V) = T(V) given by [v, w]r(r) = vw—T(T)(v@w). If T is chosen as the permutation
of the tensor factors, the braided commutator coincides with the usual commutator in
the tensor algebra. The braided commutator on the dual algebra T*(V) is the pullback
of the braided commutator on T'(V), [¢,¥]r(1)s = ¢ — T(T)*(¢ Q@ ¥).

5 The braided commutator is bilinear (therefore descends from T(V)xT(V) to T(V)®

T(V)), is braided skew-symmetric and is a braided derivation,

[T w@w)rry = —[v,wlre)-1, (8)
[u,oulT(ry = [u,v]rmyw + [T(T)(u® v) ® w]r(r),2, 9)
[uv, w]T(T) = ufv, w]T("I’) +u®T(T)(ve® w)]T(T),la (10)

(The index i on the bracket means the commutator acts onto the i** and the (1 + 1)t

factor in the product space T(V)Q T(V)Q®T(V).)

2 The Yang-Baxter algebra

Now we will define what we call the *Yang-Baxter algebra’. Consider the complex
tensor algebra Y on the set

{T:’T:’Ucd7[_jj’Fe’Ef;1 Sa’b’c’d’e7fS‘D}' (11)

On the subalgebra generated by the elements F, (E®, respectively) define the braided
commutators

(Fap, Fay.. . Far] = FayoooFop = S TR(r )b LBy LR, (12)
= YR - n,)(Fa, ... Fa,), (13)

(E*r...E* E*] = E°...E =% YR(r)pipn - E .. E™ (14)
= TRQ - 1) (E*™ ... E™). (15)

The ordering of the indices in the dual representation has been reversed compared
to the equations in the last section. In the representation to be introduced later on,
the rightmost operator acts onto the leftmost vector in a tensor product. This is
in contrast to the action of tensor products of dual vectors onto tensor products of
vectors, which gave rise to the equation as given before.

6 Let 2100 = [I720(1 — Tkn72)braid((n) (see the last section for notation). Let
Yy be the quotient of the complex tensor algebra Y by the ideal generated by the set
CIeTE - 88, STeT? - 65, SUsUL — 85, L USU; — 6, and
YTHTT, — YT, (16)
YTl - S URULTE, (17)
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STriU; ~ LUiTHTS, (18)
NTeET) - Y Cj,Ed (19)
SSUETy - Y TiE (20)
YTIRT, - YF TZZ, (21)
Y URU; — YRY, (22)
E'F, = Y. FYUEY — (88 -Y UTY). (23)

Furthermore, for all (dual) vectors v = Y vit-ittng; . € VOU+n)
qs = zeilll.il+n¢f1...i1+n \E V*®(1+"), Obeyzng

T(z14n)(v) = 0, (24)
TH(z14n)*(¢) = 0O (25)
let the generalized Serre-relators
ZvilmiH" * [Fin [Fizv . ’[ tny '1+n] .. ]]v (26)
AL (B, B, B B iy (27)

be in the ideal, respectively. Then Yy is not the trivial algebra {0} nor the unital
algebra C.

In the next section, we will construct a representation Yy — End(Vx) of this algebra,
where the vector space Vy has dimension bigger than D. The subalgebra of End(Vx)
obtained in this way is strictly larger than the one generated by 0,1 € End(Vx). &
The ideal defining the Yang-Baxter algebra as a quotient can be constructed for
any map T € End(V ® V). It does not necessarily need to obey the Yang-Baxter
equation nor does it need to be invertible, either. But these requirements will make it
possible to construct a representation of the algebra and to prove its non-triviality.

3 The representation of the Yang-Baxter algebra .

Here we will prove non-triviality of the algebra defined in the previous section by
constructing a linear representation for it. In the course of the proof, we will, without
derivation, refer to several combinatorial identities holding in the ring of the braid
group. These identities have been collected in the last section.

7T Let VB =Cl, 20 =1, Vy = B2, TR(Z,,)(V@") Then there are linear operators
in End(Vx), uniquely determined by (v = uz, € V L ue yer)

T2(v) = YR(20)85 4 TR (11,04n)(€c @ 1) (28)
Ti(v) = THz) TR ) (u @ ea) (29)
Ubw) = TR(z2) YR (T14na)(u ® ea) (30)
fjg(”) = TR(Zn)¢1+nTR(Tl+n 1)(ea ® “) (31)
Fy(v) = TR(Zl+n)(6b ®u) (32)
Ef(v) = $TR(z)(v) (33)
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¢ is the dual vector ¢* = (e,)* acting onto the j* factor of the tensor product and by
convention, ¢*(1) = 0.

It has to be shown that the action of T, T?, U4, U¢ and F, does not depend on
the choice of the representative u, which is defined only up to elements in the kernel
of TR(z,). Also E° must leave invariant the subspace Vy < T(V). Due to the
properties of z, (see the last section) we have Tb(uz,) = ¢'{+,,TR(T1,1+")(6., ® (uzy)),
and similar for T, U, U. The equation Fy(uzs) = (es®(uzs)) Xty 71,{(1 — fi,14n ), shows
the independence from the choice of the representative u. Again due to the properties
of z, we have E°(uz,) = (¢(u 25 (1 — pin)7i1))2n—1, such that the image under E°
isin Vy. &

8 There is a homomorphism Yy — End(Vx) uniquely determined by mapping the
generators of the Yang-Bazter algebra to the linear operators introduced above.

As has already been indicated before, we will make use of several identities in the ring
of the braid group. In order to shorten the present proof, these identities have been
collected in the last section. It has to be shown that the map defined on the generators
of the algebra sends the generating elements of the defining ideal of Yy to zero in
End(Vy). We therefore check the relations on an arbitrary vector v = uz,, € Vém). The
relations showing that T, T and U, U are mutual inverses are clear from the definition.

Yl Uf(v) = ‘ ' (39)
= (uzn)™ Y (T )R TEITR (1 1an) b h ey - (35)
= (uza)™ " Y (Tap2 T Tome2) et ol ey o (36)
= (uzn)alma"TR(Tl,l+nTl+nTl+n,l)Zill',.:;':iec;...cn (37)
= (uza)™ YR (1 14n) 8 Yol T (Tana ) o0 e, (38)
= T UIT(v). (39)

The proof of the remaining relations involving only T, T and U, U proceeds in a
similar fashion and is omitted.

ET,(v) = (40)
= (uza)" " YR(1104n) 22 2 b b (41)
= (uza) Y0 TR (11,0) 2500 €4, (42)
= Y98, To(uzn)™ " €ay. 00 (43)
= YOI E (uzn)™ *eq,. an- (44)
UsFa(v) = (45)
= Ui (u TR (z14n )08 25" 01, b1 ) (46)
= TR (Yo TR (z1gn ) ey i (47)
= TRy ) T TR (21 )t ey iy (48)
= TIGF (T (g ) U (2 ) et €y ) (49)

= TI9F.US(v). (50)
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E"Fa(v) =

= B TR (Ta(n) Y il i) e

i=1

Eb(ual...an

TR{To(20)[1 = p1,14n + 71 D 724 (1 — i1 )| o, 200

=2
€by..brin)

= (6, - UT;)(v) +

n
Futt TRz )00 TR Y i1 — pign)) 2846y, 1

= (- VT +

+ua1...an’rR(zn) ~en Tbe TR Z T1 ,(.L - /an cc2 ’c‘,,ebx bn

Qn a,ci

= (8- UETE)(0) + T o T

aj...an 602 «Cn )

= (& = UT)(v) + YogFe B (u TR (za) ik )-

ay.. a,.ecl <n

(53)
(54)

(55)
(56)

(57)
(58)
(59)

(60)
(61)

Here again we used certain properties of the braid ring element z,, which are explicitly
stated in the last section. Let us turn to the Serre-relations.

[ '17[ . [ iny i1+n]"']](v)

= (TR = 714n) .. TR = Tpgn) (Fy - .-

R(f[(l — emetien)) (B - Fann))(0)

il

Fiyya))(v)

(ei1~--i1+n ® u)(l - Tﬂ,1+ﬂ) v (1 - T1,1+ﬂ)zn+m+l

Il

(€iy.irpn @ U)Z14nE,

for suitable € by the properties of z,. Thus we obtain,

[ i1y [ ) [ iny '1+n] .. ]](v) = (TR(Zl-l-n)(eil»--iHn) ® ”)5’

such that the condition (24) guarantees validity of the first Serre relation. In order to

prove the second Serre relation let m > 1+ n. Then

[[...[E"», E™),..., E?], E)(v)

[TR(]' - Tl+n,l)* cee TR(I — T1+n,n)*(Eil+" .

T = rans) (B0 B))

B B (uzm [[(1 = Ti4nyj))

i=1

m-1
_ g BT = )
=1 .

E))(v)

62
63

(62)
(63)
(64)
(65)
(66)

(67)

(68)
(69)

(70)
(71)

(72)
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-braid(m — 1,m — n — 2)T,,45(braid!(m — n — 2))braid!(1 + n) (73)
: I_’[l(l = Ti4n,j))) (74)

In the last step we used a property of z,, and an identity in the braid ring. A further
identity for z, shows,

[[...[E"", E™],..., E?], E%](v) (75)
= Eun,  Ei(u( ;[:I (1 = Tmetyn—172_;) - (76)
-braid(m — 1, m_— n — 2)Thy2(braid!l(m — n — 2)) - (77)
“Z14n)) (78)

such that the second Serre relation holds under the condition (25). &
At least the preimage of the Yang-Baxter algebra, in which the Serre relators have
not yet been set to zero, carries the structure of a bialgebra.

9 (Conjecture) The maps A and €, with A(T?) = Y TP @ TS, A(TY) = ST T,
AU)=ZU;0U;, AU) =20 @U;, A(F) =10 Fa + TR T, A(E*) =10
E*+Y E*QUE and e(F,) = €(E®) = 0, €(T?) = €(U?) = 6¢ -extend to a comultiplication
and counit, respectively, for the Yang-Baater algebra.

It must be checked that the maps extend to homomorphisms of algebras,

A € Hom(Yr, Yy ®Yy) and € € Hom(Y~, C). Furthermore it must hold, (A®id)oA =
(:d®A)oAand mo(id®e)oA=mo(e®id)oA = id (m is the product in Yr, id the
identity map). € indeed extends to a homomorphism, since it maps the defining ideal
I to {0}, as can be seen from the relations. Also A extends homomorphically, sending
Ito I®1, at least without consideration of the Serre relations. The restrictions on A
and e are verified straightforwardly. &

4 g-deformed Lie algebras

Here we show that the well-known g¢-deformed complex simple Lie algebras arise as
homomorphic images of the Yang-Baxter algebras, if the Yang-Baxter solution T is
chosen in a simple way. For an overview on ¢-deformed Lie algebras, one might consult

[2].

10 Let a Yang-Baxter operator be given by TZ’,': = Qop* 6 - 6§ with qup = gba €
C\{0}, qua # 1. If the map on the set of generators of Yy T:, Ut — K, -6},
E* s (1 - ¢;)XFKY?, F, — X7 KL? estends to a homomorphism Yy — Z of
algebras, then in Z we have Ky K. K, = K., K; X} K, = ¢} - X)X XF -
XrX, = 6,,,5—5351—(_;,717. If it extends to a homomorphism of bialgebras, we find

9a,a —9a,a
AXFO) = X @ K124 K2 @ XHO), AK, = K, @ Ko, (X)) =0, e(Ka) = 1.
If qup = q¢*=*)/2 with the scalarproduct (-,-) in the root space of a complex simple

Lie algebra with simple roots {\,} and the Cartan matriz C,p = 28:%:%, then the
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Serre relations are valid in Z,

[Fu,...]'"Cb(F) = 0, ifa#b, (79)
[...,E'"C(EY) = 0, ifa#b. (80)

Here the commutator is the deformed one as defined before.

The relations between the Cartan generators K,, the eigenvalue relations between
the Cartan elements and the ladder operators 'and the relations between the ladder
operators X}/~ are consequences of the corresponding relations in the Yang-Baxter
algebra. The Serre conditions (24,25) expressed with the given Yang-Baxter matrix
map to the equation [T, s*(l — qk,q2,) = 0. This is always valid, since Cpp =
2(Aas M)/ (AayAa).

5 Combinatorics in the braid ring

Finally we collect the definitions and combinatorial results on the braid group and
it’s integral ring which have been used in the third section. Due to lack of space, the
proofs have been omitted. All of them proceed by induction or simply by inspection
but nevertheless some of them are quite intricate. The ’classical’ overviews on the
braid group are [1], [5].

The braid group B, is the group generated by the set {r;7 € {1,...,n — 1}}
modulo the relations of Artin 7;7; = 77, if | ¢ — j |2 2, and TiT 4T = T14iTiTi4e
We will use the abbreviations (i < j, 1,7,k,1 € {1,...,n}) 7; = TiT14i ... Tj—2Tj1,
Tig = Tj-1Tj=2 «+ - T14iTiy Pkl = Tk 1Tl k-

We define the braid factorial taking values in the integral ring of the braid group,
as braid!(0) = 1, braid!(1 + n) = braid!(n) Y} 714n:. We also need a braid general-
ization of the binomial coefficient,

k-1
braid(n,0) = 1, braid(n, k) = > II 7ieejin—i-
1< <...<ix<n j=0
11 Let there be maps D, : B, — B, Dn(1i) = Tnei, Dn(af) = D,u(B)Dn(a) (a
rotation of the braid graph about an angle © with an azis perpendicular to the drawing
plane), R, € Aut(B,), Ru(7:) = Tn-i, Ru(aB) = R.(a)R.(B) (a rotation of the braid
graph about an angle © with an azis in the drawing plane parallel to the orientation of
the graph), and let T)* € Hom(Bnp, Biyn-1) be the translation T*(7;) = Ti4i—1. Then

braid(n,k) = R.(braid(n,n — k)), (81)
braid(l + n,k) = braid(n,k — 1) + braid(n, k)T14n14n—k, (82)
braidl(n) = braid(n,k)TY_,,,(braid!(k))braidl(n — k) (83)
Ty (braid(n — k))braid/(k) - (84)
-Dp(braid(n, k)), (85)
m . m 1

IO = rigmekmtl) = d(=)braidm,l) [ (Ti4m-nmTa), (86)

k=1 1=0 n=1 :
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n—1 n-1 !
IT1(1=kn) = 3 (=)braidn —1,0) [] 7ot (87)
k=1 =0 k=1

Due to the following, the braid factorial and binomial are true generalizations of
the familiar quantities.

12 The homomorphism of groups B, — C\{0}, 7; = ¢ maps braid/n) — [I~ g

i=1 1—q
nly 23, braid(n, k) — W;%&T'q = [Z ] ks ( Z )
q

Now we turn to the important elements z, of the integral braid ring, recursively
defined as z; = 1, z14n = T3 7™(2,) =%y 71,i(1 — fi4n)- It should be noticed that this
definition is similar to the recursive definition of the elements 014, = T3+ (8,)p1,14n,
6, = 1. It is known that 6, generates the center of By, [5]. z, can be regarded as the
result of ’cutting’ the element 6, into pieces by a particular type of Fox-derivative. I
do not yet know the relevance of this observation.

13 2z, = Y050 (1 — prin)TinT2(2n-1) = (TS (1 = Tnmijn—172_1)) braid(n — 1) =
braid!(n) [T}{ (1 —ny;), (1 —-7'1_1,1)(1—7-,_2,1) =71 )zgm =2, forn>1, m>1,
[ > 2 and some 7 in the braid ring.
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