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NATURAL OPERATORS LIFTING FUNCTIONS
TO COTANGENT BUNDLES
OF LINEAR HIGHER ORDER TANGENT BUNDLES

‘W.M. Mikulski

Abstract. All natural operators C®(M) — C®(T*T(MM) for n-dimensional

manifolds are determined, provided n > 3.

AMS Classification: 58 A 20, 53 A 55

0. From now on we fix two natural numbers r and n. Given a manifold M we
denote the space of all r-jets of maps M — R with target 0 by T™*M = J"(M,R)o.
This is a vector bundle over M with the source projection. The dual vector bundle
(TT™*M)* of T™ M is denoted by T(") M and called the linear r-tangent bundle of M,
c.f. [2]. Every embedding ¢ : M — N of two n dimensional manifolds (n-manifolds)
induces vector bundle homomorphisms T™¢ : T™M -+ T™N over ¢ defined by
composition of jets and TNy : T M — TN dual to T™ 1.

In this paper we study the problem how a map L : M — R on a manifold M can
induce canonically a map Ap (L) : T*T(MM — R. This problem is reflected in the
concept of natural operators T(®% — T©O(T*T(M) for n-manifolds, cf. [2).

Definition 0.1. A natural operator A : T — TOO(T*T() for n-manifolds
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is a family of functions
Ap : C®(M) = C(T* TV M)

for any n-manifold M satisfying the following conditions:

(1) For any embedding ¢ : M — N of two n-manifolds and any map L : N -+ R
we have Ap(Low) = An(L) o T*T(Mep.

(2) f L : M - R, t € R, is a smoothly parametrized family of maps (i.e. the
resulting map L : R x M — R is smooth), then so is Ap(Ly).

Example 0.1. For every vector bundle E -+ M, z € M and y € E; we have a
natural linear isomorphism between the fibre E,; of E over z and the vertical space
VyE :=TyE; of E at y given by v — %h:o(y—i—tv). For any vector space W we have
<, > W*xW = R, <a,v>=a(v). Denote

S(r) ={(s1,52) e NU{0})?:1<s; 4+, <7}

Let (s1,s2) € S(r) and let L : M — R, where M is an n-manifold.
Define A\3;**2”(L) : T*T(M — R by

A5 (L)(@) =< (A< (D) o m)(a), g(a) >

where ¢ : T*TW M — T() M is the cotangent bundle projection,
A<s192>(L) (T M)* — (T M)* is a fibre bundle map over idy given by

A2 (L)(55) = gn(v* (L = L(2))™), v: M - R, 1(z) =0, z € M,
and 7 : T*T(MM — (T() M)* is a fibre bundle map over idy given by
m(a) := a|Vy )T M=TIM, a e (T*TM), M, ze M .
Clearly, given a pair (s1,s2) € S(r) the family A<*122> = {A$71°2>} of functions
A2 C®°(M) = C(T*TMM) | L — 57027 (L)

for any n-manifold M, is a natural operator T(%9) — T(©.9(T*T(") for n-manifolds.

Given L : M — R we have the vertical lifting LY : T*T(WM — R of L defined
to be the composition of L with the canonical projection T*TM — M. The
correspondence "L — LY” gives a natural operator T(®9) — TOO(T*T(") for n-
manifolds
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If H: RS xR - R is a map, then the family A#) of functions A%{) :
C®(M) = C®(T*T(I M),

H
ASP(L) o= H o (A5 (L)) (51,500, LY)

for any n-manifold M, is also a natural operator T(0) — TOO)(T*T(") for n-

manifolds.

We are going to prove

Theorem 0.1. Let A : T(©0 — TOO(T*T()) be a natural operator for n-
manifolds. If n > 3, then there exzists the uniquely determined smooth map H :
R3") x R — R such that A = AU,

We see that any constant natural operator T(°9) — T©.0(T*T(") is a natural
function on T*T(") in the sense of [1] or [3]. On the other hand any natural function g
on T*T( for n-manifolds determines a natural operator A : T(©0) — T(©@0)(T*T(n),
Apm (L) = gm. Thus we have reobtained the following result of [3].

Corollary 0.1. All natural functions on T*T(") for n-manifolds (n > 3) are of
the form {H o (/\;II'(D, s A °7)}, where H € C®(RT) is a function of r variables.

1. The proof of Theorem 0.1 will be given in Item 2. In this item we prove some

lemmas.

Let ¢,m be as in Example 0.1. The usual coordinates on R™ are denoted by

z!,...,z™ and the canonical vector fields induced by z!,...,z" on R" by i, ..., On.

For any vector field X on M the complete lift of X to T(" M is denoted by T("X.

It is clear that T(")((z!)"8;) is vertical over 0. We recall that
i5(z1) € TE*R™ =(V,T(MR™)* for any y € TSR™. We have.

Lemma 1.1. The set
{y e TLOR" :< TV((21)81)(y), o (") ># 0}

18 dense in Tér)R".
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Proof. Let ¢; be the flow of (z!)"8; near 0. Then we have
r r T d T -r
<TO() ()55 (") > =< Zl=oT e(v), 53 (") >

d o
= = <TY%,(y),53(2") > =0

d )
=% < ¥,75(z" 0 p) > |e=0

b, 0
=<y,55(5; (" 0 pt)i=0) >
=<y,55((z")") >
for any y € Tér) R™. Hence our lemma is obvious. O
Now we prove the following lemma.
Lemma 1.2. Let A,B : T(®9 — TOO(T*T(")) be two natural operators for
n-manifolds. Assume that n > 2 and that
An (2™ + a)(a) = Bre (2" + a)(a)
for alla € R and all a € (T*T(M)oR™ with
(1.1) m(a) = jg{z') .
((T*T()oR™ is the fibre over 0 of the bundle T*T("R™ — R".) Then A = B.
Proof. Consider L : R®™ — R. Using the invariancy of A and B it suffices to show
that Agn(L) = Brn(L) over 0 € R™.
Let a € (T*T(M)oR". We can write m(a) = j§(v) for some v : R® - R with
~(0) = 0. Consider two cases.

(1) Suppose that the rank of the differential do(y,L) of (v,L) at 0 is maximal.
Then by the rank theorem there is an embedding ¢ : R® —+ R, »(0) = 0, such that

(v, L)oy = (z',2" + L(0))
on some neighbourhood of 0. Then n(T*T("y~1(a)) = j§(z') and Loy = 2™ + L(0)

on some neighbourhood of 0. Now, using the invariancy of A and B with respect to
¢ and the assumption of the lemma we deduce that Ar~(L)(a) = Brn(L)(a).

(2) Otherwise, there exists a sequence t,, (m = 1,2,...) of real numbers tending
to 0 such that a,, = a + j5(tmz') € (T*T('))OR" and L,, = L + t,,z™ satisfy the
assumption of case (1) with a, L replaced by am, L, for any m = 1,2,.... Then (by
case (1) ) Arn(Lm)(a@m) = Brn(Lm)(am) for any m. If m — oo, then Arn(L)(a) =
Bgrn(L)(a) because of the regularity condition. p

Using Lemma 1.2 we prove.
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Lemma 1.3. Let A,B : T — TOO)(T*T(")) be two natural operators for
n-manifolds. Assume that n > 2 and that

A~ (z" + a)(a) = Brn(z" + a)(a)
for all a € R and all a € (T*T")oR™ satisfying the conditions (1.1) and
(1.2) < a, T 8(q(a)) >=0
fori € {3,...,n}. Then A=B.

Proof. Consider a € (T*T("),R"™ with 7(a) = j§(z!). Using Lemma 1.2 it is
sufficient to show that Agrn(z™ + a)(a) = Brr(z" + a)(a) for any o € R. We can
assume that n > 3.(For, if n < 2, then {3,...,n} =0.)

Using the density argument one can assume that < a,T("8,(q(a)) ># 0. Define
© € T;R" by

< 0,2Z(0) >=< a,T"Z(g(a)) >

for all constant vector fields Z on R™. Then
O = Brdoa’ + Badoz® + ... + Pndoz™

for some f,...,0n € R. By the above assumption 3, # 0. Let ¢ = (z!,8,2% +
o + Bnz™,z3,...,2"). Then ¥ : R® — R" is an linear isomorphism, z! o ¢ = z?!,
z" oY = z™ and
TJ'(I)(@) = ﬁldo.'tl + do.’l:2 .
Let @ = T*T(D4(a). Since T™¢(j5(x!)) = j§(z'), @ satisfies the condition (1.1)

with a replaced by @. Moreover,
<@, TM0(q(@) > =< o, T ((¥™").8)(g(a) >
=< 0,((»7"):8:)(0) >
=< T*(©),0;(0) >=0
for ¢ = 3,...,n. Then by the assumption of the lemma Arn(z™ + a)(@) = Brn(z" +

a)(@) for any a € R. Thus by the invariancy of A and B with respect to ¢ we obtain
Agrn(z" + a)(a) = Brn(z" + a)(a) forany a € R. 0

Lemmas 1.1 and 1.3 imply the following assertion.
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Lemma 1.4. Let A,B : T©9 — TOO(T*T() be two natural operators for
n-manifolds. Assume that n > 3 and that

Arn (2" + a)(a) = Brn (=" + a)(a)

for alla € R and all a € (T*TM)oR" satisfying the conditions (1.1) and (1.2) for
i €{2,...,n}. Then A= B.

Proof. Consider a € (T*T(”)oR™ with (1.1) and (1.2) for i € {3,...,n}. Let « € R.
By Lemma 1.3 it suffices to show that Arn(z™ + a)(a) = Brn(z" + a)(a).

Using the density argument and Lemma 1.1 we can additionally assume that

< T(T)((;cl)ral)(q(a))’jg(rl) > %

for some f; € R.
Let < a,T(78,(gq(a)) >= B2. Since j37 (8, — B1B2(z')701) = j5~'(82), there
exists an embedding ¢ : R® — R", ¢(0) = 0, such that: ji(¢) = ji(id), 2% op = z™,

germo(Tp o (8, — B162(21)"0y)) = germo(0; o @), and

germo(Ty 0 0;) = germo(0; o @)
fori=3,...,n, cf. [2].
Let @ = T*T(W¢(a). Since ¢ preserves j5(z') and 8; for i = 3,...,n, then @
satisfies the conditions (1.1) and (1.2) for 7 = 3, ...,n. Moreover,
<a@,T"0(q(a)) > =< a, TT" o~ (T 8x(¢(@)) >
=< a,TMd,(g(a)) - B18:T" ((z")"01)(g(a) >

=m—mm%

Then by the assumption of the lemma Agr»(z" + a)(@) = Brn(z" + a)(@). Now,
by the invariancy of A and B with respect to ¢ we obtain that Ar~(z" + a)(a) =
Bgrn(z™ + a)(a).0

Similarly, one can prove.

=0

Lemma 1.5. Let A,B : T — TOO(T*T(™) be two natural operators for
n-manifolds. Assume that n > 3 and that

Ar» (2" + a)(a) = Br (2" + a)(a)

for alla € R and alla € (T*TM)oR™ satisfying the conditions (1.1) and (1.2) for
i €{l,..,n}. Then A= B.
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Proof. The proof of Lemma 1.5 is a replica of the proof of Lemma 1.4. (In the
text of the proof of Lemma 1.4 we replace 8, by 9;, Lemma 1.3 by Lemma 1.4 and
i=3,.,nbyi=2,...,n) 0

Now, we prove the main lemma.

Lemma 1.6. Let A,B : T(®9) — TOO(T*T()) be two natural operators for
n-manifolds. Assume that n > 3 and that

Agn (2™ + a)(a) = Brr (2" + a)(a)

for all @ € R and all a € (T*TM)oR™ satisfying the conditions (1.1) and (1.2) for
i1 €{l,...,n} and

(1.3) < g(a),j5 (") >=0

forall B = (B1,....,0n) € (NU{O})™ with1 <|B| <r and B2+ ... + Bn—1 = 1. Then
A=B.

Proof. Consider a € (T*T(M)oR™ satisfying the conditions (1.1) and (1.2) for
i=1,..,n. Let @ € R. By Lemma 1.5 it is sufficient to show that Agn(z" +a)(a) =
Bgrr(z™ + a)(a).

Let ¢; := (z!,tz?,...,tz""1,2") : R® — R", t # 0. It is easy to see that
a® := limyyo(T*TMe¢y(a)) satisfies (1.1), (1.2) for ¢ = 1,..,n, and (1.3) for all
B=(f1,.sPn) € (NU{0})® with 1 <|B| <r and B2 + ... + Bn—1 > 1. Then using
the invariancy of A and B with respect to c; we deduce that Agr~(z™ + a)(a) =
Agrr(z™ 4+ a)(a®) = Brr(z" + @)(a®) = Brn (2™ + a)(a). O

2. We are now in position to prove the theorem. Let A : T(:0) — T©.0)(T*T(r))

be a natural operator for n-manifolds. Define
H:R°M xR s R, H(( a) = Arn (2" + a)(ag),

where € = (£(s,,s,)) € R®(" and a¢ € (T*T(7)oR" is the unique form satisfying the
conditions:

(1.1); (1.2) for : = 1,...,m;

(1.3) for all B € (NU{0})"* with 1 < |B| <r and B3 + ... + Bn=1 > 1; and

(2.4) < q(ag),jo((2')™*(2™)°?) >= €(sy,00)
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for all (s1,s2) € S(r).
It is clear that H is smooth. We see that

Arn (2" + o)(ag) = H o (Aj2" (2" + @)(ag)) (s, sn)e5(r)» (™ + @) (ag))
= AG (2" + a)(ag)

for all ¢ € R5(M and all @ € R. Hence by Lemma 1.6 we obtain A = A), (For, any

a satisfying the conditions of Lemma 1.6 is of the form a¢ for some { as above.)g
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