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DIFFERENTIAL GEOMETRY OVER THE STRUCTURE
SHEAF: A WAY TO QUANTUM PHYSICS *

Gerald Fischer

Abstract

The formulation of differential geometry over the structure sheaf stresses the
algebraic side of the theory. So it represents a proper starting point on the way
to quantum physics carried by geometric observables.

1 Introduction

The motivation for this work is the aim to describe quantum physics in terms of
noncommutative differential geometry. This unifies two aspects of a mathematical
description of physics. The first is the quantum theoretic aspect. Quantum theory is
an abstract theory of measurement which assigns to every possible measurement an
observable and lays down the relations between them by an algebra structure on the
set of all observables. The fundamental characteristics of quantum physics the uncer-
tainty relations are encoded in the noncommutativity of this algebra. The uncertainty
relations are signs for the existence of an interaction so we define

Definition 1 Let Eo be a generating set for an observable algebra O and T(Eo) the
free algebra generated by Eo. We call @ bilinear map

W Eo X BEop — T(Eo) (1)

an interaction structure for O if it provides the relations for the algebra O on the
generating set i.e.

O =T(Eo)/Jw (2

with the ideal Jw C T(Eo) generated by the elements
a®b—-b®a—W(a,b) with a,b € Ep.

A nonvanishing interaction structure is equivalent to a noncommutative observable
algebra. In this way noncommutativity enters the region of our interest.

The second aspect is the field theoretic one; this means a description of physics in terms
of fields over some physical parameter spaces. The requirement of local coordinates on

*This paper is in final form and no version of it will be submitted for publication elsewhere.
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these parameter spaces combined with an invariance of physics under special choices of
such coordinates introduces the principle of relativity. The mathematical counterpart
to this is the concept of manifolds in geometry, or after specializing to differentiable
fields in differential geometry.

A first step to a unification of these two aspects is a formulation of differential geometry
more accessible for quantum theory, or to say for deformation. For that we make an
approach to differential geometry by the help of sheaves.

2 Differential geometry over the structure sheaf

Differential geometry is the theory of geometric objects over smooth manifolds [Ni].
We start by defining the smooth manifolds and then come to the objects.

2.1 Smooth manifolds

We call a space of the form K" for a field K with a suitable order structure a coordinate
space. Here for K we take R. A manifold is a local coordinate space i.e. it looks locally
like a coordinate space. The term "local" brings us into the category 7Top of topological
spaces and continous maps; it reflects the restriction process p in the topology 7(X)
of a topological space X. Dual to the restriction p is the inclusion which in contrast
to p is a map € Mor(Top). It provides a topological space X with the structure of a
category [Ha] by Obj(X) = 7(X) and

inclusion : VCU
0 :VeU’

Therefore local structures on topological spaces which always belong to a lifting of the
restriction process to some fields over X can be described by contravariant functors
from the category X to some suitable categories (mostly the category of abelian groups)
[Ha). These functors are the presheaves on X under whom the sheaves form a special
subset fulfilling further conditions of local to global and gluing behaviour, the sheaf
axioms [Ha]. The coordinate structures on manifolds in this approach are given by
sheaves Oy of germs of functions. The special types of functions joining the required
properties of the manifolds (e.g. differentiability) serve as local coordinate functions
i.e. as the components of the chart maps. In connection with the restriction maps of
the sheaf this is equivalent to the atlas approach to manifolds. The algebra structure
of the field R provides the germs of the functions with a ring structure so that Oy
becomes a sheaf of rings and the manifolds are defined by so called ringed spaces
(M, Op) [Ha]. A ringed space generally is a pair of a topological space M and a sheaf
of rings Op on M which fixes an additional structure on M, that’s why it is called
the structure sheaf of the ringed space. The ringed spaces form a category R where
the morphisms ¢ € Mor(X,Y) for X = (M,0u),Y = (N,Op) € Obj(R) are given
by pairs

Mor(V,U) = { U,V € Obj(X). 3)

¢ : M—N 4)
¢ : ¢7'0On — On (5)
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of a continuous map ¢ and a sheaf morphism ¢' ($~'Oy denotes the inverse image
sheaf [Ha]). The local coordinate structure of a manifold is given by isomorphisms of
special subspaces (neighbourhoods) to subspaces of a coordinate space. This forces to
introduce the notion of local isomorphisms in the category of ringed spaces.

Definition 2 A morphism ¢ € Mor(X,Y) for X,Y € Obj(R) is called e local iso-
morphism if for every point x € M there exists an open set U € (M) withz € U
such that the restriction

o(8) : (U, pOp) = im(p(4)) is an isomorphism in R.

A local isomorphism in R respects the local coordinate structure of a manifold so
these morphisms describe the coordinate transformations of manifolds. In the smooth
category C® which is the subcategory in R with Obj(C*) = {smooth manifolds}
the structure sheaf of an X € Obj(C™) is the sheaf of germs of smooth functions
Oy = C§}. The local isomorphisms are the local diffeomorphisms Dy C Mor(C*)
and the coordinate transformations of a differentiable manifold X are elements in
Mor(X,X) ND,.

Before we turn to the geometric objects we again stress the algebraic flavour of the
sheaf approach to differential geometry. Ag denotes the category of R-algebras. In the
case of compact topological spaces we can use the global section functor [Ha)

r : R— AR
X = T(M,C) (6)

to describe a differentiable manifold given by a ringed space (M,C$) in purely al-
gebraic terms by the algebra I'(M,C5g) = C®(M,R). The information about the
manifold X in the form (M, C$) can be regained from the algebra C®(M,R) by use
of the adjoint functor spec’. This comes out of the functor spec used in algebraic
geometry [EH] by a restriction of the space |spec| of prime ideals to the set of maximal
ideals |mazspec|. The topology on |mazspec| is induced from the Zariski-topology
on |spec|. Applied to C®(M,R) this gives a homeomorphism between the topological
spaces mazspecC®(M,R) and M. The sheaf C§7 is constructed out of C*°(M,R) by
the usual localization procedures [EH]. So in the language of algebraic geometry a
differentiable manifold is an affine scheme [EH]. From the quantum theoretic point of
view this dual equivalence of categories raises I" as quantitzation functor which assigns
to the classical system (M, C§g) its observable algebra C*°(M, R).

2.2 Geometric objects

After stating the manifolds with the help of structure sheaves we turn now to the
geometric objects on these spaces. Geometric objects [Ni] on a smooth manifold X
are such objects which don’t change their character under coordinate transformations
(e.g. scalars remain scalars, vectors remain vectors). This invariance property we
compose in a slightly more abstract language. We are looking for functors

g:C® — Sh 7
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from the category of smooth manifolds into the category of sheaves which respect (lift)
the local isomorphisms. As geometric objects we take the elements in the stalks of the
sheaves assigned by such functors. The global sections deliver the fields of geometric
objects, the geometric fields. Those functors can be derived from the structure sheaf
in a canonical way. Therefor we use the required invariance properties of the geometric
objects; the transformation behaviour of geometric objects does not depend on a
special choice of coordinate transformation ¢, so we take the simplest one, the identity
@ = id € Dy, and study its graph

graph(id) =A: X — X x X, (8)

the famous diagonal, and perturbations of it. The diagonal morphism in a category
with products is defined by the special form of a product diagram which belongs to
the 4d isomorphism:

x A = graph(¢) XxX
¢ =i pm pre
id

X X

The dual equivalence given by the functors I' and spec’ determines the diagonal A =
(A, AY) in terms of a coproduct diagram:

C®(M,R) o C®(M,R)®xC*®(M, R)
id id®1 1®id
id
C*(M,R) ' C*(M,R)

Here ®g means the completion of the algebraic tensor product such that
C®(M,R)®rC®(M,R) =T(M x M,C33, p)-
In this way the multiplication map

1 : C°(M, R)®C*™ (M, R) — C=(M, R) 9)



DIFFERENTIAL GEOMETRY OVER THE STRUCTURE SHEAF: A WAY TO QUANTUM PHYSICS 49

fixes the sheaf morphism
AV AT CRRCY) — C (10)
over the diagonal in Top. AV is a surjective homomorphism between C§3-modules,

therefore its kernel I := kerA! is an ideal in
A~ (CP®RCS) and defines a filtration

AT (C&CE) D IaD XD ... (11)

This filtration yields the functors we are looking for. By the properties of the tensor
product of homomorphisms a first one is immediately given by

p>® : C% — Sh :
(M,C) — A (C&=C). (12)
This functor is universal in the sense that all other sheaves for geometric objects can be

derived from it in a canonical way. For that we relax the identity on A~!(CE®rCS)
by a perturbation in the k-th order

id — j*id = id + Mor(I5*), (13)

with Mor(I&) € Mor(A~1(CE®RCE), A~ (CE®rCS)). This class of morphisms
acts as the identity on the k-jet sheaves of X which we define as the quotients

JEC% = AT CE@RCY) /1T, (14)
The resulting functors

. — Sk
(M,C) — J*Cg (15)

respect local isomorphisms and the sections of the sheaves which assign these functors
to a differentiable manifold are fields of geometric objects of order k. The summands
of the associated graded module of the Ix-filtration

ATV CE&eCH)/ a0 IaIZOIR/I3O. .. (16)

provide the homogeneous geometric fields. The first summand e.g. is isomorphic to
the structure sheaf C§J itself, its global sections the scalar functions C*°(M, R) are the
fields of order zero. The second summand I5/I% is the conormal module of A; its
sections which are first order fields are isomorphic to the covectorfields on M
T(M,1s/1) = Q'(M) [F1]. .
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3 Outlook (Deformation)

As mentioned before the algebra C®(M, R) is the observable algebra for the system
X = (M, Cg). Because it is commutative in quantum theoretic terms it has vanishing
interaction structure. In order to get interesting noncommutative observable algebras
of geometric fields (geometric observables) one has to deform the algebra C*°(M, R) by
suitable interaction structures. The deep connection of interaction and measurement
stated in quantum physics paves the way to such structures. In the commutative case
of C®(M,R) the algebra structure is defined by pointwise addition and multiplication;
this corresponds to a measurement of geometric objects of order zero at a point z € M
by evaluation

ev;: CP — R (17)

Nontrivial interaction structures arise by measurement of geometric objects of higher

order. Such geometric measurements belong to geometric structures on smooth man-
ifolds.

Definition 3 A geometric structure of order k on a smooth manifold X is an isomor-
phism of dual sheaves

q¢* : IRJIET — Homeg (IX /IR, CF). (18)

The most prominent geometric structures are the symmetric and antisymmetric first
order ones which deliver Riemannian and symplectic geometry. A symplectic structure

¢' = w e.g. defines as a nontrivial interaction structure the Poisson-structure {, } on
C>(M,R)

W! . C®(M,R) x C*(M,R) — C*(M,R)
(f,9) » Wi(f,9) = {f, 9} := w(df,dyg). (19)

The noncommutative observable algebra associated to this structure is the universal
enveloping algebra of the Lie-algebra (C*°(M,R),{,}). Equivalent to that we can
deform the commutative algebra C®(M,R) in terms of star-products (with A = 1)
[We]

fxg=fa+ S HBHfg) (20)
k=1

with B!(f, g) = jw(df,dg) and B¥ = ¢* = 0 for k > 1 [F2]. In the more general case
of nonvanishing higher order geometric structures differentials of higher order

dy : C°(M,R) — (M, I§ /15! (21)

are used and the influence of the higher order fields to the deformation is given by
B*(f,9) = ¢*(dif,dxg) in the *(g}-product. The global section functor I' combined
with the deformation () so represents the quantization functor which assigns to an
"interacting” space (M, C$3, {g*}) its observable algebra.
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