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RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
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DIFFERENTIAL GEOMETRY OVER THE STRUCTURE 
SHEAF: A WAY TO QUANTUM PHYSICS * 

Gerald Fischer 

Abstract 

The formulation of differential geometry over the structure sheaf stresses the 
algebraic side of the theory. So it represents a proper starting point on the way 
to quantum physics carried by geometric observables. 

1 Introduction 

The motivation for this work is the aim to describe quantum physics in terms of 
noncommutative differential geometry. This unifies two aspects of a mathematical 
description of physics. The first is the quantum theoretic aspect. Quantum theory is 
an abstract theory of measurement which assigns to every possible measurement an 
observable and lays down the relations between them by an algebra structure on the 
set of all observables. The fundamental characteristics of quantum physics the uncer­
tainty relations are encoded in the noncommutativity of this algebra. The uncertainty 
relations are signs for the existence of an interaction so we define 

Definition 1 Let E0 be a generating set for an observable algebra O and T(E0) the 
free algebra generated by E0. We call a bilinear map 

W:E0xE0—> T(E0) (1) 

an interaction structure for O if it provides the relations for the algebra O on the 
generating set i.e. 

0 = T(E0)/Jw (2) 

with the ideal Jw C T(E0) generated by the elements 
a®b-b®a- W(a, b) with a, 6 e E0. 

A nonvanishing interaction structure is equivalent to a noncommutative observable 
algebra. In this way noncommutativity enters the region of our interest. 
The second aspect is the field theoretic one; this means a description of physics in terms 
of fields over some physical parameter spaces. The requirement of local coordinates on 

*This paper is in final form and no version of it will be submitted for publication elsewhere. 
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these parameter spaces combined with an invariance of physics under special choices of 
such coordinates introduces the principle of relativity. The mathematical counterpart 
to this is the concept of manifolds in geometry, or after specializing to differentiable 
fields in differential geometry. 
A first step to a unification of these two aspects is a formulation of differential geometry 
more accessible for quantum theory, or to say for deformation. For that we make an 
approach to differential geometry by the help of sheaves. 

2 Differential geometry over the structure sheaf 

Differential geometry is the theory of geometric objects over smooth manifolds [Ni]. 
We start by defining the smooth manifolds and then come to the objects. 

2.1 Smooth manifolds 

We call a space of the form HC for a field K with a suitable order structure a coordinate 
space. Here for K we take E. A manifold is a local coordinate space i.e. it looks locally 
like a coordinate space. The term "local" brings us into the category Top of topological 
spaces and continous maps; it reflects the restriction process p in the topology T(X) 
of a topological space X. Dual to the restriction p is the inclusion which in contrast 
to p is a map € M or (Top). It provides a topological space X with the structure of a 
category [Ha] by Obj(X) = T(X) and 

Mor(V,U) = { ^ U s i m \ ^ t U , V e ObJiX). (3) 

Therefore local structures on topological spaces which always belong to a lifting of the 
restriction process to some fields over X can be described by contravariant functors 
from the category X to some suitable categories (mostly the category of abelian groups) 
[Ha]. These functors are the presheaves on X under whom the sheaves form a special 
subset fulfilling further conditions of local to global and gluing behaviour, the sheaf 
axioms [Ha]. The coordinate structures on manifolds in this approach are given by 
sheaves OM of germs of functions. The special types of functions joining the required 
properties of the manifolds (e.g. differentiability) serve as local coordinate functions 
i.e. as the components of the chart maps. In connection with the restriction maps of 
the sheaf this is equivalent to the atlas approach to manifolds. The algebra structure 
of the field tit provides the germs of the functions with a ring structure so that OM 
becomes a sheaf of rings and the manifolds are defined by so called ringed spaces 
(M, OM) [Ha], A ringed space generally is a pair of a topological space M and a sheaf 
of rings OM on M which fixes an additional structure on M, that's why it is called 
the structure sheaf of the ringed space. The ringed spaces form a category 7£ where 
the morphisms <f> € Mor(X,Y) for X = (M,OM),Y = (N,0N) e Obj(K) are given 
by pairs 

<j> : M—>N (4) 

A : (j>-lON—^0M (5) 
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of a continuous map <j) and a sheaf morphism <ft (0_1O.y denotes the inverse image 
sheaf [Ha]). The local coordinate structure of a manifold is given by isomorphisms of 
special subspaces (neighbourhoods) to subspaces of a coordinate space. This forces to 
introduce the notion of local isomorphisms in the category of ringed spaces. 

Definition 2 A morphism <j> € Mor(X,Y) for X,Y € Obj(Tl) is called a local iso­
morphism if for every point x € M there exists an open set U € r(M) with x G U 
such that the restriction 
p(<j>) : (£7, PIJOM) -> ^(p(^)) w an isomorphism in R. 

A local isomorphism in % respects the local coordinate structure of a manifold so 
these morphisms describe the coordinate transformations of manifolds. In the smooth 
category C00 which is the subcategory in 11 with Obj(C°°) = {smooth manifolds} 
the structure sheaf of an X G Obj(C°°) is the sheaf of germs of smooth functions 
OM = C^. The local isomorphisms are the local diffeomorphisms V0 C Mor(C°°) 
and the coordinate transformations of a differentiable manifold X are elements in 
Mor(Xy X)nV0. 
Before we turn to the geometric objects we again stress the algebraic flavour of the 
sheaf approach to differential geometry. A* denotes the category of R-algebras. In the 
case of compact topological spaces we can use the global section functor [Ha] 

T : Tl—MR 

X->r(M,Cjg) (6) 

to describe a differentiable manifold given by a ringed space (M, C$) in purely al­
gebraic terms by the algebra T(MiC^) = C°°(M,R). The information about the 
manifold X in the form (M, Cjg) can be regained from the algebra C°°(M} R) by use 
of the adjoint functor sped. This comes out of the functor spec used in algebraic 
geometry [EH] by a restriction of the space \spec\ of prime ideals to the set of maximal 
ideals \maxspec\. The topology on \maxspec\ is induced from the Zariski-topology 
on \spec\. Applied to C°°(M,R) this gives a homeomorphism between the topological 
spaces maxspecC°°(M,R) and M. The sheaf CM is constructed out of C°°(M,R) by 
the usual localization procedures [EH]. So in the language of algebraic geometry a 
differentiable manifold is an affine scheme [EH], Prom the quantum theoretic point of 
view this dual equivalence of categories raises V as quantization functor which assigns 
to the classical system (M,CM) its observable algebra C°°(M,R). 

2.2 Geometric objects 

After stating the manifolds with the help of structure sheaves we turn now to the 
geometric objects on these spaces. Geometric objects [Ni] on a smooth manifold X 
are such objects which don't change their character under coordinate transformations 
(e.g. scalars remain scalars, vectors remain vectors). This invariance property we 
compose in a slightly more abstract language. We are looking for functors 

g:C°°—>Sh (7) 
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from the category of smooth manifolds into the category of sheaves which respect (lift) 
the local isomorphisms. As geometric objects we take the elements in the stalks of the 
sheaves assigned by such functors. The global sections deliver the fields of geometric 
objects, the geometric fields. Those functors can be derived from the structure sheaf 
in a canonical way. Therefor we use the required invariance properties of the geometric 
objects; the transformation behaviour of geometric objects does not depend on a 
special choice of coordinate transformation <f>, so we take the simplest one, the identity 
<t> = id€V0y and study its graph 

graph(id) = A : X —> X x K, (8) 

the famous diagonal, and perturbations of it. The diagonal morphism in a category 
with products is defined by the special form of a product diagram which belongs to 
the id isomorphism: 

A = graph((/)) 
XxX 

X 

The dual equivalence given by the functors T and sped determines the diagonal A : 
(A, A11) in terms of a coproduct diagram: 

C°°(M,R) C 0 0 ( M , R ) ® R C 0 0 ( M , R ) 

id 

C°°(M,R) C°°(M,R) 

Here ®R means the completion of the algebraic tensor product such that 

C 0 O ( M , R ) ® R C 0 O ( M , R ) = T(M x M,C^M). 

In this way the multiplication map 

y,: C°°(M, R)®RC°°(M, R) -> C^M, R) (9) 
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fixes the sheaf morphism 

A«:A- 1 (CS?®RCS?)- ->CS? (10) 

over the diagonal in Top. A11 is a surjective homomorphism between C^-modules, 
therefore its kernel /A := ker A11 is an ideal in 
A-^C^QRCJJ) and defines a filtration 

A - ^ C ^ R C ^ D / A D / I D . . . . (11) 

This filtration yields the functors we are looking for. By the properties of the tensor 
product of homomorphisms a first one is immediately given by 

p00 : C°° —• Sh 

(M,C%)—•A-1(C£®RC£). (12) 

This functor is universal in the sense that all other sheaves for geometric objects can be 
derived from it in a canonical way. For that we relax the identity on A'^Cjg ®RCJJ) 

by a perturbation in the fc-th order 

id —> jkid = id + Mor(/£+1), (13) 

with Mor(/^+1) C Mor(&-l(CfS®RCfl)t Ar^CJg&iCJ})). This class of morphisms 
acts as the identity on the k-jet sheaves of X which we define as the quotients 

JkC%:=A-l(C%®*C%)/ll+\ (14) 

The resulting functors 

pk : C00 —> Sh 

(M,C%)^JkC% (15) 

respect local isomorphisms and the sections of the sheaves which assign these functors 
to a differentiable manifold are fields of geometric objects of order k. The summands 
of the associated graded module of the /A-filtration 

&-\C%®RC%)/IA e IA/II e il/il e... (ie) 

provide the homogeneous geometric fields. The first summand e.g. is isomorphic to 
the structure sheaf CJJ itself, its global sections the scalar functions C°°(M, R) are the 
fields of order zero. The second summand /A / /A 1S t n e conormal module of A; its 
sections which are first order fields are isomorphic to the covectorfields on M 
r(M,lA/Il)~V(M)[Fl}. 
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3 Outlook (Deformation) 

As mentioned before the algebra C°°(M,R) is the observable algebra for the system 
X = (M, OjjJ). Because it is commutative in quantum theoretic terms it has vanishing 
interaction structure. In order to get interesting noncommutative observable algebras 
of geometric fields (geometric observables) one has to deform the algebra Cco(My R) by 
suitable interaction structures. The deep connection of interaction and measurement 
stated in quantum physics paves the way to such structures. In the commutative case 
of C°°(M, R) the algebra structure is defined by pointwise addition and multiplication; 
this corresponds to a measurement of geometric objects of order zero at a point x 6 M 
by evaluation 

evx : C£° —r R (17) 

Nontrivial interaction structures arise by measurement of geometric objects of higher 
order. Such geometric measurements belong to geometric structures on smooth man­
ifolds. 

Definition 3 A geometric structure of order k on a smooth manifold X is an isomor­
phism of dual sheaves 

qk : IkJIk
A

+l - > nomc~(IkJll+l,C%). (18) 

The most prominent geometric structures are the symmetric and antisymmetric first 
order ones which deliver Riemannian and symplectic geometry. A symplectic structure 
q1 = a) e.g. defines as a nontrivial interaction structure the Poisson-structure {, } on 
C°°(M,R) 

Wl : C0O(M,R)xC0O(M,R) —>C°°(M,R) 

(/, 9) » W\f, 9) = {/, 9} := u(df, dg). (19) 

The noncommutative observable algebra associated to this structure is the universal 
enveloping algebra of the Lie-algebra (C°°(M,R),{,}). Equivalent to that we can 
deform the commutative algebra C°°(M,R) in terms of star-products (with h = 1) 
[We] 

00 

/ * S = /5 + E f i*5*( / .5) (-0) 
*=1 

with Bl(f,g) = \u(dfydg) and Bk = qk = 0 for k > 1 [F2J. In the more general case 
of nonvanishing higher order geometric structures differentials of higher order 

dk : C°°(M, R) —• T(M, IkJli+1) (21) 

are used and the influence of the higher order fields to the deformation is given by 
Bk(f,g) = qk(dkf,dkg) in the •{^-product. The global section functor T combined 
with the deformation •(9*} so represents the quantization functor which assigns to an 
"interacting" space (M,CJJ, {qk}) its observable algebra. 
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