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INTRODUCTION TO ALGEBRA OVER
“BRAVE NEW RINGS”

R.M. VOGT

“Brave New Rings” is a catchphrase introduced by Waldhausen for algebraic structures
on topological spaces which are ring structures up to coherent homotopies. “Coherent”
means that the homotopies fit together nicely (see below). Such “rings” were intro-
duced in the mid seventies in an effort to analyze the structure of classifying spaces
arising from geometry [32].

Waldhausen was the first person to extend classical algebraic constructions to the world
of brave new rings. The most famous one is his algebraic K-theory of topological spaces
[54], [55] which, in fact, is an extension of Quillen’s algebraic K-functor to certain
brave new rings. Other algebraic constructions are Békstedt’s topological Hochschild
homology [6] or the topological cyclic homology of Goodwillie [14] or Bokstedt-Hsiang-
Madsen [7].

Although this extended algebra is still at its initial stage it has already proved to have
remarkable applications in geometry and classical algebra.

Let me present a dictionary

Dictionary
classical algebra brave new algebra spectra version
monoid Ao-space -
group loop space -
abelian monoid FE-space -
abelian group infinite loop space | S-module spectrum
ring Ax-Ting space monoid in Modg
commutative ring E-ring space commutative
monoid in Modg
ground ring Z Eo-ring space Q(S°) | sphere spectrum S
tensor product ®z ? smash product Ag

*The paper is in final form and no version of it will be s."aitted elsewhere.
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To give the reader a feeling for the problems and concepts involved we investigate
the simplest cases, namely A-spaces and loop spaces, in some detail, giving at least
indications of proofs. We then treat the algebraic structure of E.,-spaces and infinite
loop spaces. These structures were introduced in the sixties [50], [3]. We then pass
to homotopy ring spaces. It will soon become clear that algebraic constructions over
homotopy ring spaces, though in principle often possible, are quite involved - the
structure is very complex. The way out is a black box in terms of spectra, which we
will introduce in Chapter 3. The final chapter summarizes some applications which
either involve “brave new algebra” directly or which use its methods and ideas.

The paper consists of notes of a series of lectures delivered at the 18th Winter School
on Geometry and Physics in Srni, Czech Republic. I would like to thank the organizers
for a delightful week in the Bohemian Forest.

Chapter I: A, -spaces and loop spaces

We will work in the categories 7op and 7 op* of compactly generated spaces and
their based versions, respectively. Limits, colimits and function spaces are taken in
these categories. They have the useful properties that quotients commutate with finite
products and that the exponential law for function spaces holds in general.

1 The structure of a loop space

1.1 Definition: The loop space 2X of the based space (X, *) is the space of all maps
QX = TOP ((I’ aI)! (X': *)) & Top"(Sl,X)

with the constant map as base point. Here I is the unit interval and S? the unit
sphere. ’

Loop spaces have been studied extensively in algebraic topology but also have appli-
cations in other fields of mathematics such as differential geometry (Marston Morse’s
work on geodesics on Riemann n-spheres is nothing but the calculation of the homology
of 25™ [36]) or, more recently, mathematical physics.

1.2 Elementary properties

(1) If [X,Y]* denotes the based homotopy classes of based maps, then [X,QY]* is a
group.

(2) QX is a topological group up to homotopy (this is equivalent to (1)).
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(3) m(RX) ™ mp41(X) where m,(Y) = [S™, Y]* denotes the n-th homotopy group
of Y. In particular, the fundamental group m (2X) is abelian.

(4) Singular homology H.(2X) with arbitrary coefficients is a graded algebra.

In this section we are interested in the algebraic structure of 2X and hence expand a
little on property (2). We define loop addition by

f+g:I-X, t'—’{g((;:)—l) g

i.e. we first run through the loop f and then through the loop g with double speed.
Loop addition is only homotopy associative as the following picture shows

homotopy interval

loop /
interval /

(F+9)+h f+(+h)

We have an associating path p(f, g, h) from (f +g) +h to f + (g+h). Similar pictures
show that the constant loop is a two-sided homotopy unit and that the loop —f,

obtained by running through f in the opposite direction, is homotopy inverse to f.
Hence QX is a group up to homotopy.

But there is more to the structure of 2X: if we take four inputs, the associating
homotopies assemble to a loop, i.e. we obtain a map S* x (RX)* = QX.
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(f+9)+(h+k)

o(f,9,h+k) o(f +9,h,k)

f+lg+(h+K)] (f+9)+H]+k

f+p(y’hlk) p(f,9,h) +k

P(.f|9+h:k)
F+lg+h)+K [f+(g+h)+k

This map can be extended over the 2-ball to a map
B? x (2X)* = QX.

If we take five inputs, six pentagons and three squares obtained from products of
associating homotopies assemble to a 2-sphere to give a map

S? x (QX)® = QX

which extends over the 3-ball etc. In other words, the n-dimensional homotopies

which arise fit together by an (n + 1)-dimensional homotopy; they are (homotopy-)
coherent.

1.3 Definition: A homotopy associative multiplication with homotopy unit in which
all homotopies are coherent up to dimension n — 2 is called an A,-structure (“A,” for
associative with coberence conditions up to n inputs).
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Our considerations imply (a more detailed proof will follow):

1.4 Theorem: A loop space admits an A-structure; it is an Ax-space. Moreover,
it has homotopy inverses.

A,-structures with strict units were introduced and studied by J. Stasheff [50]. He
implicitly proved a converse of Theorem 1.4.

1.5 Theorem: A connected A-space is of the weak homotopy type of a loop space.

To give a flavor of our methods we will sketch proofs of these results. Stasheff’s
associahedra are too complicated to deal with and the additional coherence relations
for the homotopy unit make things even worse. Therefore we need a new book-keeping
device for the coherence conditions.

2 Operads

2.1 Definition: A non-X-operad is a category B with object 0,1,2,..., topologized
morphism sets B(m,n) such that composition is continuous, and an associative con-
tinuous bifunctor
®:BxB—>B, médn=m+n
such that
(%) I B(m,1)x...x B(rg,1) = B(n,k)

r1+..+ry=n

(fiyees ) /10 /20...0 fi

is a homeomorphism. For technical reasons we assume that {id,} C B(1,1) is a closed
cofibration. A functor of operads is a continuous functor preserving objects and &.

2.2 Remark: In [3] non-E-operads without condition (*) were called categories of
operators without permutations, and in standard form if (x) is satisfied. Because of
(*), B is uniquely determined by the morphism spaces B(n, 1), n > 0, and composition.
For these restricted data May in [31] introduced the word (non-X) operad. We prefer
to stick to the older version of a category of operators in standard form but adopt the
catchphrase “operad”.

2.3 Definition: Let B be a non-X operad. A B-space is a continuous functor X :
B — Top sending @ to x. In particular, X(n) = X(1)". In abuse of notation we often
identify X with the space X(1).

2.4 Example: Let A be the terminal non-E operad: .A(n, 1) consists of a single point
in for all n. This forces composition

Fin © (kry © ... © pir,) = Phryttra:
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An A-space is monoid and vice versa:

o X® — X, (z1..-1Za) P Zy o2y, 21
po: X°={x} =X, %+ unite

Associativity and unit axiom follow from the commutativity of (note yu; = id)

Mo X iy 2 B1Xpo

3 2 X gy Xz

X ks B2 2]
B1Xp2 m m

X2—

2.5 Definition: A non-X operad B is called A-operad if the unique functor of op-
erads B — A is an h-equivalence (i.e. homotopy equivalence) of underlying morphism
spaces. In this case we call a B-space an A-space.

Our next aim is to construct a homotopy universal A,-operad. Given a non-Z operad
B we think of o € B(n, 1) as a black box with n inputs and one output. Composition
is represented by wiring boxes together. E.g.

SRV

(z-y)-2 Ty 2 z-(y-2)
If a € B(0, 1), the associated box has no input but one output. E.g.

T#o

In A the three trees of (2.6) represent the same operation. For a general B they may
be different.

2.6

We obtain a new non-X operad TB, where T'B(n, 1) is the space of all such formal trees
with n inputs. A morphism in TB(n, k) is an ordered k tuple of trees, composition
wires trees together, the identity is the trivial tree

in TB(1,1) having no box. Clearly, T'B is the free non-X operad over B.

If we want to describe a homotopy associative multiplication we have to join the left
and right tree of (2.6) by an interval. To do this, we give each edge joining two boxes
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(call these internal edges) a length ¢t € I and allow edges of length 0 to be shrunk.
Eg.

P2 \I
B2

represents pp o (u2 @ id) for t = 1 and pj for ¢t = 0. So both the left tree and the right
tree of (2.6) is joined to the middle one by a unit interval.

2.7 Construction: Let 7B be the non-£ operad obtained from TB by attaching a
length to each internal edge. Composition creates new internal edges which obtain the
lengths 1.

Let WB be the non-X quotient operad obtained from TB by imposing the relations

1)
a
t .
subtree ~ subtree Bo(id®adid) ift=0
B
)
t
subtree id ~ subtree max(ty, tz)
t2

(3) If in (2) the box “id” is at an input or at the output of the tree we drop it and
forget the length of the new input or new output.

We have seen that W.A(3, 1) contains a subdivided interval joining p, o (42 @ id) to
2 0 (id @ p2). The following picture shows the pentagon in W.A(4, 1) subdivided into
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five squares; each e stands for a p,:

W

We recall that T'B is the free non-X operad over B. We obtain WB from T'B by putting
back the relations in B up to coherent homotopies. The following result makes this
statement precise.

2.8 Proposition: The augmentation functor € : WB — B obtained by shrinking all
edges is a functor of operads and an h-equivalence of underlying morphism spaces.

Proof: B(n,1) is contained in WB(n,1) as trees with exactly one box. We deform
WB(n,1) into B(n,1) by shrinking each internal edge at time t by the factor (1 — ¢).
0

W B is homotopically universal with respect to this property.

2.9 Proposition: Given functors F' and G of non-X operads such that

-~ ,'D
/‘/F” 16
wB—EZ—¢

G is an h-equivalence of underlying morphism spaces, then there exists F:WB->D
uniquely up to homotopy through functors of operads such that G o F ~ F through
functors of operads.

Proof: Construct F inductively using the obvious skeleton filtration of WB and the
homotopy theoretical properties of an h-equivalence. O
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2.10 Corollary: Given an Ay -operad B there is a functor WA — B uniquely up to
homotopy through operad functors.

3 A-spaces, loop spaces, and monoids

‘We construct an A-operad which acts on loop spaces.

3.1 The operad Q: The morphism space Q(n,1) is the space of ordered n-tuples
of closed subintervals J; = [z;,%;] of I with disjoint interiors

| ' |

0 I Y1 T2 Y2 ... Tn Yn 1

Hence a point in Q(n, 1) is a 2n-tuple
0SSz < <2<y <...<Zp<yn <1

and we topologize Q(n, 1) as subspace of R?>*. Composition is insertion. E.g.

1 J Ja | 1 Jll e J; | | -’lz tee Jln |
[ 1o A\l 1 © | ]
@ B B2

is given by inserting the unit intervals of §; and of 8, with their subintervals linearly
into J; and J;, respectively.

The action of @ on a loop space X is given by the maps

Q(n,1) x (AX)* — QX
((Jieesdn), (fieees fa)) = (9: 1= X)

where g maps the subinterval J; by f; o r;, where r; is the linear expansion of J; to
[0,1]). The complement of |J}., J; is mapped to the base point.

3.2 Lemma: Q(n,1) is contractible. Hence Q is an A-operad.

Proof: Deform (0 < z; <41 < ... £ Tp < yn-< 1) linearly into (0 =2 <1 <1l <
2c..glcermy, o

This gives a detailed proof of Theorem 1.4, and (2.10) connects the natural A.-
structure of X to Stasheff’s associahedras:

3.3 Theorem: There is a natural Ay-structure on QX codified by the non—E operad
Q. In particular, QX is a W.A-space. O
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To prove the converse, we first show

3.4 Proposition: Let B be any non-X operad. Each WB-space X is a strong defor-
mation retract of a B-space MgX. In particular, each A-space is h-equivalent to a
monoid.

Proof: MgX = (]_[ TB(n,1) x X") [~

>0

(note X = X(1)). We think of an element of TB(n, 1) x X™ as a tree with lengths and
the entries (z1,...,z,) € X™ assigned to the n inputs. The relations are (2.7, (1),
(2)), and (2.7, (3)) if the box is NOT the one at the output. We need the following
additional relation: if ¢ = 1, then

N Yr 2

subtree ~ subtree i z=A(y,--- %)

On the right-hand side we evaluated A on the entries (y1,.-.,%,) to obtain z. The
B-structure of MgX is defined by operation at the output box: if v € B(n,1), then

| G
Y v IRRR v =
ﬂl ﬂn

The map

Yo (br®...08)

8

X

MBXs T — id

includes X as a strong deformation retract with deformation
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Our structures are homotopy invariant, an important and useful feature of “brave new
algebra”. Using (2.9) it is not terribly hard to show

3.5 Proposition: If X is a WB-space and Y is h-equivalent to X, then Y is a WB-
space, too. m]

4 The classifying space construction

Let A denote the category of ordered sets [n] = {0,1,... ;n} and order preserving
maps. The morphisms of A are generated by injections

d=d:[n-1 -], 0<in
missing i € [n] and surjections
si=st:[n+1]o[n), 0<i<n
mapping ¢ and i + 1 to i € [n].
We have the standard simplex functor
A — Top,

sending [n] to the standard n-simplex A™ with vertices ey, ... ,e, and a: [n] = [r] to
the linear map o:: A" — A" mapping e; to eq(i).

A simplicial space is a functor
Xe: AP = Top, [n]+— Xg,ama’.
Its topological realization is the space
1X| = (HX.. x A") [~
n>0
with the relations
(z,di(t)) ~ (d; (2),t) and (z,5:(t)) ~ (s} (2), ).
Any monoid M with unit e defines a simplicial space
M,:A? = Top
with M, = M,([n]) = M™ and structure maps

s Mo MM (z4,...,1,) > (21,...,€,Ti... ,ZTp)

di : M > M1 (z4,...,2,)— (Z2,...,%n), i=0
(z1y--+ yZi* Tit1y--- 1 Tn), 0<i<n
(Il,... ,$"_1), i=n
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4.1 Definition: The topological realization |M,| is called the classifying space of the
monoid M and denoted by BM.

Note that BM has a natural filtration B" M defined by the dimensions of the standard
simplices. By construction, B’M is a point and B'M = LM, the reduced suspension
of (M,e). The inclusion i : EM — BM induces a map

i:M = QBM, z+ (w,:tw— it z))

4.2 Proposition: [48, 1.5] Let M be a monoid with homotopy inverses such that
{e} C M is a closed cofibration. Then 1 is an h-equivalence.

4.3 Theorem: X is h-equivalent to a monoid iff X is an A..-space.

Proof: A monoid has an A-structure and therefore a W A-structure. If X is h-
equivalent to a monoid, it has a W.A-structure by (3.5). The converse follows from
(3.4). O

4.4 Theorem: X is h-equivalent to a loop space iff X admits a W A-structure with
homotopy inverses.

" This follows from (4.2) and (4.3). The cofibration condition can always be arranged.
O

Chapter II: E-spaces and infinite loop spaces
5 'Operads and E-spaces

If a loop space is a good space, an n-fold loop space
Q"X = QQ*X) = Top((I", aI"), (X, %)) = Top'(S", X)
is an even better space for n > 1.

5.1 Definition: An infinite loop space is a based space X together with a sequence
{Xn,0n;n € N} of spaces and h-equivalences o, : X, ~ QXp4; such that X ~ X,. If
X = X, and each o, is a homeomorphism, X is called a strict infinite loop space.

5.2 Properties
(1) Q"X is an abelian group up to homotopy for n > 2.

(2) If X is an infinite loop space, then Y — [Y, X,]* defines a cohomology theory.
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(3) If h* is a cohomology theory, there is an infinite loop space X whose associated
cohomology is A* for * > 0.

(4) Infinite loop spaces admit homology operations resembling Steenrod operations
in cohomology.

Again we are mainly interested in the algebraic structure of an infinite loop space.
As with loop spaces, we take property (5.2.1) as a guideline. To go from monoids to
commutative monoids we have to impose an additional relation on the u, of (2.4),
namely

5.3
Xn

T X"
\n /
X

commutes for any permutation 7 € X, of the n factors X™. So we have to add
permutations to our non-X operads.

5.4 Definition: An operad (as opposed to a non-X operad) is a non-X operad B with
the permutation group X, included in B(n,n) such that for 0 € £ and p€ &,

(1) o @ p is the usual direct sum permutation in £y,
(2) for f; € B(T,',l), i=1l...,kandn=r1+...4+ 7}
00 (f1®...0 fi) =(for1) ® ... ® fomrw)) 0 0(r1, ... ,7%)

where o(ry,...,7rx) is the block permutation in X, permuting the blocks
T1,...,T% according to o.

(3) Condition (*) of (2.1) is replaced by
I B(r,1)x...xB(r,1) x Lo/ ~ — B(n,k)
i (fiyee s fi50) — (1®...® fk)oo
is a homeomorphism, where the relation is given by
(fiom, ..., Jkom;0) ~ (f1yeee y fi(Mm® ... D) 00)
with m; € I,.

A B-space is a continuous functor B — T op mapping @ to X and preserving permu-
tations.

Remark 2.2 applies to operads, too. This time B is uniquely determined by the spaces
B(n, 1), composition, and the action of £, on B(n,1) by composition.
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5.5 Example: Let £ be the operad obtained from .A by imposing the relation (5.3).
Then €£(n,1) = {pa} necessarily has trivial £,-action and composition is forced. As
in (2.4), one shows that £-spaces are exactly the commutative monoids. £ is terminal
in the category of operads.

5.6 Definition: An operad B is called E.-operad and a B-space an Eo-space if the
unique functor B — £ is an h-equivalence of underlying morphism spaces, i.e. if
B(n,1) ~ * for all n.

We again try to construct a homotopy universal E-operad. The ideas are basically
the same as in Chapter I, but one has to work n-equivariantly throughout. Note that
any universal operad B has to have a free X,-action on B(n,1). We do not go into
details and just list the facts we need.

5.7 Proposition: (1) The W-construction extends to operads and ¢ : WB — B
induces a Lp-equivariant h-equivalence WB(n,1) = B(n, 1) for each n € N.

(2) Given a diagram of operads

such that G : D(n,1) — C(n, 1) is a L,-equivariant h-equivalence for all n, then
there exists F' : WB — D such that Go F ~ F through functors of operads,
uniquely up to homotopy through functors of operads.

(3) Property (2) holds if G is an ordinary h-equivalence and B(n,1) — B(n,1)/Z,
is a numerable principal Z,-bundle (for a definition see [9]) for all n € N.

5.8 Proposition: The M-construction (3.4) extends to operads B: each WB-space
X is a strong deformation retract of a B-space MgX.

5.9 Proposition: If X is a WB-space and Y ~ X, then Y admits a W B-structure.

6 The little n-cubes operad Q,

In this section we construct canonical operads Q, acting on Q"X for 1 <n<ooand
show that infinite loop spaces are E-spaces.

6.1 The operad Q,: The morphism space Qn(k,1) is the space of all k-tuples of
linear embeddings of I™ into I™ with disjoint interiors and axes parallel to the ones of
Im.
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[z |

element w in Q3(3,1)

A single embedding is determined by the images of (0,...,0) and (1,...,1). Hence we
can topologize Qn(k,1) as subspace of R?"™*. The action of I; is given by permuting
the labels of the little cubes. Composition wo (wy®. .. wy) is defined by inserting the
configuration w; linearly into the i-th little cube of w, producing a new configuration.

Q, acts on n-fold loop spaces Q"X = Top ((I",0I"), (X, %)) by

Ou(k,1) x (X} — Q"X
(w;(.fly---,fk)) — (g:]"—}X)

g maps the i-th little cube J; of w via f; or;, where r; : J; — I™ is inverse to the
embedding. The complement of Uf=1 J; is mapped to the base point.

6.2 The operad Q: Taking the product with I defines an inclusion Q,(k,1) C
Qn+1(k,1)

element of @,(3,1) considered as

element of @,(3,1)

and we define Qu(k,1) = colim, Q,(k,1). The following sketch shows that Q,(k,1)
is contractible in Qn41(k,1).

w

w
N
;
= 1]
]

-

Since the inclusion Q,(k,1) C Qn41(k,1) is a cofibration, we obtain
6.3 Proposition: Q is a Ey-operad.

T acts freely on Q,(k, 1) and it is not hard to show that Q. (k,1) = Qu(k,1)/Z is
a numerable principal Zx-bundle. Hence (5.7) implies
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6.4 Proposition: WQ,, is a homotopy universal E-operad, i.e. given an E-
operad B there is a functor of operads WQy, — B uniquely up to homotopy through
functors of operads.

The operations of the Q, on Q"X are natural enough to induce an action of Q.
on any strict infinite loop space. By a result of May [30], any infinite loop space is
h-equivalent to a strict infinite loop space. Using (5.9) we obtain

6.5 Theorem: Any infinite loop space is a W Q.,-space and hence an E..-space.

7 Interchange and delooping

We now address the converse of (6.5).

7.1 Definition: Let B and C be operads and suppose X has a B- and a C-structure.
We say that these structures interchange if the diagram

(X = ()t —2 s x (*)
| I
xm = X

commutes for each ¢ € B(m,1) and each 8 € C(k,1). The morphisms of B and C
with the relations from the interchange diagrams () define a new operad, denoted by
B ® C, which acts on X.

7.2 Examples: (1) A® A = €. This is the operad version of the well-known fact
that two commuting associative structures, which have the same unit, coincide
and are also commutative.

(2) Q® Qn — Qnt1. Here Q acts on the first and Q, on the last n coordinates of
I,

We need two properties of the interchange.

7.3 Proposition: If X has an A® W B-structure (in particular, X is a monoid), then
its classifying space BX admits a W B-structure.

7.4 Proposition: If X has a WA ® WB-structure, then the monoid M4X of (3.4)
has an A ® W B-structure.

We can now prove the converse of (6.5).

7.5 Theorem: An E-space X admitting homotopy inverses is an infinite loop space.
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Proof: By (6.4) X is a WQ-space. Then Y = Mg_X is a Q.,-space equivalent to
X and hence a Q ® Q-space by (7.2). Since Q is an A-operad, Y isa WA ® Q-
space. By (7.4) M,Y is an A ® WQ,.-space. Hence the classifying space BM Y
admits a W Q-structure by (7.3). By assumption, MY has homotopy inverses, and
the inclusion of the unit is a cofibration by construction. Hence

X ~QBM,Y.

One can show that BM,Y has homotopy inverses and we can proceed inductively. O

8 Applications

Let J denote the category of real inner product spaces of countable dimensions and
linear isometric maps and Jyin the full subcategory of finite dimensional ones. Give
each A € Jji, the norm topology and each infinite dimensional one the colimit topology
of its finite dimensional subspaces. The following result is easy to show.

8.1 Lemma: J(A,R*®) with the function space topology is contractible.

8.2 The linear isometry operad L is defined by L(n,1) = J((R*)",R®) with the
obvious XI,-action. Composition is the composition of isometic maps. £ is an E-
operad by (8.1).

Given a continuous functor T : Jy;n — Top together with a natural transformation
w:TAxTB — T(A® B) such that

(1) T(0) = *

(2) w is associative, commutative, and unital.

Then colim, T(R") is an L-space by direct inspection and hence an E.-space.

8.3 Examples: (1) T(A) = O(A), the orthogonal group of A. Then colim, O(R")
is the stable orthogonal group O.

(2) T(A) = U(A ® C), the unitary group of A® C. Then colim,U(R* ® C) =
colim, U(C") is the stable unitary group U.

(3) T(A) = BO(A), the classifying space of O(A), and similarly BU(A ® C). We
obtain the stable spaces BO and BU.

(4) T(A) = TOP(A), the group of homeomorphisms of A. In this case we obtain
the stable group TOP.

(5) T'(A) = Sp(A®H), the symplective group of AQ H. We obtain the stable group
Sp.
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(6) T(A) = F(S*4), the monoid of self homotopy equivalences of the sphere S4,
which is the one-point compactification of A. Then colim, F(S%") is the stable

group F, the “homotopy units” of the brave new ring Q(S°) defined in the next
chapter.

We obtain

8.4 Theorem: The stable groups O, SO, Sp, U, SU, F, TOP, their coset spaces
F/TOP, F/O, TOP/O, etc., and the stable classifying spaces BO, BSO, etc. are all
infinite loop spaces.

Chapter III: Brave new rings

So far we have considered A.-spaces, loop spaces, E-spaces, and infinite loop spaces
and claimed that they are brave new versions of monoids, groups, abelian monoids,
and abelian groups. This may be plausible for A-spaces and loop spaces: X is an
Ax-space iff it is h-equivalent to a monoid. Hence an Ay-structure is the homotopy
invariant version of a monoid structure. Similarly, a topological group with reasonable
topology is h-equivalent to a loop space and vice versa; and loop spaces are important
objects of homotopy theory. Homotopy ring spaces, whose investigation is motivated
by the geometry of manifolds, have Eq.-structures as additions. This is why E.-spaces
ought to replace abelian monoids in brave new algebra.

9 Brave new rings and K-theory
During the sixties topologists became more and more interested in topological groups
such as
Diff (M,0M) = {diffeomorphisms f : M — M with f|OM = id},
where M is a differentiable manifold with boundary M, possibly empty.
One of the first questions to ask is
9.1 Problem: What are the homotopy groups of Diff (M, dM)?

This is a difficult problem, and one step in solving it is to consider a supposedly easier
variant.

9.2 Problem: Compute ,(Diff (M x I,0M x UM x 0)).

9.3 Definition: If M is a manifold, P(M) = Diff (M x I,0M x I UM x 0) is called
the pseudoisotopy space of M.



INTRODUCTION TO ALGEBRA OVER “BRAVE NEW RINGS” 67

The following result is due to Hatcher and Wagner [16] with corrections by Igusa [18].

9.4 Theorem: If M is a differentiable manifold and dimM > 6, then there is an
exact sequence

K3(Z[G]) = Wh{(G; (2/2) © ma(M)) = mo(P(M)) = Wha(G) - 0

Here G is the fundamental group m (M) of M, K, is Quillen’s algebraic K-functor,
Whi(G; A) = A® Z[G]/G with A a G-Modul (take orbits to form the quotient), and
Why(G) = K2(Z[G])/75(BG) is a “higher” Whitehead group.

We need not understand this exact sequence. It serves as a motivation for the things
to come. Relations of this kind between algebraic K-theory and the geometry of
manifolds made Waldhausen realize that an extension of Quillen’s algebraic K-theory
[39] from ordinary rings to homotopy ring spaces such as Q(Q2X ;) defined below should
contain much more geometrical information than the algebraic K-theory of the group
ring Z[m X).

9.5 The brave new ring Q(0X,): If X is a space and may be based, then X, =
X U {point} with the extra point as base point. If X and Y are based spaces with
base points *, recall the smash product

XANY =XxY/(X x{x}u{x}xY)
and the reduced suspension LY = S! AY. We define .
Q(Y) = colim(Y - QTY 228 0?7y — ...)

with o(y) : S' = Y, t — (t,y). Clearly, QY is a strict infinite loop space. If Y is a
T;-space, then 7;(QY) = m(Q"X"Y) if n > i+3 by Freudenthal’s suspension theorem.
Since the group on the left does not depend on =, it is called the i-th stable homotopy
group of Y. So Q(Y) is the stable homotopy (space) of Y.

This infinite loop space structure is the additive structure of Q(2X,). If Y is an
Ao~ or Ey-space, e.g. a loop space, then Q(Y,) has an additional multiplicative Ae-
or E-structure, respectively. If £ : Y x Y — Y is an operation and f,g : S —
£7(Y;) = S™ AY, represent elements in Q(Y;), then

p(f,9): S =S"AS* 128 SUAY, ASTAY, MY x V), £ DY,

defines a multiplication on Q(Y}) which is related to the additive structure by dis-
tributive laws up to homotopy. :

Waldhausen’s proposal: Replace the ground ring Z by the E.-ring Q(S°), the
stable homotopy of the spheres (note that S® = (Point),), and the group ring Z[m;X]
by the A,-ring Q(QX,), and extend classical algebraic constructions to these types
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of “rings”. Although E.-ring spaces had been introduced earlier by May [32] this
was the starting point of “brave new algebra”. Note also that mQ(S°) = Z, and
moQ(QX;) = Z[m X]. Hence the classical versions are the rings of path components
of these particular brave new rings, and

7o : Q(X4) = Z[m X]
is a homomorphism of brave new rings.

To cut things short, let me give a summary of the history of A.- and E..-ring struc-
tures and of some of the early applications.

1977 May defined E-ring spaces using pairs of operads which codify the additive
and multiplicative structure and are related via distributive laws. He introduced
them to study the various classifying spaces of geometric topology, and, in par-
ticular, to construct homology operations. [32]

1978 Waldhausen defined his famous functor A(X), the algebraic K-theory of a topo-
logical space X [54]. This is an extension of Quillen’s algebraic K-functor to
Aoo-ring spaces of the type Q(Q2X,).

1978 Motivated by Waldhausen'’s construction, May introduced more general A..-ring
spaces using his pairs of operads approach and constructed their K-theory [33].
These structures are very rigid and not well adapted for algebraic constructions.
May was very sceptical about good properties of the associated K-theory (see
his remarks in [33] and [34].)

1981 Steiner could refute May’s scepticism. He proved that the K-theory of an A.-
ring space in May’s sense is an infinite loop space and that for Q(2X,) its
K-theory is equivalent as infinite loop space to Waldhausen’s A(X).

1982 (joint work with R. Schwinzl) Using an observation of Steiner we introduced a
more flexible homotopy invariant definition of Aw- and E-ring spaces. May’s
spaces satisfy our requirements and each homotopy ring space in our sense is
h-equivalent to one in May’s sense [43].

1984 We showed that matrices and subgadgets like upper triangular matrices over
homotopy ring spaces have the properties one expects and show that the algebraic
K-theory of an E-ring space is itself an E-ring space. This also clarifies the
formal multiplicative properties of classical algebraic K-theory of commutative
rings [44], [45], [46].

First applications

In 1979 Waldhausen among other things could prove (we use the notation K(Q(Q2X.))
instead of A(X)):
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9.6 Theorem: [55] (1) K(Q(RX,)) ~ Q(X4) x WhPE(X)
(2) The mp-map induces a rational equivalence K(Q(S°)) — K(Z)

The first result confirms Waldhausen’s conjecture that the algebraic K-theory of
Q(2X) contains a lot of geometric information about X. For a manifold M

Tira(WhPH(M)) = my(P(M)) 20

where P(M) = colim, P(M x I™) is the stable pseudoisotopy space of M. Modulo
rounding of corners, the colimit is formed by crossing with I. In the “pseudoisotopy
stability range” its homotopy groups coincide with the ones of P(M).

9.7 Theorem: (Igusa [19]) For a differentiable manifold M with dim M > max(2k +
7,3k + 4) the homomorphism m;(P(M)) — mi(P(M)) is surjective for ¢ < k and
injective for i < k.

Waldhausen'’s result also to some extent explains the intriguing connection between
the stable homotopy groups of the spheres and K(Z), and hence also with classical
number theory.

The second part of (9.6) is a special case of a more general result of Waldhausen, which
Farrell and Hsiang [12] exploited to show (note the pseudo isotopy stability range)

9.8 Theorem: For n > max(2i + 7,3i + 5)

Q i=4k—-1, nodd

=;( Diff(B",0B")) ® Q & { 0 otherwise

QeQ i=4k-1, nodd
=;( Diff(S*))® Q=< Q i=4k—1, neven
0 otherwise.

10 Spectra

No matter which definition of homotopy ring space one uses the complexity of its
structure is quite formidable. What one ideally wants is a black box which automat-
ically takes care of the coherence structure. Such a black box had been around for
some time, but was not sophisticated enough: each strict infinite loop space is the 0-th
space of a (connective) spectrum and vice versa.

10.1 Definition: A naive prespectrum E = {E,,ex}n>0 consists of based spaces E,
and structure maps e, : LE, = E,,;. If the adjoints

én: En - QE’I-H) é,,(:z:) : Sl - En+l, t— e‘n(tz IL‘)

are homeomorphisms, we call E a naive spectrum.
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Since each infinite loop space is h-equivalent to a strict one, the category Sp of spectra
could replace the category of infinite loop spaces and hence the category .Ab of abelian
groups in brave new algebra. This takes care of the additive structure. To deal with
multiplicative structures we need a “brave new tensor product”. An indication of
what to look for is provided by the Kiinneth theorem in homology: there is an exact
sequence in reduced homology with Z-coefficients

0 = (Hu(X) ® H(Y))n = Ha(X AY) = Tor_1(H.(X), H.(Y)) = 0.

Hence the smash product is a kind of totally derived tensor product. Our plan is to
extend the smash product to spectra. But here problems arise.

Given spectra {Ey,,e,} and {F,, f,} we can form a bigraded object {Ex A Fi}x;. To
obtain structure maps we consider the diagram

2(Ey A Fy) ==159(Ex A F) == 5(Ey A 52 Fy) Lo 51 By A Fay

o | twist
L2Ex AF) ==X 5,(Ex A F))
[
Zo(Z1Ex A Fy)
€k

22(Ers1 A Fy) —— B A2 F N Eppa A Fpyy

The big square commutes, but the twist is homotopic to —id. Hence structure maps
for { Ex A Fi} involve substantial choices so that the resulting smash product cannot
have good properties.

A first solution was discovered by Boardman in 1964 [2]. In Example 8.3.6 the natural
transformation w : F(S4) x F(S?) — F(54®5) is the smash product of homotopy
equivalences S4 — S# with homotopy equivalences S — S using the fact that
S4B o GA A S8 Boardman’s construction is based on this observation and uses real
inner product spaces and linear isometries. We describe a variant of his construction
due to Lewis, May, Steinberger [27], which is more widely used.

10.2 Definition: A universe U is a real inner product space Y = R®. A prespectrum
E assigns a based space EV to each finite dimensional subspace V' of U and a map

Gyvw:EV -5 QV-VEW
for each V C W. Here W — V is the orthogonal complement of V' in W and

QVX = Top*(SY, X)
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If the Gy,w are homeomorphisms, F is a spectrum.
A map of (pre-) spectra f : E — F is a collection of maps fy : EV — FV such that

EV Iv FV
Fv.wl Sv,.w
Qv-vEW - L ow—v

commutes. Let SUY and PSU denote the categories of spectra and prespectra over the
universe U, respectively.

10.3 The inclusion SU — PSU has a left adjoint L : PSU — SU called spectrifica-
tion.

10.4 The external smash product —A— : SUXSY — S(UDYV) is the spectrification
of the functor

—A=:SUXSY —PSUBDYV)
with (EA F)(U ® V) = EU A FV.

To get an internal smash product Boardman showed that any linear isometry f : U —
V induces a functor f, : SU — SV. So an isometric isomorphism f : R® @ R® — R®
induces an internal smash product

S(R®) x S(R®) — S(R®).

Using the fact that the space J((R®)"™, R*®) of linear isometries is contractible Board-
man proved

10.5 Proposition: Any two internal smash products defined in this way are h-equi-
valent and each is coherently homotopy-associative, -commutative, and -unital.

While this was good enough for the problems considered at that time, such as the
investigation of generalized cohomology theories, it is not good enough for our pur-
poses. We put the additive E-structure into a black box at the expense of replacing
an associative, commutative and unital smash product by an E-smash product. We
have gained nothing!

The breakthrough came with an observation by Hopkins in 1992 [17], which was sub-
sequently exploited by Elmendorf, Kriz, Mandell, and May [11]. For its description
we need an extension of Boardman’s functor f, from [27]. Let & and U’ be universes
and Top/J (U,U') the category of spaces over the space J(U,U') of linear isometries.

10.6 Proposition: There is a functor

Top/TUU') x SU—~ SU', (A,E)— AxE
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such that
(1) {idy} x EXE (idy is the space * = J(U,U), * — idy)

(2) Given B x A Z4 g, u") x JU,U') =53 J(U,U"), then
(BxA)x EXBx (Ax E).

Once U is fixed we use the notation £(n,1) = J(U®,U) of §8.

The proposition makes sense for the non-universe 0. Since a 0-indexed spectrum is
just a single space and U° = 0 we obtain a functor

Z%:Top—+8U, X L(0,1)x X.

The sphere spectrum S is defined to be Z®°(S°).

10.7 Definition: An L-spectrum is a spectrum E € SU equipped with an action
L(1,1) x E — E of the monoid £(1,1).

For L-spectra we can define an even better smash product. Note that £(1,1) acts on
the left of £(2,1) and £(1,1) x £(1,1) on its right by composition. Mimicking the
usual tensor product construction we define

10.8 Definition: On the category of L-spectra we have a smash product
ENF= 5(2, 1) X £(1,1)xL(1,1) (E A F)

where E A F' is the external smash product.

The proof of the following result now reduces to an analysis of linear isometries.

10.9 Proposition: This smash product is associative and commutative (up to co-
herent isomorphisms) but it is NOT unital, but there is a natural weak equivalence
Ap:SAcE—E.

10.10 Definition: An S-module is an L-spectrum F for which Ag is an isomorphism.

10.11 Proposition: The smash product A. on the category of L-spectra restricts to
an associative, commutative, and unital smash product As on the subcategory Mods
of S-module spectra.

10.12 Definition: A (commutative) S-algebra is a (commutative) monoid in the sym-
metric monoidal category (Mods, As).

As in classical algebra we can extend the smash product to a smash product Ag over
a commutative S-algebra R. We then can talk about R-modules and R-algebras, etc.
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10.13 Proposition: Ag enjoys the formal properties of the classical tensor product
such as associativity, commutativity, and cancellation R Ag M = M.

Modg and the categories of module and algebra spectra obtained from it are the black
boxes we were looking for because we have

10.14 Proposition: Each spectrum is weakly equivalent to an S-module. The 0-
th space of a (commutative) S-algebra is an (Ew-) A-ring space. Conversely, the
spectrum associated to an (E-) Ax-ring space, which is obtained from its underlying
additive infinite loop space, is weakly equivalent to a (commutative) S-algebra.

Chapter IV: Algebraic applications

Practically all known algebraic applications of “brave new algebra” originate from func-
tors defined to gain information about K-theory. At a conference in Evanston in 1976,
K. Dennis constructed trace maps from the K-theory K(R) of a ring to its Hochschild
homology HH(R). This triggered Waldhausen to construct a more general trace map
for simplicial rings [55]. He then conjectured that a type of Hochschild homology over
the homotopy ring space Q(S°) would provide more information for the K-theory even
of classical rings. This “topological” Hochschild homology THH(R) was constructed
by Bokstedt for F'SPs, which stands for Functors with Smash Products, in 1985 [6].
Simplicial rings give rise to such F'SPs and Bokstedt showed that Waldhausen’s trace
factors through THH. THH(R) is equipped with an S!-action and Goodwillie sug-
gested a program for a “topological” cyclic homology TC(R) through which Békstedt’s
trace should factor. The details were worked out by Bokstedt, Hsiang, Madsen [7)], and
independently by Goodwillie [14]. So we have the following h-commutative diagram
of trace maps

K(R) ¥ .~ HH(R)

| TN

TC(R) THH(R)

where trc is the cyclotomic trace of [7] and trt the topological trace of [6].

11 Topological Hochschild homology

We start with the topologist’s definition of Hochschild homology. Let R be a commu-

tative ring, A an R-algebra, and M an A-bimodule. We define a simplicial R-module
by
[n]— A®rA®R...AQr M (n copies A)

For the structure maps arrange the tensor product in a circle
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11.1

®r ®!R

A2 n-1l,
® ®
Bal o Pg°F
®r M ®r

The i-th boundary map d; is given by the multiplication of the i-th and (i + 1)-st
factor, the i-th degeneracy inserts 1 between the i-th and (i + 1)-st factor.

11.2 Definition: The Hochschild homology space HH®(A; M) is the topological re-
alization of this simplicial R-module. The Hochschild homology groups are

HHP(A; M) = m; HHR(A; M).

We note that HH®(A; M) is a topological R-module. For simplicity we denote
HHZ(A; A) by HH®(A) and observe that we have a cyclic structure on HHRE(A)
induced by the obvious rotations of the Diagrams 11.1.

11.3 Definition: Let R be a commutative S-algebra spectrum, A an R-algebra spec-
trum, and M an A-bimodule spectrum. Topological Hochschild homology TH H®(A; M)
is defined to be the realization in the category Modg of R-module spectra of the sim-
plicial R-module spectrum

[n]I—>A/\AA/\A.../\AA/\AM (ncopiesA)

with structure maps as in 11.1. Again we write THH®(A) for THH®(A; A) and
THHE(A; M) for m(THHE(A; M))..

11.4 Remark: In 1985 when Bokstedt defined THHS there was no known associa-
tive, commutative and unital smash product. To get around this problem Bokstedt
used F'SPs instead of spectra and went through a stabilization process. Since a (com-
mutative) FSP defines a (commutative) S-algebra, Definition 11.3 covers the case of
FSPs.

Even for classical rings R represented by their Eilenberg-MacLane ring spectra topo-
logical Hochschild homology is a new invariant. In [5] Bokstedt showed

11.5

Z k=0
THH3(Z)={ Z/i k=2i—1 and THHS(F,) & F,[z]
0  otherwise with degree (z) =2
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A first surprise was that topological Hochschild homology could be exploited to com-
pute homology groups of Gl (R) with coefficients in the adjoint representation M, (R)
for classical rings. Here Gl (R) = colim, Gl,(R) and M (R) = colim,, M,(R) where
M,(R) is the set of all (n x n)-matrices over R, and Gl(R) acts on My (R) by
conjugation. Work of Waldhausen [54] and Dundas-McCarthy [10] implies

11.6 Proposition: Hn(Glo(R), Mx(R)) = @ Hi(K(R);THH}(R)).

i+j=n

From Quillen’s calculations of K(F,) and Bokstedt’s calculations 11.5 we obtain

11.7 Proposition: Hy(Gloo(F,), Mwo(F,)) & { Oz/” n even

The next surprise was that THHS3(R; M) for classical rings and bimodules coincides
with MacLane homology HML(R; M) defined 30 years earlier [29]. The equivalence of
the two functors was proved by Pirashvili and Waldhausen [38] by characterizing both
of them as derived functors of the same functor. There is a short heuristic argument for
this equivalence using brave new algebra [13]. So 11.5 also constitutes a first complete
calculation of the MacLane homology for two examples.

Some years after Bokstedt’s result appeared in preprint form, Lindenstrauss calculated
THHS(R) for R = Z[X[/(X™),R = Z[X]/(X™ - 1), and R = F,[X]/(f), f a monic
polynomial [23], and Pirashvili for group rings R[G] [37], both using spectral sequence
arguments and 11.5. Their calculations follow much more easily from a general result
proved by using brave new algebra [47):

11.8 Proposition: Let K be a classical commutative ring and R a flat K-algebra.
Let HK and HR denote their associated Eilenberg-MacLane ring and algebra spectra.
Assume there is a commutative S-algebra spectrum A and an A-algebra spectrum E
such that

(1) HK is a commutative algebra over A

(2) there is a weak equivalence of HK-algebras EA4 HK — HR.

Then (modulo technical cofibrancy conditions)

THHA(HR) ~ HHX(R) &x THHAHK),

as graded K-modules (as graded K-algebras in the commutative case), where é stands
for the total left derived of ®.

Proof sketch: The symbol ~,, will denote a weak equivalence.

THHA(HR) ~, THHA(E A4 HK) = THHA(E) A, THHA(HK)
& THHA(E) Ay HK Agx THHA(HK) -
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Now THHA(E) A4 HK is the realization of the simplicial spectrum
[n.] — (E/\AE/\A.../\AE)/\AHKg (E/\AHK)/\}"{.../\HK(E/\AHK)

Hence .
THHA(HR) ~, THHHX(E A4 HK) Agx THHA(HK)
~u THHHK(HR) ANgk THHA(HK).

Our assumptions imply that THH?X(HR) = HHX(R), and we have already pointed

out that (modulo cofibrancy conditions, which we have to assume throughout the
L

proof) Agk corresponds to ® by passage to homotopy groups. O

11.9 Example: Let G be a group, R = Z[G] the group ring. Take K = Z and A

to be the spere spectrum S in Proposition 11.8. Then E = X*®(G.) satisfies the
assumptions. Hence

THH3(2[G)) = HHY(Z|G]) 62 THH(Z)

The right-hand side is known in terms of group homology. E.g. if G is a finite abelian

group of order n, then

THH{(Z[G)) = @D Hy(G;Z)"®@THH;(Z)® P Tor’(H,(G;Z)", THHI(Z)).
p+q=k rt+e=k-1

For further examples see [47].

Not every classical ring satisfies the assumptions of the proposition. An example is
the ring Z[i] of Gaussian numbers, whose topological Hochschild homology has been
determined by Lindenstrauss [24].

12 Topological cyclic homology

Today the main interest in topological Hochschild homology comes from the fact that
its cyclic structure given by cyclicly rotating the Diagrams 11.1 gives rise to topological
cyclic homology. Let C, denote the cyclic group of order n and T°*(R) the C,-fixed
point set of THHS(R). We have the obvious inclusion functors

Dy : TC » TG
and there are k-th power maps
@) : TO — TG,
The D) and ®; satisfy the following relations
q’,‘ o @] = Qk-l Dg o D[ = Dk-l
(kaD|=D¢O¢k D1=@1 =id
Let B be the category with objects n € N,n > 1, and morphisms Dy, ®x : k-1 — 1
satisfying these relations.
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12.1 Definition: Topological cyclic homology TC(R) of a classical ring R is
TC(R) = holimgT%"

12.2 Remark: The formal properties of the cyclic structure of THH are well under-
stood for F'SPs and, so far, topological cyclic homology is just defined for F.SPs; the
extension to ring spectra is still work in progress.

As we pointed out at the beginning of this chapter, TC(R) is much closer to K(R)
than THH(R). We have the following result due to McCarthy [28].

12.3 Proposition: Let f : A — B be a ring epimorphism with nilpotent kernel, and
let p be a prime. Then the cyclotomic trace is an isomorphism of relative groups

trc: K(A— B), *TC(A— B))
after p-completion.

So in some cases the calculation of algebraic K-theory reduces to the more easily
accessible calculation of topological cyclic homology. E.g. Hesselholt and Madsen
could show [15]

12.4 Proposition: Let K be a perfect field of characteristic p > 0, and let A be a
finitely generated algebra over the Witt vectors W (K). Then

K.(A), = TC.(A); .

Explicit calculations of K(Z7); were obtained by Bokstedt and Madsen for p > 2 [8]
and by Rognes for p = 2 [41].

13 The K-theory of the integers

The algebraic K-theory K(Z) of the integers is of great interest for various reasons.
We have already pointed out its connection with the stable homotopy groups of the
spheres. There are also various number theoretic conjectures related to K(Z). Let me
mention just one

13.1 Weak Quillen-Lichtenbaum Conjecture: The {-function satisfies

#K2n(z)
#Kon1(Z)

where # denotes the number of elements of the group.

I((=n)| =2

13.2 Calculations of K,(Z):
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Ko(Z)=Z classical
Ki(2)=2Z/2 classical
K(Z)=Z]2 Milnor (1971)
#K3(2Z) is divisible by 48 | Karoubi (1974)
K3(Z)=7Z/48 Lee, Szczarba (1976)

K4(Z) and K;5(Z) have no
p-torsion for p > 5

Lee, Szczarba
Soulé (1978)

K4(Z) has no 3-torsion

Rognes (1994)

Ki(Z) =0

A considerable advance in the calculation of K(Z), including the final part of the proof
that K4(Z) = 0, was brought about by Voevodsky’s solution of the Milnor Conjecture
[62]. Although the published version does not explicitly use “brave new algebra”,
parts of the proof are definitively inspired by it. Using this result and the Bloch-
Lichtenbaum spectral sequence [1], Weibel calculated the 2-primary part of K(Z) [56].
He tacitly assumed that the spectral sequence has certain multiplicative properties,
which have not yet been verified. This gap was closed by Rognes using topological

cyclic homology [42].

Rognes, Weibel (1996)

13.3 The 2-primary part of K, (Z)

K. (2)

Z & (3 — torsion)
(odd torsion)
Z /240 @ (odd torsion)

N o o3

v
-

8k+1
8k +2
8k+3
8k +4
8k+5
8k+6
8k+17

(odd torsion)

Z®Z/2® (odd torsion)

Z/2@& (odd torsion)

Z/16® (odd torsion)

(odd torsion)

Z @ (odd torsion)

(odd torsion)

Z/w; ® (odd torsion),i = 4(k + 1)
w; = largest power of 2 in 4¢
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