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INTRODUCTION TO ALGEBRA OVER 
"BRAVE NEW RINGS" 

R.M. VOGT 

"Brave New Rings" is a catchphrase introduced by Waldhausen for algebraic structures 
on topological spaces which are ring structures up to coherent homotopies. "Coherent" 
means that the homotopies fit together nicely (see below). Such "rings" were intro­
duced in the mid seventies in an effort to analyze the structure of classifying spaces 
arising from geometry [32]. 

Waldhausen was the first person to extend classical algebraic constructions to the world 
of brave new rings. The most famous one is his algebraic if-theory of topological spaces 
[54], [55] which, in fact, is an extension of Quillen's algebraic if-functor to certain 
brave new rings. Other algebraic constructions are Bokstedt's topological Hochschild 
homology [6] or the topological cyclic homology of Goodwillie [14] or Bokstedt-Hsiang-
Madsen [7]. 

Although this extended algebra is still at its initial stage it has already proved to have 
remarkable applications in geometry and classical algebra. 

Let me present a dictionary 

Dictionary 

classical algebгa brave new algebгa spectгa version 
monoid Aoo-space -
group loop space -

abelian monoid .Êľoo-space -
abelian group infinite loop space S-module spectгum 

ring Лoo-гing space monoid in Mods 
commutative гing Æoo-ring space commutative 

monoid in Mods 
ground ring Z Ĵ oo-ring space Q(S°) spheгe spectгum S 

tensoг pгoduct ®z ? smash pгoduct Лs 

*The paper is in final form and no version of it will be suVnitted elsewhere. 
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To give the reader a feeling for the problems and concepts involved we investigate 
the simplest cases, namely .Aoo-spaces and loop spaces, in some detail, giving at least 
indications of proofs. We then treat the algebraic structure of .Goo-spaces and infinite 
loop spaces. These structures were introduced in the sixties [50], [3]. We then pass 
to homotopy ring spaces. It will soon become clear that algebraic constructions over 
homotopy ring spaces, though in principle often possible, are quite involved - the 
structure is very complex. The way out is a black box in terms of spectra, which we 
will introduce in Chapter 3. The final chapter summarizes some applications which 
either involve "brave new algebra" directly or which use its methods and ideas. 

The paper consists of notes of a series of lectures delivered at the 18th Winter School 
on Geometry and Physics in Srni, Czech Republic. I would like to thank the organizers 
for a delightful week in the Bohemian Forest. 

Chapter I: Aoo-spaces and loop spaces 

We will work in the categories Top and Top* of compactly generated spaces and 
their based versions, respectively. Limits, colimits and function spaces are taken in 
these categories. They have the useful properties that quotients commutate with finite 
products and that the exponential law for function spaces holds in general. 

1 The structure of a loop space 

1.1 Definition: The loop space SIX of the based space (X, *) is the space of all maps 

SIX = Top ((/, 3/), (X, •)) a Top*(S\X) 

with the constant map as base point. Here / is the unit interval and Sl the unit 
sphere. 

Loop spaces have been studied extensively in algebraic topology but also have appli­
cations in other fields of mathematics such as differential geometry (Marston Morse's 
work on geodesies on Riemann n-spheres is nothing but the calculation of the homology 
of SlSn [36]) or, more recently, mathematical physics. 

1.2 Elementary properties 

(1) If [X, Y]* denotes the based homotopy classes of based maps, then [X, SlY]* is a 
group. 

(2) SIX is a topological group up to homotopy (this is equivalent to (1)). 



INTRODUCTION TO ALGEBRA OVER "BRAVE NEW RINGS" 51 

(3) nn(HX) *- 7rn+i(.K) where irn(Y) = [5",!^]* denotes the n-th homotopy group 
of Y. In particular, the fundamental group 7Ti(fl.K) is abelian. 

(4) Singular homology Hm(SlX) with arbitrary coefficients is a graded algebra. 

In this section we are interested in the algebraic structure of (IX and hence expand a 
little on property (2). We define loop addition by 

f + g.I^X, *-»• ^ 5 ( 2 i _ l ) I < t < l 

i.e. we first run through the loop / and then through the loop g with double speed. 
Loop addition is only homotopy associative as the following picture shows 

homotopy inteгval 

loop 
interval 

U+g)+Һ f + ÍЯ + h) 

We have an associating path p(/, g, h) from (/+g) + h to / + (g + h). Similar pictures 
show that the constant loop is a two-sided homotopy unit and that the loop —/, 
obtained by running through / in the opposite direction, is homotopy inverse to /. 
Hence QX is a group up to homotopy. 

But there is more to the structure of QX: if we take four inputs, the associating 
homotopies assemble to a loop, i.e. we obtain a map S1 x (ilX)A -> SIX. 
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(f + 9) + (h + k) 

P(f,9,h + k) P(f + 9,htk) 

f + \9+(h + k)] 

f+j>(gXk) 

l(f + 9) + h] + k 

P(f,9,h) + k 

f + l(9 + h) + k] [/ + (* + «] + * 

This map can be extended over the 2-ball to a map 

B2 x (QX)A -> SIX. 

If we take five inputs, six pentagons and three squares obtained from products of 
associating homotopies assemble to a 2-sphere to give a map 

S2 x (fiX)5 -+ SIX 

which extends over the 3-ball etc. In other words, the n-dimensional homotopies 
which arise fit together by an (n + l)-dimensional homotopy; they are (homotopy-) 
coherent 

1.3 Definition: A homotopy associative multiplication with homotopy unit in which 
all homotopies are coherent up to dimension n — 2 is called an An-structure (uAn

n for 
associative with coherence conditions up to n inputs). 
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Our considerations imply (a more detailed proof will follow): 

1.4 Theorem: A loop space admits an .Aoo-structure; it is an ./loo-space. Moreover, 
it has homotopy inverses. 

i4„-structures with strict units were introduced and studied by J. Stasheff [50]. He 
implicitly proved a converse of Theorem 1.4. 

1.5 Theorem: A connected ./loo-space is of the weak homotopy type of a loop space. 

To give a flavor of our methods we will sketch proofs of these results. StashefTs 
associahedra are too complicated to deal with and the additional coherence relations 
for the homotopy unit make things even worse. Therefore we need a new book-keeping 
device for the coherence conditions. 

2 Operads 

2.1 Definition: A non-H-operad is a category B with object 0 ,1,2, . . . , topologized 
morphism sets B(m, n) such that composition is continuous, and an associative con­
tinuous bifunctor 

© : B x B -> B, m^n — m + n 

such that 
(*) II B(rul)x...xB(rkll)^B(n,k) 

ri+...+rfc=n 

(/i, - • • , fk) •—> A e f2 e . . . e fk 

is a homeomorphism. For technical reasons we assume that {idi} C B(l. 1) is a closed 
cofibration. A functor of operads is a continuous functor preserving objects and ©. 

2.2 Remark: In [3] non-E-operads without condition (*) were called categories of 
operators without permutations, and in standard form if (*) is satisfied. Because of 
(*), B is uniquely determined by the morphism spaces B(n, 1), n > 0, and composition. 
For these restricted data May in [31] introduced the word (non-E) operad. We prefer 
to stick to the older version of a category of operators in standard form but adopt the 
catchphrase "operad". 

2.3 Definition: Let B be a non-E operad. A B-space is a continuous functor X : 
B -» Top sending © to x. In particular, X(n) = X(l)n. In abuse of notation we often 
identify X with the space X(l). 

2.4 Example: Let A be the terminal non-E operad: A(ny 1) consists of a single point 
fin for all n. This forces composition 

»n O (Hn 0 . . . © / l r J = /Xr1+...+r„. 
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An ,4-space is monoid and vice versa: 

fin : .Kn —>Xy (xi... ,xn) i-> Xi 
fiQ:X° = {*} -> X, * i—•» unit e 

•ГГn, n > l 

Associativity and unit axiom follow from the commutativity of (note /ii = id) 

A-2X/І1 /-0X/-1 /ilX/lo 

/-1X/І2 

2.5 Definition: A non-E operad 5 is called AoQ-operad if the unique functor of op-
erads B -> .A is an /^equivalence (i.e. homotopy equivalence) of underlying morphism 
spaces. In this case we call a B-space an Aoo-space. 

Our next aim is to construct a homotopy universal _4oo-operad. Given a non-E operad 
B we think of a G B(n, 1) as a black box with n inputs and one output. Composition 
is represented by wiring boxes together. E.g. 

2.6 

M2 T J /*- J/i2 

(x - y) • z x-y-z x-(y-z) 

If a E 0(0,1), the associated box has no input but one output. E.g. 

In A the three trees of (2.6) represent the same operation. For a general B they may 
be different. 

We obtain a new non-E operad TB, where TB(n, 1) is the space of all such formal trees 
with n inputs. A morphism in TB(n, k) is an ordered k tuple of trees, composition 
wires trees together, the identity is the trivial tree 

in TJB(1, 1) having no box. Clearly, TB is the free non-E operad over B. 

If we want to describe a homotopy associative multiplication we have to join the left 
and right tree of (2.6) by an interval. To do this, we give each edge joining two boxes 
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(call these interna/ edges) a length t € I and allow edges of length 0 to be shrunk. 
E.g. 

M2 V 

represents y.2 o (fjL2 © id) for t = 1 and /i3 for t = 0. So both the left tree and the right 
tree of (2.6) is joined to the middle one by a unit interval. 

2.7 Construction: Let TB be the non-E operad obtained from TB by attaching a 
length to each internal edge. Composition creates new internal edges which obtain the 
lengths 1. 

Let WB be the non-E quotient operad obtained from TB by imposing the relations 

(i) 

subtree subtree ßo(id®a®id) ifť = 0 

(2) 

subtree I id ~ subtree 

*2 

max(żi,í2) 

(3) If in (2) the box "id" is at an input or at the output of the tree we dгop it and 
foгget the length of the new input oг new output. 

We have seen that WA(3,1) contains a subdivided interval joining fi2 o (fi2 © id) to 
Pa o (td©/i2). The following picture shows the pentagon in WA(4,1) subdivided into 
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five squares; each • stands for a /J2: 

We recall that TB is the free non-E operad over B. We obtain WB from TB by putting 
back the relations in B up to coherent homotopies. The following result makes this 
statement precise. 

2.8 Proposition: The augmentation functor € : WB —» B obtained by shrinking all 
edges is a functor of operads and an ^-equivalence of underlying morphism spaces. 

Proof: B(n, 1) is contained in WB(n, 1) as trees with exactly one box. We deform 
WB(ny 1) into B(n, 1) by shrinking each internal edge at time t by the factor (1 — t). 
D 

WB is homotopically universal with respect to this property. 

2.9 Proposition: Given functors F and G of non-S operads such that 

^V 

i-
WB-

»•*• 

F 
•+C 

G is an ft-equivalence of underlying morphism spaces, then there exists F : WB —• V 
uniquely up to homotopy through functors of operads such that G o F t̂ . F through 
functors of operads. 

Proof: Construct F inductively using the obvious skeleton filtration of WB and the 
homotopy theoretical properties of an /i-equivalence. D 
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2.10 Corollary: Given an -Aoo-operad B there is a functor WA -> B uniquely up to 
homotopy through operad functors. 

3 Aoo-spaces, loop spaces, and monoids 

We construct an .Aoo-operad which acts on loop spaces. 

3.1 The operad Q: The morphism space Q(n, 1) is the space of ordered n-tuples 
of closed subintervals Jt- = [£i,2/i] of J with disjoint interiors 

J\ J2 Jn 

xi yi x2 y2 . . . xn yn 

Hence a point in Q(n, 1) is a 2n-tuple 

0 < xi < 1/1 < x2 < 2/2 < • • • < xn < yn < 1 

and we topologize Q(n,l) as subspace of R2 n. Composition is insertion. E.g. 

, Jl J2 Ą „ (l Jì - * I . I Ј? - Jř ì) 

is given by inserting the unit intervals of /?i and of ft with their subintervals linearly 
into J\ and J2i respectively. 

The action of Q on a loop space fl_Y is given by the maps 

Q(n,l)x(SlX)n —> QX 

where ^ maps the subinterval Ji by fa o r„ where r< is the linear expansion of Jt- to 
[0,1]. The complement of \Jn

=l Ji is mapped to the base point. 

3.2 Lemma: Q(n, 1) is contractible. Hence Q is an .Aoo-operad. 

Proof: Deform (0 < xx < yx < . . . < xn < yn.< 1) linearly into ( 0 = ^ < ^ < ^ < 
2 < . . . < a = i <-i = i) . • 

This gives a detailed proof of Theorem 1.4, and (2.10) connects the natural Aoo-
structure of ilX to Stasheff's associahedras: 

3.3 Theorem: There is a natural ./loo-structure on SiX codified by the non-E operad 
Q. In particular, FIX is a WOl-space. D 
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To prove the converse, we first show 

3.4 Proposition: Let B be any non-E operad. Each WS-space X is a strong defor­
mation retract of a B-space M&X. In particular, each .A^-space is /i-equivalent to a 
monoid. 

Proof: MBX = f JJ -T/S(n, 1) x Xn) / ~ 
\n>0 / 

(note X = X(l)). We think of an element of TB{n, 1) x X n as a tree with lengths and 
the entries (x i , . . . ,x„) 6 Xn assigned to the n inputs. The relations are (2.7, (1), 
(2)), and (2.7, (3)) if the box is NOT the one at the output. We need the following 
additional relation: if t = 1, then 

î/l Ут 
ДL 

subtree subtree if z = A(Vi»• • • > Vr) 

On the right-hand side we evaluated A on the entries (yi,... ,y„) to obtain z. The 
/^-structure of MsX is defined by operation at the output box: if 7 6 B(n, 1), then 

The map 

14. Иi \An 

V. - ^ Ѓ Г ßn 7°(ft®...®A») 

X MßX, x 

includes X as a strong deformation retract with deformation 

î 

id 
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Our structures are homotopy invariant, an important and useful feature of "brave new 
algebra". Using (2.9) it is not terribly hard to show 

3.5 Proposition: If X is a WB-space and Y is /^equivalent to Xy then Y is a Wft-
space, too. D 

4 The classifying space construction 

Let A denote the category of ordered sets [n] = {0 ,1 , . . . *n} and order preserving 
maps. The morphisms of A are generated by injections 

dt = d? : [n - 1] -> [n], 0 < i < n 

missing i € [n] and surjections 

s . = sn:[n + l]->[n], 0 < i < n 

mapping i and i + 1 to i € [n]. 

We have the standard simplex functor 

A -> Top, 

sending [n] to the standard n-simplex An with vertices eo,.. . , en and a : [n] —> [r] to 
the linear map a : An —> Ar mapping e* to ett(j). 

A simplicial space is a functor 

X. : A011 -> Top, [n] »-> .Kn,a i-> a*. 

Its topological realization is the space 

= (n^xA") 
\n>0 / 

| X | = ( J l X n x A » ) / 

with the relations 

(*,*(*)) - WW,*) and (*,*(*)) - W(x),t). 

Any monoid M with unit e defines a simplicial space 

M. : A<* -> Top 

with Mn = M#([n]) = Mn and structure maps 

5? : M n -> Mn+1 (x!,...,xn)h-> («!, . . . I e l x i . . . l a f l ) 
d ; : M n - > M n - 1 ( m , . . . , ^ ) ^ (x2 , . . . ,a;n), i = 0 

(xi9... , Xi - Xt+i,... , xn)y 0<i<n 
(xu... ,a:n_i), 2 = n 
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4.1 Definition: The topological realization |M.| is called the classifying space of the 
monoid M and denoted by BM. 

Note that BM has a natural filtration BnM defined by the dimensions of the standard 
simplices. By construction, B°M is a point and BlM = EM, the reduced suspension 
of (M, e). The inclusion i: EM «-> BM induces a map 

i : M -* QBM, x\-t (wx :t*-> i(t, x)) 

4.2 Proposition: [48, 1.5] Let M be a monoid with homotopy inverses such that 
{e} C M is a closed cofibration. Then i is an ft-equivalence. 

4.3 Theorem: X is ft-equivalent to a monoid iff X is an .Aoo-space. 

Proof: A monoid has an .A-structure and therefore a W.4-structure. If X is ft-
equivalent to a monoid, it has a W.y-1-structure by (3.5). The converse follows from 
(3.4). a 

4.4 Theorem: X is ft-equivalent to a loop space iff X admits a WM-structure with 
homotopy inverses. 

This follows from (4.2) and (4.3). The cofibration condition can always be arranged. 

• 

Chapter II: Eoo-spaces and infinite loop spaces 

5 Operads and i^-spaces 

If a loop space is a good space, an ra-fold loop space 

nnx = a{ar-lx) = rop((/n,a/n), {x, *)) = Top*{sn,x) 

is an even better space for n > 1. 

5.1 Definition: An infinite loop space is a based space X together with a sequence 
{Xn, onine N} of spaces and ft-equivalences on : Xn ~ ftXn+i such that X ~X0. If 
X = XQ and each on is a homeomorphism, X is called a strict infinite loop space. 

5.2 Properties 

(1) £lnX is an abelian group up to homotopy for n > 2. 

(2) If X is an infinite loop space, then Y i-> [Y, Xn]* defines a cohomology theory. 
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(3) If h* is a cohomology theory, there is an infinite loop space X whose associated 
cohomology is h* for * > 0. 

(4) Infinite loop spaces admit homology operations resembling Steenrod operations 
in cohomology. 

Again we are mainly interested in the algebraic structure of an infinite loop space. 
As with loop spaces, we take property (5.2.1) as a guideline. To go from monoids to 
commutative monoids we have to impose an additional relation on the fin of (2.4), 
namely 

5.3 
Xn I ^ n 

X 

commutes for any permutation r G En of the n factors Xn. So we have to add 
permutations to our non-E operads. 

5.4 Definition: An operad (as opposed to a non-E operad) is a non-E operad B with 
the permutation group En included in £?(n, n) such that for o € E* and p € E/ 

(1) o © p is the usual direct sum permutation in £*+/ 

(2) for fi € Bfc, 1), 2 = 1 , . . . , fc, and n = n -f... + rk 

oo ( / ! © . . . © fk) = (/,-i(1) © . . . ©/„-.(*)) oa ( r i > . . . ,rk) 

where a(ri , . . . ,rk) is the block permutation in En permuting the blocks 
r i , . . . , rk according to o. 

(3) Condition (*) of (2.1) is replaced by 

I ] /3 (r 1 , l )x . . .x .B(r J k , l )xE n / > B(n,k) 
ri+...+r*=n 

( / i i - - - i / b ; ^ ) >—> ( / i © - - - © / * ) ° * 

is a homeomorphism, where the relation is given by 

( / l O TTl, • • • , fk O 71*; O) ~ ( / i , . . . , fk\ (TTi © . . . © TTfc) O <j) 

with 7T.j € E r . . 

A B-space is a continuous functor B -> Top mapping © to x and preserving permu­
tations. 

Remark 2.2 applies to operads, too. This time B is uniquely determined by the spaces 
B(n, 1), composition, and the action of En on B(n, 1) by composition. 
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5.5 Example: Let £ be the operad obtained from A by imposing the relation (5.3). 
Then £(n, 1) = {//„} necessarily has trivial Enaction and composition is forced. As 
in (2.4), one shows that £ -spaces are exactly the commutative monoids. £ is terminal 
in the category of operads. 

5.6 Definition: An operad B is called E^-operad and a B-space an Eoo-space if the 
unique functor B -» £ is an /i-equivalence of underlying morphism spaces, i.e. if 
B(n, 1) ~ * for all n. 

We again try to construct a homotopy universal .Boo-operad. The ideas are basically 
the same as in Chapter I, but one has to work En-equivariantly throughout. Note that 
any universal operad B has to have a free En-action on B(n, 1). We do not go into 
details and just list the facts we need. 

5.7 Proposition: (1) The W-construction extends to operads and e : WB -> B 
induces a En-equivariant ft-equivalence WB(nt 1) -> B(n, 1) for each n e N. 

(2) Given a diagram of operads 

WB -C 

such that G : V(n, 1) -> C(n, 1) is a En-equivariant ^-equivalence for all n, then 
there exists F : WB -> V such that G o F ~ F through functors of operads, 
uniquely up to homotopy through functors of operads. 

(3) Property (2) holds if G is an ordinary A-equivalence and jB(n, 1) -> B(n, 1)/En 

is a numerable principal En-bundle (for a definition see [9]) for all n G N. 

5.8 Proposition: The M-constructibn (3.4) extends to operads B: each WS-space 
X is a strong deformation retract of a 5-space MBX. 

5.9 Proposition: If X is a W.8-space and Y £- X, then Y admits a WB-structure. 

6 The little n-cubes operad Qn 

In this section we construct canonical operads Qn acting on £lnX for 1 < n < oo and 
show that infinite loop spaces are .Eoo-spaces. 

6.1 The operad Qn: The morphism space Qn(k,l) is the space of all k-tuples of 
linear embeddings of In into In with disjoint interiors and axes parallel to the ones of 
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1 2 1 

1 

1 2 1 

1 1 

3 3 

element u in Q2(3,1) 

A single embedding is determined by the images of (0,. . . , 0) and ( 1 , . . . , 1). Hence we 
can topologize On (A;, 1) as subspace of R2n*. The action of E* is given by permuting 
the labels of the little cubes. Composition u o (CJI ©.. .®wk) is defined by inserting the 
configuration U{ linearly into the f-th little cube of u, producing a new configuration. 

Qn acts on n-fold loop spaces SlnX = Top ((J*, dln), (X, *)) by 

Qnfci) x {frx)* —y nnx 
M/i,- --,/*)) —• tg:i*->X) 

g maps the i-th little cube Ji of u via fc o n, where n : Ji -> In is inverse to the 
embedding. The complement of U*=i Ji is mapped to the base point. 

6.2 The operad Q 0 

&.+i(M) 

Taking the product with / defines an inclusion Qn(k, 1) C 

element of Qi(3,1) considered as 

element of Q2 (3,1) 

and we define Qoo(fc, 1) = colinin Qn(A;, 1). The following sketch shows that Qn(A;, 1) 
is contractible in Qn+i(fc, 1). 

1 3 2 

1 3 2 *w 

i 

...... 

1 

3 

..... 
2 

: з 
i 

2 

i : 

Since the inclusion Qn(fc, 1) C Qn+i(A;, 1) is a cofibration, we obtain 

6.3 Proposition: Qoo is a ^oo-operad. 

Ejk acts freely on Qn(fc, 1) and it is not hard to show that Qoo(fc, 1) -> Qoo(K 1)/-^* - s 

a numerable principal Ejb-bundle. Hence (5.7) implies 
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6.4 Proposition: WQoo is a homotopy universal .Eoo-operad, i.e. given an E^-
operad B there is a functor of operads WQaa-tB uniquely up to homotopy through 
functors of operads. 

The operations of the Qn on ilnX are natural enough to induce an action of Qoo 
on any strict infinite loop space. By a result of May [30], any infinite loop space is 
ft-equivalent to a strict infinite loop space. Using (5.9) we obtain 

6.5 Theorem: Any infinite loop space is a WQoo-space and hence an .Eoo-space. 

7 Interchange and delooping 

We now address the converse of (6.5). 

7.1 Definition: Let B and C be operads and suppose X has a B- and a C-structure. 
We say that these structures interchange if the diagram 

(Xk)m — (Xm)k -£—*• Xk (*) 

J"ra 
ß I* 

xm - *x 
commutes for each a € B(m, 1) and each /3 G C(fc,l). The morphisms of B and C 
with the relations from the interchange diagrams (*) define a new operad, denoted by 
B 0 C, which acts on X. 

7.2 Examples: (1) A ® A = £. This is the operad version of the well-known fact 
that two commuting associative structures, which have the same unit, coincide 
and are also commutative. 

(2) Q^Qn*-* Qn+i- Here Q acts on the first and Qn on the last n coordinates of 
jn+l 

We need two properties of the interchange. 

7.3 Proposition: If X has an .A® WB-structure (in particular, X is a monoid), then 
its classifying space BX admits a WB-structure. 

7.4 Proposition: If X has a WA <8> WB-structure, then the monoid M^X of (3.4) 
has an A ® WS-structure. 

We can now prove the converse of (6.5). 

7.5 Theorem: An Eoo-space X admitting homotopy inverses is an infinite loop space. 
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Proof: By (6.4) X is a W Qoo-space. Then Y = MQ^X is a Qoo-space equivalent to 
X and hence a Q 0 Qoo-space by (7.2). Since Q is an .Aoo-operad, Y is a WA® Qoo-
space. By (7.4) MJX is an A ® W Qoo-space. Hence the classifying space BMJY 
admits a WQoo-structure by (7.3). By assumption, M^Y has homotopy inverses, and 
the inclusion of the unit is a cofibration by construction. Hence 

X ~ ilBMAY. 

One can show that BM^Y has homotopy inverses and we can proceed inductively. • 

8 Applications 

Let J denote the category of real inner product spaces of countable dimensions and 
linear isometric maps and Jfin the full subcategory of finite dimensional ones. Give 
each A € Jfin the norm topology and each infinite dimensional one the colimit topology 
of its finite dimensional subspaces. The following result is easy to show. 

8.1 Lemma: J(A,WX>) with the function space topology is contractible. 

8.2 The linear isometry operad C is defined by £(n , l ) = JF((R°°)n,R00) with the 
obvious Enaction. Composition is the composition of isometic maps. £ is an F'oo-
operad by (8.1). 

Given a continuous functor T : J/in -> Top together with a natural transformation 
u : TA x TB -•> T(A 0 B) such that 
(1)T(0) = * 
(2) (JJ is associative, commutative, and unital. 
Then colimnT(R.n) is an £-space by direct inspection and hence an iSoo-space. 

8.3 Examples: (1) T(A) = 0(A), the orthogonal group of A. Then coliir^O(R?) 
is the stable orthogonal group O. 

(2) T(A) = U(A ® C), the unitary group of A ® C. Then colimnC/(Rn ® C) = 
colimn E7 (C1) is the stable unitary group U. 

(3) T(A) = BO(A), the classifying space of 0(A), and similarly BU(A <8> C). We 
obtain the stable spaces BO and BU. 

(4) T(A) = TOP (A), the group of homeomorphisms of A. In this case we obtain 
the stable group TOP. 

(5) T(A) = 5p(i4®H), the symplective group of A® EL We obtain the stable group 
Sp. 



66 R.M.VOGT 

(6) T(A) = F(SA), the monoid of self homotopy equivalences of the sphere SA, 
which is the one-point compactification of A. Then colimnF(5Rn) is the stable 
group F, the "homotopy units" of the brave new ring Q(S°) defined in the next 
chapter. 

We obtain 

8.4 Theorem: The stable groups O, SO, Sp, U, SU, F, TOP, their coset spaces 
F/TOP, F/0, TOP/0, etc., and the stable classifying spaces BO, BSO, etc. are all 
infinite loop spaces. 

Chapter III: Brave new rings 

So far we have considered .Aoo-spaces, loop spaces, Eoo-spaces, and infinite loop spaces 
and claimed that they are brave new versions of monoids, groups, abelian monoids, 
and abelian groups. This may be plausible for .Aoo-spaces and loop spaces: X is an 
.Aoo-space iff it is h-equivalent to a monoid. Hence an Aoo-structure is the homotopy 
invariant version of a monoid structure. Similarly, a topological group with reasonable 
topology is A-equivalent to a loop space and vice versa; and loop spaces are important 
objects of homotopy theory. Homotopy ring spaces, whose investigation is motivated 
by the geometry of manifolds, have .Eoo-structures as additions. This is why i?oo-spaces 
ought to replace abelian monoids in brave new algebra. 

9 Brave new rings and If-theory 

During the sixties topologists became more and more interested in topological groups 
such as 

Diff (M, dM) = {diffeomorphisms / : M -> M with f\dM = id}, 

where M is a differentiable manifold with boundary dM, possibly empty. 

One of the first questions to ask is 

9.1 Problem: What are the homotopy groups of Diff (Af, dM)? 

This is a difficult problem, and one step in solving it is to consider a supposedly easier 
variant. 

9.2 Problem: Compute 7r«.(Diff (MxI,dMxI\jMx 0)). 

9.3 Definition: If M is a manifold, P(M) = Diff (M x J, dM x IU M x 0) is called 
the pseudoisotopy space of M. 
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The following result is due to Hatcher and Wagner [16] with corrections by Igusa [18]. 

9.4 Theorem: If M is a differentiate manifold and dimM > 6, then there is an 
exact sequence 

K3{Z[G]) -r Wh${G\ (Z/2) 0 7r2(M)) -> 7T0(P(M)) -> Wh2{G) -» 0 

Here G is the fundamental group 7Ti(M) of M, K+ is Quillen's algebraic K-functor, 
Whf{G) A) *- A <g> Z[G]/G with A a G-Modul (take orbits to form the quotient), and 
Wh2{G) = K2{Z[G])/ita

2{BG+) is a "higher" Whitehead group. 

We need not understand this exact sequence. It serves as a motivation for the things 
to come. Relations of this kind between algebraic .fT-theory and the geometry of 
manifolds made Waldhausen realize that an extension of Quillen's algebraic if-theory 
[39] from ordinary rings to homotopy ring spaces such as Q{QX+) defined below should 
contain much more geometrical information than the algebraic X-theory of the group 
ring Z[7Ti.K]. 

9.5 The brave new ring Q(flX+): If X is a space and may be based, then X+ -= 
X U {point} with the extra point as base point. If X and Y are based spaces with 
base points *, recall the smash product 

XAY = Xx Y/{X x {*}U{*} x Y) 

and the reduced suspension YY = Sl AY. We define 

Q{Y) = coiim(y -?-> OEr 2-3 n2E2r ->...) 

with a{y) : S1 -> EY, t »-> (t,y). Clearly, QY is a strict infinite loop space. If Y is a 
Ti-space, then ^i{QY) = 7Ti{CtnT,nY) if n > i + 3 by FreudenthaPs suspension theorem. 
Since the group on the left does not depend on n, it is called the i-th stable homotopy 
group of Y. So Q{Y) is the stable homotopy (space) of Y. 

This infinite loop space structure is the additive structure of Q{SIX+). If Y is an 
AQO- or .Eoo-space, e.g. a loop space, then Q{Y+) has an additional multiplicative .Aoo-
or .Eoo-structure, respectively. If \i : Y x Y -» Y is an operation and f,g : Sn -> 
En(y+) = Sn A Y+ represent elements in Q{Y+), then 

M/ , 0) = S2n = Sn A S71 ^ Sn A Y+ A S"1 A Y+ S E2n(K x y ) + - A E2 ny+ 

defines a multiplication on Q(l+) which is related to the additive structure by dis­
tributive laws up to homotopy. 

Waldhausen's proposal: Replace the ground ring Z by the E'oo-ring Q(5°), the 
stable homotopy of the spheres (note that S° = (Point)+), and the group ring Z[7Ti.K] 
by the ./loo-ring Q{£IX+), and extend classical algebraic constructions to these types 



68 R.M.V0GT 

of "rings". .Although JSoo-ring spaces had been introduced earlier by May [32] this 
was the starting point of "brave new algebra". Note also that 7r0Q(S°) = Z, and 
7TQQ(£IX+) = Z[7Ti.K]. Hence the classical versions are the rings of path components 
of these particular brave new rings, and 

7T0 : Q(ilX+) -> ZfaX] 

is a homomorphism of brave new rings. 

To cut things short, let me give a summary of the history of .Aoo- and .Eoo-ring struc­
tures and of some of the early applications. 

1977 May defined .Eoo-ring spaces using pairs of operads which codify the additive 
and multiplicative structure and are related via distributive laws. He introduced 
them to study the various classifying spaces of geometric topology, and, in par­
ticular, to construct homology operations. [32] 

1978 Waldhausen defined his famous functor A(X), the algebraic if-theory of a topo­
logical space X [54]. This is an extension of Quillen's algebraic if-functor to 
.Aoo-ring spaces of the type Q(ilX+). 

1978 Motivated by Waldhausen's construction, May introduced more general .Aoo-ring 
spaces using his pairs of operads approach and constructed their AT-theory [33]. 
These structures are very rigid and not well adapted for algebraic constructions. 
May was very sceptical about good properties of the associated if-theory (see 
his remarks in [33] and [34].) 

1981 Steiner could refute May's scepticism. He proved that the .K'-theory of an .Aoo-
ring space in May's sense is an infinite loop space and that for Q(£IX+) its 
if-theory is equivalent as infinite loop space to Waldhausen's A(X). 

1982 (joint work with R. Schwanzl) Using an observation of Steiner we introduced a 
more flexible homotopy invariant definition of .Aoo- and F'oo-ring spaces. May's 
spaces satisfy our requirements and each homotopy ring space in our sense is 
ft-equivalent to one in May's sense [43]. 

1984 We showed that matrices and subgadgets like upper triangular matrices over 
homotopy ring spaces have the properties one expects and show that the algebraic 
if-theory of an i?oo-ring space is itself an Eoo-ring space. This also clarifies the 
formal multiplicative properties of classical algebraic if-theory of commutative 
rings [44], [45], [46]. 

First applications 

In 1979 Waldhausen among other things could prove (we use the notation K(Q(QX+)) 
instead of A(X)): 
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9.6 Theorem: [55] (1) K(Q(ilX+)) ~ Q(X+) x WhDiS(X) 
(2) The 7To-map induces a rational equivalence K(Q(S0)) -> K(Z) 

The first result confirms Waldhausen's conjecture that the algebraic If-theory of 
Q(£IX+) contains a lot of geometric information about X. For a manifold M 

*i+2(WhDiS(M)) = 7Ti(V(M)) i > 0 

where V(M) = colhrin P(M x In) is the stable pseudoisotopy space of M. Modulo 
rounding of corners, the colimit is formed by crossing with J. In the "pseudoisotopy 
stability range" its homotopy groups coincide with the ones of P(M). 

9.7 Theorem: (Igusa [19]) For a differentiable manifold M with dim M > max(2A + 
7,3k + 4) the homomorphism TTi(P(M)) -•> iTi(V(M)) is surjective for i < k and 
injective for i < k. 

Waldhausen's result also to some extent explains the intriguing connection between 
the stable homotopy groups of the spheres and -fif(Z), and hence also with classical 
number theory. 

The second part of (9.6) is a special case of a more general result of Waldhausen, which 
Farrell and Hsiang [12] exploited to show (note the pseudo isotopy stability range) 

9.8 Theorem: For n > max(2i + 7,3i + 5) 

« l - - * » ) > - Q « { ? ' ^ nM 

Q ® Q i = 4* — 1, n odd 
7Ti( Diff(5n)) ® Q = ^ Q i = 4 f c - l , n even î n ) ) ® Q = | 

0 otherwise. 

10 Spectra 

No matter which definition of homotopy ring space one uses the complexity of its 
structure is quite formidable. What one ideally wants is a black box which automat­
ically takes care of the coherence structure. Such a black box had been around for 
some time, but was not sophisticated enough: each strict infinite loop space is the 0-th 
space of a (connective) spectrum and vice versa. 

10.1 Definition: A naive prespectrum E = {Eni en}n>0 consists of based spaces En 

and structure maps en : HEn -> -En+i. If the adjoints 

en:En-> QEn+u ^(x) : Sl -> En+U 11-> e^t, x) 

are homeomorphisms, we call E a naive spectrum. 
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Since each infinite loop space is A-equivalent to a strict one, the category Sp of spectra 
could replace the category of infinite loop spaces and hence the category Ab of abelian 
groups in brave new algebra. This takes care of the additive structure. To deal with 
multiplicative structures we need a "brave new tensor product". An indication of 
what to look for is provided by the Kunneth theorem in homology: there is an exact 
sequence in reduced homology with Z-coefficients 

0 -> (H.(X) ® H.(Y))n -> Hn(X AY)-+ Tor^H^X),H.(Y)) -+ 0. 

Hence the smash product is a kind of totally derived tensor product. Our plan is to 
extend the smash product to spectra. But here problems arise. 

Given spectra {Eni en} and {Fn, /„} we can form a bigraded object {Ek A Fi}kti. To 
obtain structure maps we consider the diagram 

E2(Ek A Ft) = XiX2(Ek A Ft) - ^ ^(Ek A £2Fi) -^— ZxEk A FM 

Єk 

E2(.Bib+i A Ft) - ^ .Bfc+i A E2F£ —^— Ek+1 A FM 

The big square commutes, but the twist is homotopic to —id. Hence structure maps 
for {.Bit AF|} involve substantial choices so that the resulting smash product cannot 
have good properties, 

A first solution was discovered by Boardman in 1964 [2]. In Example 8.3.6 the natural 
transformation u) : F(SA) x F(SB) -> F(SA®B) is the smash product of homotopy 
equivalences SA -> SA with homotopy equivalences SB -> SB using the fact that 
SA e f l = SA A SB. Boardman's construction is based on this observation and uses real 
inner product spaces and linear isometries. We describe a variant of his construction 
due to Lewis, May, Steinberger [27], which is more widely used. 

10.2 Definition: A universe U is a real inner product space U = RP°. A prespectrum 
E assigns a based space EV to each finite dimensional subspace VofU and a map 

oVtW : EV -> £lw~vEW 

for each V C W. Here W — V is the orthogonal complement of V in W and 

SlvX = Top*(Sv,X) 

ÊíltWІSt 

&(Ek Л Ft) E2Si(Я* Л Ft) 

EгíадfcЛF,) 
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If the Gyyr are homeomorphisms, E is a spectrum. 
A map of (pre-) spectra f : E -> F is a collection of maps fy : EV -> FV such that 

EV *FV 

<rvtw I | *v,w 

ilw~vEW ——^ Slw~vFW 

commutes. Let SU and VSU denote the categories of spectra and prespectra over the 
universe W, respectively. 

10.3 The inclusion SU «--> VSU has a left adjoint L : VSU -> SU called specifica­
tion. 

10.4 The external smash product —A—:SUxSV —• «S(W©V) is the specification 
of the functor 

- A - : SU x SV —> VS{U@ V) 

with (EAF){U®V) = EUAFV 

To get an internal smash product Boardman showed that any linear isometry / : U —> 
V induces a functor /«: SU -> SV. So an isometric isomorphism / : R°° ©R°° -> R00 

induces an internal smash product 

5(R°°) x «S(R°°) —• 5(R°°). 

Using the fact that the space J'((R00)n,R00) of linear isometries is contractible Board-
man proved 

10.5 Proposition: Any two internal smash products defined in this way are ft-equi-
valent and each is coherently homotopy-associative, -commutative, and -unital. 

While this was good enough for the problems considered at that time, such as the 
investigation of generalized cohomology theories, it is not good enough for our pur­
poses. We put the additive Eoo-structure into a black box at the expense of replacing 
an associative, commutative and unital smash product by an ĵ oo-smash product. We 
have gained nothing! 

The breakthrough came with an observation by Hopkins in 1992 [17], which was sub­
sequently exploited by Elmendorf, Kriz, Mandell, and May [11]. For its description 
we need an extension of Boardman's functor /» from [27]. Let U and W be universes 
and ToplJ{JA>U') *--e category of spaces over the space J(UM') of linear isometries. 

10.6 Proposition: There is a functor 

Topi J {U, U')xSU-* SU\ (A,E)*->AKE 
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such that 
(1) {idu} xE^E (idu is the space * -> J(W,W),* •-> idu) 

(2) Given BxA^i J(U',U") x J(U,W)c^ J(W,W"), then 

(B x A) x E -* B x (A x £?). 

Once W is fixed we use the notation £(n, 1) = J(Uen,U) of §8. 

The proposition makes sense for the non-universe 0. Since a 0-indexed spectrum is 
just a single space and U° = 0 we obtain a functor 

E°°: Top -> SU, X>-> £(0,1) * X. 

The sphere spectrum S is defined to be E°°(.S0). 

10.7 Definition: An h-spectrum is a spectrum E € SU equipped with an action 
£(1,1) x E -> E of the monoid £(1,1). 

For L-spectra we can define an even better smash product. Note that £(1,1) acts on 
the left of £(2,1) and £(1,1) x £(1,1) on its right by composition. Mimicking the 
usual tensor product construction we define 

10.8 Definition: On the category of L-spectra we have a smash product 

E AC F = £(2,1) K£(ifi)x.c(i,i) (E A F) 

where E A F is the external smash product. 

The proof of the following result now reduces to an analysis of linear isometries. 

10.9 Proposition: This smash product is associative and commutative (up to co­
herent isomorphisms) but it is NOT unital, but there is a natural weak equivalence 
XE : S Ac E -* E. 

10.10 Definition: An S-module is an L-spectrum E for which XE is an isomorphism. 

10.11 Proposition: The smash product Ac on the category of L-spectra restricts to 
an associative, commutative, and unital smash product As on the subcategory Mods 
of S-module spectra. 

10.12 Definition: A (commutative) S-algebra is a (commutative) monoid in the sym­
metric monoidal category (Mods, As). 

As in classical algebra we can extend the smash product to a smash product AR over 
a commutative S-algebra R. We then can talk about ^-modules and A-algebras, etc. 
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10.13 Proposition: Aft enjoys the formal properties of the classical tensor product 
such as associativity, commutativity, and cancellation RARM = M. 

Mods and the categories of module and algebra spectra obtained from it are the black 
boxes we were looking for because we have 

10.14 Proposition: Each spectrum is weakly equivalent to an S-module. The 0-
th space of a (commutative) S-algebra is an (2?oo-) -4oo-ring space. Conversely, the 
spectrum associated to an (£00-) A^-ring space, which is obtained from its underlying 
additive infinite loop space, is weakly equivalent to a (commutative) S-algebra. 

Chapter IV: Algebraic applications 

Practically all known algebraic applications of "brave new algebra" originate from func­
tors defined to gain information about .^-theory. At a conference in Evanston in 1976, 
K. Dennis constructed trace maps from the .K'-theory K(R) of a ring to its HochschiLd 
homology HH(R). This triggered Waldhausen to construct a more general trace map 
for simplicial rings [55]. He then conjectured that a type of Hochschild homology over 
the homotopy ring space Q(S°) would provide more information for the .K'-theory even 
of classical rings. This "topological" Hochschild homology THH(R) was constructed 
by Bokstedt for FSPs, which stands for Functors with Smash Products, in 1985 [6]. 
Simplicial rings give rise to such FSPs and Bokstedt showed that Waldhausen's trace 
factors through THH. THH(R) is equipped with an S^action and Goodwillie sug­
gested a program for a "topological" cyclic homology TC(R) through which Bokstedt's 
trace should factor. The details were worked out by Bokstedt, Hsiang, Madsen [7], and 
independently by Goodwillie [14]. So we have the following ft-commutative diagram 
of trace maps 

K(R) -̂  - HH (R) 

TC(R) THH(R) 

where trc is the cyclotomic trace of [7] and trt the topological trace of [6]. 

11 Topological Hochschild homology 

We start with the topologist's definition of Hochschild homology. Let J? be a commu­
tative ring, A an iZ-algebra, and M an .A-bimodule. We define a simplicial iZ-module 
by 

[n] 1—> A®RA®R...A®RM (n copies A) 

For the structure maps arrange the tensor product in a circle 
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11.1 
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The i-th boundary map d\ is given by the multiplication of the i-th and (i + l)-st 
factor, the i-th degeneracy inserts 1 between the i-th and (i + l)-st factor. 

11.2 Definition: The Hochschild homology space HHR(A\M) is the topological re­
alization of this simplicial iZ-module. The Hochschild homology groups are 

H H?(A\ M) = inHHR(A\ M). 

We note that HHR(A\M) is a topological .R-module. For simplicity we denote 
HHR(A\ A) by HHR(A) and observe that we have a cyclic structure on HHR(A) 
induced by the obvious rotations of the Diagrams 11.1. 

11.3 Definition: Let R be a commutative S-algebra spectrum, A an fi-algebra spec­
trum, and M an .A-bimodule spectrum. Topological Hochschild homology THHR(A\ M) 
is defined to be the realization in the category ModR of iZ-module spectra of the sim­
plicial i2-module spectrum 

[n] i—•> A/\AAAA-.AAAAAM (n copies A) 

with structure maps as in 11.1. Again we write THHR(A) for THHR(A\ A) and 
THH?(A\M) for ^(THHR(A\M)).. 

11.4 Remark: In 1985 when Bokstedt defined THHS there was no known associa­
tive, commutative and unital smash product. To get around this problem Bokstedt 
used FSPs instead of spectra and went through a stabilization process. Since a (com­
mutative) FSP defines a (commutative) S-algebra, Definition 11.3 covers the case of 
FSPs. 

Even for classical rings R represented by their Eilenberg-MacLane ring spectra topo­
logical Hochschild homology is a new invariant. In [5] Bokstedt showed 

11.5 

{? 
Z Jfc = 0 

THHf{Z)*{ Z/i Jb = 2 t - 1 and THH?(FP) **Fp[x] 
otherwise with degree (a;) = 2 
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A first surprise was that topological Hochschild homology could be exploited to com­
pute homology groups of Gloo(R) with coefficients in the adjoint representation Moo(R) 
for classical rings. Here Gloo(R) = colimnGZn(.R) and MOQ(R) = colimn.Mn(.R) where 
Mn(R) is the set of all (n x n)-matrices over R, and Gloo(R) acts on A-foo(-R) by 
conjugation. Work of Waldhausen [54] and Dundas-McCarthy [10] implies 

11.6 Proposition: Hn(Gloo(R),Moo(R))~ © Hi(K(R)]THHf(R)). 
i+j=n 

From Quillen's calculations of K(FP) and Bokstedt's calculations 11.5 we obtain 

11.7 Proposition: ifn(G.00(Fp),M00(Fp)) S. j J / p " \ even 
odd 

The next surprise was that THH?(R\M) for classical rings and bimodules coincides 
with MacLane homology H™L(R\ M) defined 30 years earlier [29]. The equivalence of 
the two functors was proved by Pirashvili and Waldhausen [38] by characterizing both 
of them as derived functors of the same functor. There is a short heuristic argument for 
this equivalence using brave new algebra [13]. So 11.5 also constitutes a first complete 
calculation of the MacLane homology for two examples. 

Some years after Bokstedt's result appeared in preprint form, Lindenstrauss calculated 
THHS(R) for R = Z[X[/(X%R = Z[X]/(Xn - 1), and R = Fp[X]/(f),f a monic 
polynomial [23], and Pirashvili for group rings R[G] [37], both using spectral sequence 
arguments and 11.5. Their calculations follow much more easily from a general result 
proved by using brave new algebra [47]: 

11.8 Proposition: Let K be a classical commutative ring and R a flat K-algebra. 
Let HK and HR denote their associated Eilenberg-MacLane ring and algebra spectra. 
Assume there is a commutative S-algebra spectrum A and an .A-algebra spectrum E 
such that 
(1) HK is a commutative algebra over A 
(2) there is a weak equivalence of i./.RT-algebras E AA HK -> HR. 
Then (modulo technical cofibrancy conditions) 

THHA(HR) ~ HH?(R) ®K THHA(HK), 

L 
as graded K-modules (as graded K-algebras in the commutative case), where ® stands 
for the total left derived of <8>. 

Proof sketch: The symbol ~„, will denote a weak equivalence. 

THHA(HR) ~w THHA(E AA HK) =" THHA(E) AA THHA(HK) 
~ THHA(E) AA HK AHK THHA(HK) 
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Now THHA(E) A A HK is the realization of the simplicial spectrum 

[n]*+(EAAEAA...AAE)AAHK*(EAAHK)AHK...AHK(EAAHK) 

Hence 
THHA(HR) ~w THHHK(E AA HK) AHK THHA(HK) 

~w THHHK(HR) AHK THHA(HK). 

Our assumptions imply that THHHK(HR) = HHK(R), and we have already pointed 
out that (modulo cofibrancy conditions, which we have to assume throughout the 

L 

proof) AHK corresponds to ®K by passage to homotopy groups. • 

11.9 Example: Let G be a group, R = Z[G] the group ring. Take K = Z and A 
to be the spere spectrum S in Proposition 11.8. Then E = E°°(G+) satisfies the 
assumptions. Hence 

THHf (Z[G]) ~ HH?(Z[G]) ®z THHf(Z) 

The right-hand side is known in terms of group homology. E.g. if G is a finite abelian 
group of order n, then 

THH*(Z[G])~ 0 Hp(G;Z)n®zTHH*(Z)(B 0 Torz(^(G;Z)w,Ti/i79
s(Z)). 

p+q=k p+q=k-l 

For further examples see [47]. 

Not every classical ring satisfies the assumptions of the proposition. An example is 
the ring Z[i] of Gaussian numbers, whose topological Hochschild homology has been 
determined by Lindenstrauss [24]. 

12 Topological cyclic homology 

Today the main interest in topological Hochschild homology comes from the fact that 
its cyclic structure given by cyclicly rotating the Diagrams 11.1 gives rise to topological 
cyclic homology. Let Cn denote the cyclic group of order n and TCn(R) the Cn-fixed 
point set ofTHHs(R). We have the obvious inclusion functors 

Dk : TCkl -> TCl 

and there are A;-th power maps 

$fc :TCfcl ->>TC|. 

The Dk and $* satisfy the following relations 

$* o $i = $fc., DkoDi = Dk.i 
$koDi = D\o$k D\ = $ i = id 

Let B be the category with objects n G N,n > 1, and morphisms Dk, $k : k • I -» I 
satisfying these relations. 
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12.1 Definition: Topological cyclic homology TC(R) of a classical ring R is 

TC(R) = holirriBT0* 

12.2 Remark: The formal properties of the cyclic structure of THH are well under­
stood for FSPs and, so far, topological cyclic homology is just defined for FSPs; the 
extension to ring spectra is still work in progress. 

As we pointed out at the beginning of this chapter, TC(R) is much closer to K(R) 
than THH(R). We have the following result due to McCarthy [28]. 

12.3 Proposition: Let / : A -> B be a ring epimorphism with nilpotent kernel, and 
let p be a prime. Then the cyclotomic trace is an isomorphism of relative groups 

trc : K(A -+ B)$ S TC(A -» B)$ 

after p-completion. 

So in some cases the calculation of algebraic .ftT-theory reduces to the more easily 
accessible calculation of topological cyclic homology. E.g. Hesselholt and Madsen 
could show [15] 

12.4 Proposition: Let if be a perfect field of characteristic p > 0, and let .A be a 
finitely generated algebra over the Witt vectors W(K). Then 

K.(A)$ = TC.(A)$-

Explicit calculations of K(Z*)* were obtained by Bokstedt and Madsen for p > 2 [8] 
and by Rognes for p = 2 [41]. 

13 The if-theory of the integers 

The algebraic /^-theory K(Z) of the integers is of great interest for various reasons. 
We have already pointed out its connection with the stable homotopy groups of the 
spheres. There are also various number theoretic conjectures related to K(Z). Let me 
mention just one 

13.1 Weak Quillen-Lichtenbaum Conjecture: The C-function satisfies 

lC(-n)| = 2 #K2»W 

where # denotes the number of elements of the group. 

13.2 Calculations of K*(Z): 
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K0{Z)<*Z classical 
.ЙГi(Z)^Z/2 classical 
K2{Z) S Z/2 Milnoг (1971) 
#K3{Z) is divisible by 48 Kaгoubi (1974) 
Kг{Z) .= Z/48 Lee, Szczarba (1976) 
if4(Z) and .ftľ5(Z) have no 
p-toгsion foг p > 5 

Lee, Szczaгba 
Soulé (1978) 

.ftľ4(Z) has no 3-torsion Rognes (1994) 
KA{Z) =- 0 Rognes, Weibel (1996) 

A considerable advance in the calculation of -f-T(Z), including the final part of the proof 
that .RT4(Z) = 0, was brought about by Voevodsky's solution of the Milnor Conjecture 
[52]. Although the published version does not explicitly use "brave new algebra", 
parts of the proof are definitively inspired by it. Using this result and the Bloch-
Lichtenbaum spectral sequence [1], Weibel calculated the 2-primary part of K{Z) [56]. 
He tacitly assumed that the spectral sequence has certain multiplicative properties, 
which have not yet been verified. This gap was closed by Rognes using topological 
cyclic homology [42]. 

13.3 The 2-primary part of K*{Z) 

Kn(Z) 

5 
6 
7 

Z © (3 - torsion) 
(odd torsion) 
Z/240 0 (odd torsion) 

fc>i 
8Jfc 

8fc + l 

8fc + 2 

8fc + 3 

8 * + 4 

8fe + 5 

8Ä + 6 

Sk + 7 

(odd torsion) 

Z 8 Z / 2 8 (odd torsion) 

Z/2 © (odd torsion) 

Z/160 (odd torsion) 

(odd torsion) 

Z 0 (odd torsion) 

(odd torsion) 

Z/wi 0 (odd torsion), i = 4(fc +1) 

Wi = largest power of 2 in 4z 
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