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CLASSIFICATION OF ENDOMORPHISMS OF SOME LIE
ALGEBROIDS UP TO HOMOTOPY AND THE FUNDAMENTAL
GROUP OF A LIE ALGEBROID

BOGDAN BALCERZAK

ABSTRACT. The notion of a homotopy joining two homomorphisms of Lie algebroids
comes from J. Kubarski {3]. Firstly, in the present paper we investigate this notion
in the case of endomorphisms of the trivial Lie algebroid TR™ x R with the isotropy
algebra R and characterize its homotopic endomorphisms. Secondly, for any regular
Lie algebroid A, we introduce the notion of the fundamental group m; (A) as the group
of classes of homotopic automorphisms of A and, finally, obtain that m; (TR™ x R) =
GL (R).

1. INTRODUCTION

We begin by recalling the notions of a regular Lie algebroid and of a homomorphism
of Lie algebroids. These are fundamental notions in this work.

1.1. Definition of a regular Lie algebroid on a foliated manifold. Let F be a
smooth, constant-dimensional and involutive distribution on a smooth, paracompact,
connected and Hausdorff manifold M. The pair (M, F) is called a foliated manifold.

Definition 1.1. [6], [7] By a regular Lie algebroid on a foliated manifold (M, F) we
mean a system

(Al ['a ']s 7)

where A is a vector bundle over the manifold M, [-,-] : Sec A x SecA — SecA is a
Lie algebra product on the module Sec A of global cross-sections of a vector bundle
A and v : A = T Mis a vector bundle map (called an anchor) such that

1. Imy=F,

2. the mapping Secy : Sec A = X(M), £ — 70&, is a homomorphism of Lie algebras,

3. [&f-nl=f-[&nl+ (vo&)(f) - niforany §,n € Sec A and f € C*(M).

In the case when F = TM (i.e. 7: A = TM is a surjective homomorphism of
vector bundles), the algebroid (A, [-,-],) is called a transitive Lie algebroid.

Example 1.1. Let M be a smooth manifold. Any smooth, constant-dimensional and
involutive distribution F' C T'M is an example of a nontransitivie Lie algebroid with Lie
bracket [X, Y] of vector fields as a commutator [X,Y] and the inclusion ¢ : F — TM
as an anchor.

Example 1.2. [5] Let M be a smooth manifold and g a finite-dimensional R-Lie
algebra. Then TM x g is a transitive Lie algebroid with the canonical projection
pr; : TM x g +TM as an anchor and with the bracket

[-,-] : Sec(TM x g) x Sec(T'M x g) — Sec (TM x g)
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satisfying the relation

[(X,0),(Y,n)] = (X,Y],Lxn - Lyo + o, 7))
forall X, Y € X(M), o, n € C®(M;g).
1.2. The notion of a homomorphism of Lie algebroids.

Definition 1.2. [7], [5] Let (4, [-,-],7) and (4, [-,}',7') be two regular Lie algebroids
on the same foliated manifold (M, F) and let H : A’ — A be a vector bundle map
(over idpy : M — M). Then H is said to be a strong homomorphism of Lie algebroids
if the following relations hold:

1. yoH=+,
2. the mapping Sec H : Sec is a homomorphism of Lie algebras.

Definition 1.3. [1], [2] Let (4,[-,-],7) and (A4,[,-],7) be two Lie algebroids on
manifolds M'and M, respectively. By a homomorphism between them

H: (A’, [', ']’,'Y’) b (A» ['1 ']$ 7)

we mean a homomorphism of vector bundles H : A' —+ A (over f : M' — M) such
that:

1. yoH = f,07/,
2. for arbitrary cross-sections £, ¢’ € Sec A’ with H-decompositions

H°£ Zf'.‘(ﬂi°f),
> ¢ (mof)

I

Hot¢

where fi, g% € C®(M'), m;, n; € Sec A, we have relation
Hol¢,€1 = X7+ ¢ - (Immilo f) +
i

+2 (708 (¢) e =T (Vo€ (F) mos).

Remark 1.1. In the case of Lie algebroids A and A’ on the same manifold M, the
notion of a homomorphism H : A’ = A (over the identity mapping idy : M — M) is
equivalent to the one given in definition 1.2.

1.3. The inverse image of a regular Lie algebroid.

Definition 1.4. [2] Let (4, [-,],7) be a regular Lie algebroid on a foliated manifold
(M,F) and let f : (M',F") = (M,F) be a morphism of the category of foliated
manifolds. The inverse image of A by f is a regular Lie algebroid on (M’', F')
(fAA, ['1 ']A! prl)
where we have
1. ff A={v,zWwWEF' xA: f,(V)=7(W)} C F' & f*A,
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2. the bracket [-,-]* in Sec fAA is defined in the following way: let (X,,Zl),

(Xg,f,) € Sec f*A be two cross-sections of f*A, where X; € Sec F', §; € Sec f*A

and i € {1,2}. Then, for each point z € M’, there exists an open subset U C M’

such that z € U and (E,) w is of the form Yg] - ({,? ) f) for some g} € C™ (M')
7

and §,j € Sec A. Then we put
[ (XI,EI) ’ (XZ)Z2) ]ﬁl =. ([Xh X?] ’ zk:g: ' gg * ([&{) g] ° .f) +
3

FE0 o) (o) -3 (o) (o))

Theorem 1.1. [2] Any homomorphism of regular Lie algebroids H : A’ — A over
f:(M',F") > (M, F) may be represented as a superposition

AI
v N\
frA pr2
of a homomorphism H : A' = f A defined by
H((v)= (Y (v),H (v)) foreach ve A (1.1)

with the canonical one pry: fA A5 A m

U

A

Theorem 1.2. [2] Let A and A’ be two regular Lie algebroids on foliated manifolds
(M',F'") and (M, F), respectively. Let H : A' — A be a homomorphism of vector
bundles over f : (M',F') = (M, F). Then H is a homomorphism of Lie algebroids if
and only if
L. yoH=f,07/,
2. the mapping H : A' = frA deﬁned by v (v’ (v), H (v)) is a homomorphism of
Lie algebroids. m

1.4. The Cartesian product of regular Lie algebroids. By a Cartesian product of
two regular Lie algebroids (A, [-,-)',7') and (4,[,"],7) on foliated manifolds (M’, F')
and (M, F), respectively, we mean the Lie algebroid

(Ax AT > )

over the foliated manifold (M x M, F x F'), and, for £ = (El,?), 7=, €
Sec (A x A') and (z,y) € M x M', we define

ey = (E’ e 671 (’fm))
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where

Bl =€ (076l + (v o) (7 @) - (vor),,, (€ @),
Ely =€ @) 7 @)+ (1oF) (@ C.0) - (ve )(,= L, EC).

2. CHARACTERIZATION OF ENDOMORPHISMS OF THE LIE
ALGEBROID TR® x R

We shall consider a strong endomorphism H : TR® x R -TR" x R of the Lie
algebroid TR® x R.

Remark 2.1. An element of the tangent bundle TR" we identified with a point of
R® x R® by the isomorphism
w:R*xR* — TR, (z,9)— Y u- ai

i=1 i

for z = (Z1,...,Za) , ¥ = (¥1,.--,Yn) € R*, where the system (8%‘, ==):‘_lforms the base
of the tangent space of R® at z induced by the identity map on R*.

Theorem 2.1. An endomorphism H : TR"® x R—TR" x R of the vector bundle
TR® x R is an endomorphism of the Lie algebroid TR® x R if aend only if, for any
z = (T1,..,Zn), ¥ = (Y1,--,Yn) € R* and r € R, H i3 of the form

ST S

i=1

where B € R, A* € C®(R") and, for all i,j € {1,2,...,n} such that i # j, the
relations

_ow
" oz

QA

5 2.1)

(z15--4Zn) (Z1)0e4Zn)

hold.

Proof. ” => ” Assume that H : TR x R 5T R" x R is an endomorphism of the
Lie algebroid TR™ x R (over idg~ : R* — R®). Since the following diagram

TR* x R -2+ TR* xR

TR®
commutes, H is of the form

H(z,y,7) = (z,y,A(z,y,7)) forz,y€R* andr €R,

where X : (R® x R*) x R — R is a smooth function. Moreover, since the restrictions
Hi; = Hr g~xr : R® xR = R* x R are linear mappings for each z € R", therefore
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H, is of the form

He )= (13 4@ 0+ B () )

i=1

for all y = (y1,.--,¥n) € R*, r € R and for some smooth functions A%, B € C* (R").
Thus

n
Az, y,r)=Y_A'(z)-4i+B(z)-r for yeR* and r€R
i=1
Let X € X(R") and 7 € C* (R) be arbitrary, whereas Y = 0 € X(R") - the zero
vector field on the manifold R* and o = 0 — the zero function on R*. Observe that
Ho[(X,0),(Y,n)]=Ho[(X,0),(0,n)]=H(0,X (1)) = (0,B-X(n))
and

[Ho(X,0),Ho(%n)] = [Ho(X,0),Ho(0,n)]
- [(x.ZA‘-X*),(o,B-n)l

=1
(0,X (B-n))=(0,B- X (n) + X (B)-n).

Since Sec H : Sec (TR™ x R) — Sec (T'R® x R) is a homomorphism of Lie algebras,
we have the equality

Ho[(X,0),(0,n)]=[Ho(X,0),Ho(0,n)].

Hence we obtain that X (B) - = 0 for each n € C* (R). For a non-zero function on
R, we have

X (B)=0.

But X € X (R") was an arbitrarily taken vector field, therefore B is constant.
Now, let X, Y € X (R") be two arbitrary vector fields on R*. Then

Ho[(X,0),(1,0)] = B (X,¥1,0) = (Y], 3 4 Lx,¥Y

i=1
and

[, 30 4°- X, (v, 30 A V)]

i=1 i=1

- (xx (Sar) -y ($a-x7)),

i=1 i=1

[Ho(X,0),Ho (Y,0)]

where X*, Yi, [X,Y]' € C® (R") are coordinates of the vector fields X, Y, [X,Y],
respectively. Since Sec H is a homomorphism of Lie algebras, we have
Ho [(X,O),(Y,O)] = [Ho (X,0),Ho (}’,0)],

whence

n

f:A" (X, Y] = z"jx (4-v) -3 v (4 X7). (2.2)

=1 i=1 =1
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Concider vector fields X = 31 X¢- 22, Y = 3 Y- 2 € X(R") where X',
i=1 * j=1

Y7 € C®(R") and (FZ—.-):;l forms the base of the module X (R"), induced by the

identity map on R". In view of the properities of the Lie bracket [-,] of vector fields
on R*, we obtain

[x,v]= Z(ZX’ 5 (F) =275 ( ))ai

i=1l \j=1 j=1

Hence (2.2) implies that

S (fx (- S (0)) -

= ’zlz"‘{XJ (A' YY) - l};_‘{gw (A’ X',
whence
ig(xf.yf_w.x-').%(m)=o

Let ip # jo and X = a: ’Y—sz ie. X*=4% and Y/ —6"’ for ¢, j € {1,...,n}.
From the above it follows tha.t
; o F) ;
3 (#F a8 - (4) =

consequently,

5 (47) = 50— (49).

On account of the arbitrariness of iy # jo, we have (2.1).
? &="Let H:TR" xR = TR™ x R be an endomorphism of the vector bundle
TR" x R, such that

H(z,y,r) = (Z.y,zi:A‘(z) -y.-+B-r)

for z = (z1,--,%n), ¥ = (%1,--»¥n) € K*, r € R, where B € R, and A’ € C* (R")
satisfy condition (2.1).

Consider (X, 0), (Y,7) € Sec (TR* x R) where o, 7 € C*® (R*) and X = 2 Xi. 2 h ,
Y= Z Y?. 81’ € X(R"), X%, Y7 € C* (R"). Observe that
i=1

2 P i) i i BAF  QAI

At YH) — A X)) = Al X 3.y .

Ex( YY) ;y( x') = ; [ Y]+§lx Y. (ax,- az,-)
7
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Thus (2.1) implies that
n

z";X(A*-Y") _Y v (4 X) = 34X, YT

=1 =1 i=1

Then we obtain
[Ho(X,0),Ho(Y,n)] =
[(x,f:A"-x"+B-a),(Y,}EA"-Y'#B-n)]

i=1 i=1

([X,Y],X (f;A‘-Y"+B-q) —Y({n:A‘-X‘+B-a))

i=1 i=1

([x, Y],SS A [X,YF+B-(X (1) =Y (a»)

i=1

Ho([X,Y],X (n) - Y (0)) = Ho[(X,0), (¥;,n)]

Therefore the mapping Sec H is a homomorphism of Lie algebras. It follows that H is
a strong endomorphism of the Lie algebroid TR" xR. m

Corollary 2.2. (n =2) An endomorphism H : TR? x R -TR? x R of the vector
bundle TR? x R is an endomorphism of the Lie algebroid TR? x R if and only if H is
of the form

H ((z1,22), (41,92),7) = (2.3)
= ((1'1, 2), (11, 92) s A" (21, 22) - 91 + A* (21,72) - 92 + B - T)

for all ((z1,72),(¥1,%2),7) € (R2xR?) x R, where B € R, A! € C*(R?), and
A? € C* (R?) is given by

A2 (2, 75) = 53?2 { A (62 di+o(e) (2.4)

for a certain function ¢ € C* (R) depending on z; only.

Proof. ” = ” Suppose that H is an endomorphism of the Lie algebroid TR? x R
and (z1,%2), (¥1,%2) € R?, r € R. By theorem 2.1,

H((z1,22), (y1,92),7) = ((1‘1, 22), (Y1, 92) , A' (21, 22) - y1 + A? (21,22) -2 + B - 1')
where B € R and

dA!

E?Tz for any (z1,z;) € R%. (2.5)

(z1,22)

(z1,22)

Since there exists a function ¢ € C* (R) dependent on z; only, such that

zr
0 A?
A? (x1,23) = [ 77— dt + ¢ (z2)
{ 021 |(4,2,)
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and (2.5) holds, therefore

z)
0 A
2 —
A (Zl,ﬁz)—{—ax

2 (t,zz)

dt + (P(Iz) )

whence we obtain
. a z1
2 __9 [n
A% (z1,22) = ax,[A (t,z2) dt + ¢ (z2)

for all (z1,z,) € R2.
” <= " Let now the endomorphism H : TR? x R +TR? x R be defined by (2.3).
Al is any function of C* (R?) and A% € C* (R?) is given by (2.4). Then
o) _oa
0% oz 0%2)z10)

On account of theorem 2.1, we have that H is an endomorphism of the Lie algebroid
TR2 xR =

for any (z1,z2) € R%.

3. HOMOTOPY

3.1. Definition of a homotopy joining two homomorphisms of Lie algebroids.
Let A and A’ be regular Lie algebroids on manifolds M and M’, respectively, and let
H,, H; : A = A be homomorphisms of Lie algebroids. By a homotopy joining Hy to
H, we mean a homomorphism of Lie algebroids

H:TRxA'— A
such that
H(6o,") = Hy and H (6,") = Hy,

where 6p and 6, are null vectors tangent to R at 0 and 1, respectively. We then say
that the endomorphism Hj is homotopic to H; and write Hy ~ H,.

This definition comes from J. Kubarski [3].

Since we are interested in strong endomorphisms of a Lie algebroid A, we modify
the above definition assuming that H is over the projection pr; : R x M — M. Then
H is said to be a strong homotopy.

3.2. Characterization of a homotopy joining two endomorphisms of the Lie
algebroid TR" xR. Let pr, : R**! — R™ be given by pr,, (Zo, Z1, .-, Zn) = (T1, .-+, Tn)
for all (zo, 21, ..., Zn) € R**1,

Lemma 3.1. The mapping A : TR™*! x R = pr,) (TR® x R) defined by
A (((ZO: T1yeeey :E,.) ) (’yo, Y150y yn)) :3) = (3'1)

= (((an L1y -0y zn) ) (y(h Y15 0y yn)) ) (((31, ey zn) H (yl! ooy yn) ’ 8)))

Jor any (To,Z1, -, Tn), (Y0,¥1,--,¥n) € R**! and s € R is an isomorphism of Lie
algebroids.

Proof. The proof is standard. m
The following lemma is preparatory to the main theorem of our paper — theorem
3.3.
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Lemma 3.2. Let Hy, H; : TR® x R =& TR"® x R be two endomorphisms of the Lie
algebroid TR™ x R and let, for all z = (z1, ..., Zs), ¥y = (¥1,---,¥n) € R,

Hy((@9),7) = ((x,y),iAa(x)-y.-+Bo-r),

i=1

(6054 @ u+50r)

i=1

Hl ((z; y) ,1‘)

(according to theorem 2.1, each endomorphism of the Lie algebroid TR™ x R is of this
form), where By, B; € R, and A}, Ai € C® (R") satisfy relation (2.1). There ezists
a strong homotopy joinig Hy to H, if and only if By = B, and there ezist functions
G' e C>* (R**!) (i€ {0,1,...,n}) such that

G"(O,zl,...,:c,.) = Ag (171,...,1‘”), (32)
Gk (l,xl, ...,$,|) = A’f (a:l,...,:n,.)

(k €{1,2,...,n}) and
oGt

0z;

_ oG

=5 (3.3)

(20,Z14-+5Zn) (zo,71 .---;zn)

for all (zo, 71, ..., ) € R**! and i, j € {0,1,...,n} such that i # j.

Proof. ” = ” Assume that there exists a strong homotopy H : TRx (TR* x R) —
TR" x R joining Hy to H;. Then we have

H((0,0),((z,y),7))

foranyz, ye R* andr € R

Let H : TRx (TR" x R) — pr,* (TR x R) denote the homomorphism of Lie al-
gebroids, determined by H via formula (1.1). Since the homomorphism A : TR**+! x
R — pr,) (TR™ x R) defined by (3.1) is an isomorphism of Lie algebroids, we see at
once, after the identification of TRx (TR x R) with TR"*+! x R, that A~' o H is an
endomorphism of the Lie algebroid TR™*! x R. Thus and by theorem 2.1, there exist
functions G* € C* (R™*!) and a real number B, such that A~! o H is defined by

(A—l oﬁ) ((:L‘, y) ’ 7‘) = ((Ir y) ’zn:Gi (Z) Y+ B- T)

=0

Hy ((-'B: y) ’r) ’ (34)
H, ((z,y),7) (3.5)

for any z = (%0, Z1,.,Zn)» ¥ = (Y0,¥15--,¥n) € K™, r € R, and the following
condition is satisfied
a:c,- 61:,-

for 1, j€{0,1,...,n} and i # j.
Hence we obtain that H is of the form

H((zy),r) = (<z,y), (((zl, rZ)s Wt 3)), 326 () 34+ B )) .
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From the definition of H and from the above it follows that H is given by

H ((an yO) ) (((.’Bl, °*y zﬂ) L] (yl, ey yn)) 17')) = (36)
= (((xla ey zn) ) (yh sery yn)) ) Zo Gi (IO) L1y ooy x‘n) * Y +B- 1')

for all (zo,%0) € R X R, (z1,...,Zn) , (1, .-,¥n) € R* and r € R. We deduce from (3.4)
and (3.5) that By = B, and

G’:(O") = Afb
G‘(l") A‘l

for any i, j € {1,...,n}.
" 4= " Suppose that B = By = B, and there exist functions G* € C*® (R*+!)
(¢ € {0,1,...,n}) satisfying conditions (3.2) and (3.3). Then the mapping

H :TRx (TR"xR) = TR" xR

given by (3.6) is a strong homotopy joinig Hy to H;. m
Finally, we shall prove the main theorem of this work.

Theorem 3.3. Let Hy, H; : TR® x R = TR® x R be two endomorphisms of the Lie
algebroid TR™ x R defined (in view of theorem 2.1) by

HO ((x,y),r) ((z’y)’zn:A:" (1‘) 'yi+BO'r) ’

i=1

H, ((z,9),7) ((z,y),iA‘i (z) -y + B .,)

i=1

for allz = (T1,...,ZTn), Y = (Y1, ¥n) € R*, where By, B, € R, and A}, A} € C* (R*)
satisfy relation (2.1). There ezists a strong homotopy joinig Hy to H, if and only if
Bo = Bl.

Proof. ” = ” Assume that the endomorphisms Hy, H; : TR® xR — TR" x R are
homotopic. Now, lemma 3.2 shows that By = B.
» =" Let now By = B;. Take G, G* € C* (R**!) (i € {1,2,...,n}) defined by
seey 0, tj, ey Ty ) dtj,
i

n %
G'(z) = Y [ (al-4d)(o,
j=1{ ( ) \q_,l—l
G (I) = Zo- A‘; (zlv ...,:::,.) + (1 - 30) - A:') (.1:1, ey -Tn)
for any z = (zg, Z1, ..., Tn) € R**! and i € {1,2,...,n}.
Then
G*(0,-) = A} and G'(1,-) = A} fori€{1,2,..,n}.
Since Hy and H, are endomorphisms of Lie algebroid TR® x R, therefore theorem
2.1 implies the equalities
Al AL
dz; 0z;
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for k € {0,1}, 4,5 € {1,2,...,n} and i # j. Let = (2o, 71, ..., Z») € R**1. Hence, for
i,j € {1,2,...,n} such that i # j, we have, of cource, that

26| _ o6t
azj z_ 6.'5.- z
Moreover,
FYed o (&7
6_1:1 = -a— (Z/( ) 0 ...,O,t,-,...,z,.)dt_,-)
z =1 0 j-1
=17 Al — A}) (t1, ..., zn) dts = (A} - A}) (= a:)_a—G1
a / 9. n 0 1y-- n azo .
and
aG°| y
e / - 43)( ,...,:c,.)dt,-) =
1 1] J= 0 J
i-1” 6 A
= JX_:]/ az‘ (0 In)dt_,
0 J-l

+oo /A' - A} (0, _I,O,tg,...,z,.)dt.-

- 'f/""(” A) (q,... 030,y n ) dlty + (A = 45) (0, 0,7ty Zn)

= dz;
J=1% i j- 1 i-1
= (A‘l - A:)) (Ih T2, .. xﬂ) - (A' - A:)) (0"1:2) "'7-7:1!) +
+3 (A‘ A‘) (0 20,Zjy ey Tn) = Y (A'l - Af,) (0,4,0,Zj415 .00, Tn )

1<j<i ,-1 . 1<j<i y
+ (41 - 48) (0,...,0,3i, ..., Tn)

i-1
= (A'x - Af)) (21,72, <oy Tn) — (A'1 - Af,) 0,zz,...,z,) +
+ (A5 - AY) (0,23,.,zn) + Y (45— A}) (0,110, 5, s2n ) +
2<5<i ,-1

-Y (A‘ A5) (0, 0,4 0,541, s Zn)

1
<j<i J

(4i = 48) (21, 7a) = -‘;—%' z

for i € {2,...,n}. From this and theorem 3.2 we conclude that the endomorphism H,
is homotopic to H;. The proof is completed. &
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4. FUNDAMENTAL GROUP OF A REGULAR LIE ALGEBROID
Let A be a regular Lie algedroid on a smooth manifold M. Consider the set

m (A) ={[f]; f: A~ A}

where [f] denotes a class of strong automorphisms of the Lie algebroid A, strong
homotopic to the automorphism f : A —+ A, and define the product of two classes [f],
lg] € m (A) by
[f]-ls]=[fog].
If f~ f': A — A via a homotopy H;, and g ~ g’ : A — A via a homotopy Hy,
then fo g~ f'og’ via the homotopy H = H, o (pr,, H;) where pr; : TR x A — TR
is the canonical projection. This observation gives the correctness of above definition.

In this way, m;, (A) becomes a group, called the fundamental group of the Lie alge-
broid A.

Theorem 4.1. The fundamental group m (TR™ x R) is isomorphic to the linear group
GL (R).

Proof. Let f : TR® x R +TR" x R be an automorphism of the Lie algebroid
TR® x R. On account of theorem 2.1, it is, for any z, y € R®, r € R, of the form

f((z1y)’r) = (-’L',y,iA} (z) 'yi+Bf 'T)

i=1

with By € R\ {0} and functions A} € C* (R") satisfying condition (2.1). It is clear
that f defines a linear automorphism a; : R — R by the formula a; (r) = By - r. Now,
we define an isomorphism of groups 2 : m (TR" x R) — GL (R) by setting

[f] —ayf.

It is evident that €2 is an isomorphism. Let g be another automorphism of the Lie
algebroid TR™ x R and let, for any z, y e R*, r € R,

R .

i=1

with By € R\ {0} and A} € C* (R") satisfying (2.1). Then

(fog)((zy),1)= ((zvy)ré( }(x)+BfA;(x)) 'yi+Bf'By'r) .
From this we obtain

Q([f]-[g) =Q([f o g]) =asoa;, =Q([f]) o 2([g]) -

For this reason the mapping Q is an isomorphism of the groups m; (TR® x R) and
GL(R).m

Finally, we raise an open problem: investigate the fundamental group , (A) for an
arbitrary Lie algebroid A, first for A = TM x g (where g is an arbitrary Lie algebra).



CLASSIFICATION OF ENDOMORPHISMS OF SOME LIE ALGEBROIDS, .... 101

REFERENCES
[1] P. J. Higgins, K. C. H. Mackenzie, Algebraic constructions in the category of Lie algebroids, J.
Algebra 129 (1990), 194-230.

[2] J. Kubarski, The Chern-Weil homomorphism of reqular Lie algebroids, Publ. Dép. Math. Univ.
de Lyon 1, 1991.

[3] J. Kubarski, Invariant cohomology of regular Lie algebroids, Proceedings of the VII International
Colloquium on Differential Geometry, ” Analysis and Geometry in Foliated Manifolds”, Santiago

de Compostella, Spain, 26-30 July 1994, World Scientific Publishing Singapore-New Yersey-
London - Hong Kong, 1995, 137-151.

[4] K. C. H. Mackenzie, Lie grupoids and Lie algebroids in differential geometry, London Mathemat-
ical Society Lecture Note Series 124, Cambridge University Press, 1987.

[5) Ngd van Qué, Sur l'espace de prolongement différentiable, Journal of Differential Geometry 2
(1968), 33-40.

[6] J. Pradines, Théorie de Lie pour les grupoides différientiables. Calcul différentiel dans la catégorie
des grupoides infinitésimauz, C. R. Acad. Sc. Paris, Série A, t. 264 (1967), 245-248.

[7] J. Pradines, Théorie de Lie pour les grupoides différientiables, Atti del Convegano Internazionale
di Geometria Differenziale (Bologna, 28-30, IX, 1967), Bologna- Amsterdam, 1967.

INSTITUTE OF MATHEMATICS & |
TECHNICAL UNIVERSITY OF LODZ
Al. Politechniki 11

90-924 Lédz

Poland

bogdan@ck-sg.p.lodz.pl



