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NEW BOSON REALIZATIONS OF QUANTUM GROUPS Ug(An)

C. BURDIK AND O. NAVRATIL

ABSTRACT. We describe a construction of boson realizations of quantum groups. The
realizations are expressed by means of r(n — r + 1) g-deformed bosons pairs and
generators of certain subalgebra of Ug(An).

1. GENERAL CONSTRUCTION

We will study quantum algebras Uy(L), which were defined by [1,2]. Concretely
we will use the realization of these algebras which were given by [3].
Let g is independent variable, A = C[q,q“l] and C(q) is its division ring. For
dn —dn
q q

n € Z and d € N we denote [n]g = q:ﬁ € Aand [n)g! =[n]a-[n—1)a-...-[la

d
and

n _ {n]d!
L'L - glatlgla!
If d =1 we omit index d.
Let £ is a simple Lie algebra with Cartan matrix (a;;) = L—;—, ,7=1,...,k

and d; are co-prime integers such that d;a;; is symmetric matrix. Let C(g)-algebra
Uy(L) is generated by Ej, F;, K; and K,-"l, where 1 = 1,2,...,k which fulfil the
relations

KiK; = KK, KiK' =K 'K;=1,
KEK ' =gV E;j, KFK'=¢"F,
Ki—K!

EiF; - FiE; = 6;——+,
qi — q;
g 1—ai;
8=0 di

This paper is in final form and no version of it will be submitted for publication elsewhere.
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1-a;;

Z( b’ [ Saijjl Fil_aij——stFiszov i# 7,
d,

where ¢; = g%
The associative algebra Uy(L) with comultiplication A, antipode S and counit ¢,
which are given by

AE;=E;®1+K;®E;, AF,=F,QK'+1®F;,, AK;=K;®K;;
S(E;) = -K['E;, S(F;) = -FK;, S(K;)=K;
6(I;i) = 01 i C(E) = 0) C(Ki) =1 )

forms Hopf algebra. This Hopf algebra is denoted as quantum group. Because we
understand representation of quantum group homomorphism Uy(L) to End V, we
don’t interest in these last three operations.

The elements E; and F; correspond to the system of positive and negative simple
roots of the Lie algebra £. In the paper [4] it is shown how is possible to build up
representations of the quantum group U,(£) by means of Verma modules. But in
the case of Lie algebras we can generalize this construction such, that we obtain less
boson pairs and the representation of any auxiliary subalgebra of £ [5].

We remind this construction shortly. Let £ is a simple Lie algebra and IIt =
(01,...,ak) system of positive simple roots. In this case it is possible to write any

root a in the form .
a=) n,
i=1

where all n; are positive or negative integers. Let II, = II\ {a,} and ®} is a root
system which corresponds to II,.

Let L, is the Lie subalgebra of £ generated by the Cartan subalgebra of £ and
by the elements E, and F,, where o € ®,.+. This subalgebra is reductive.

Let the elements Eg are associated with the roots 8 ¢ ®;F. These elements
generate the nilpotent subalgebra Ay and similarly the elements F generate algebra
N_. By this way we obtain a decomposition of the Lie algebra L to the direct sum
of vector spaces

L=N,®dL,DN_.
It is possible to write the universal enveloping algebra U (E) as U(L) = UWy) -
U(L,) - UWN-).

If o is representation of the Lie algebra £, on a vector—space V, for which

k
= (Z aiH,-> = )\ = const.
i=1

k

where Z = Za;Hi is non vanish central element of the Lie algebra L,. Since
i=1

a, # 0, it is possible to express p(H,) by means of ¢(H;), 1 # r, and A. Therefore
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the representation ¢ is given by representations ¢; and ¢; of the Lie algebras £; and
L, which have root systems II; = {ai,...,a,-1} and IIy = {a;41,...,0x}. The
representation ¢ is possible to extend on the algebra £, @ N_, if we put p(Fg)v =0
forallve V.

The subspace W C U(L) ® V generated by relations

z2Q@v—zQ@p(z)v, where z€U(L), z€U(L;) -uN-) and veV

is invariant for left regular representation. Therefore it is possible to obtain the
factor-representation £ on the vector-space ((£) ® V)/W. The representation is
called induce representation [6)].

If we chose basis in U(N,.) suitably, we are able to rewrite this representation by
means of p = dim(N.,) bosons operators and representation ¢ of the auxiliary Lie
algebra £,. By this way we obtain a realization of Lie algebra L.

The above mentioned procedure is possible to apply only with small changes to
the quantum group. The first change is that in this case we are not able to express
element K, through central element of U,(£,) and elements Kj, ¢ # r. Therefore we
have to consider representation ¢ of the whole auxiliary quantum subalgebra Uy (L,)
Since our aim is to construct whole set of realizations, where we use as ¢ realization
of similar quantum group with less dimension, it is suitable to extent our quantum
group by element K. This element corresponds in fact imbedding of our quantum
group to the quantum group the same type but with rank & + 1.

The other difference appears, when we construct the induced representations. We
don’t obtain usual boson representation of Weyl algebra, but representation of its
g-deformed version, Hayashi algebra # [4]. The algebra # is associative algebra over
field C(q) which is generate by elements a™, a~ = a, ¢® and ¢g~®. These operators
satisfy the relations

aat —¢g lata=¢* aat —gata=g¢7"
¢®atq™® = qat ¢°aqg™® =g 'a
f¢ =g =1.
This algebra has faithful representation on the space {|n), n=0,1,2,...}
q" In} =q"|n) ,
atin) = n+1),
a” |n) = [n]|n-1).

Exactly these representations appear in induced representations.
For these reasons we use the following

Definition. Let U,(£) be a quantum group and Uy(Lo) its subalgebra. A realization
of the quantum group U, (L) is homomorphism

p: Uq(E) — Hn ® Uq(LO))

where H™ is n-fold tensor product of the Hayashi algebras.
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2. CONSTRUCTION OF THE REALIZATIONS Uy(A,)

In papers [7-10] we constructed the realizations of the quantum group for all four
infinite series of the classical simple Lie algebras. This realizations correspond to
the choice = 1 in our general construction from Section 1. Here we will deal with
this construction for the quantum group Uy(A,) in the case a general r. These
realizations correspond to the most simple representations of degenerate series of
Lie algebras. The construction of induced representations in this case is much more
difficult due to bigger dimension of the factor-space.

In this paper we give our results without proofs only. The proofs we have obtained
by slightly modified proofs, which are in [7].

Cartan matrix of the quantum group Uy(4,) is

2 -1 0 ...

Therefore we have d; =1 and ¢; = qforalli =1,...,n.

Let 1 <7 < n and Uy(L,) is the auxiliary algebra generated by elements Ej, Fj,
Kj, K; 1 j#r, and K,, K. Let representation ¢ of this algebra has the property
©(Z)v = q*v, where Z is central element of the algebra L,

Z_K?- Ky ' K2 | K,.

We will denote
Xs,s+1=Es s=12,...,n
Xot+1=EtXq; — ¢ ' X, Ey, 1<s<t<n.

For the construction of the induced representation we will need relations between
this elements, which are given by the following Lemmas

Lemma 1. The following commutation relations hold in quantum group Uy(An)

Ey Xy, = X¢,E,s stl<t<r
E X1t =qXe414Es —qXsr s+1<t
EXs1=q ' X, 4E, s+1<t
E,Xtr= X, E, t<r<s

E X 5= q'lXt,aE, + X541 t<s
Ey Xt 541 = qXt,5+1Es t<s

Ean,,- = Xg,,-Ea t<s<r-1
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Lemma 2. The elements X, , and X;, of the quantum group U;(A,) fulfil the
following relations:

Xrs Xt = Xt uXrs forr<s<t<u,
XrsXou = X5 uXrs — 0 Xr 0 forr<s<u
XrsXes =0 ' X s X s forr<t<s

Xr Xt = XeuXrs forr<t<u<s
XroXenw =0 " XruXrs forr<s<u

Xr s Xt — XeuXr s = (q - q—I)Xt,sXm, fort<r<u<s

Lemma 3. Non trivial commutation relations between elements K, and X, are

KX s = q_lXt,sKs t<s
Kth,s+1 = th,s—HKs t<s
KsXs,lqus,th t>s+1

Ko Xoi14 =0 " Xoy1,Ks t>s+1
KsXs,s+l = qus,s+le

Lemma 4. The following relations hold in the quantum group Uy(An)

Fth,u = Xt,qu fOT s<t,

K,—K!
FsXs,s—H = Xs,s+1Fs - ﬁ%—
FsXs,ths,th_‘KsXs+1,t for s+1<t,
FsXiu = Xt uFs fort<s,u#s+1,
FiXpo41= Xesp1Fs + Xo o K1 fort<s.

It is very easy to prove by means of induction from this Lemmas following relations
for general powers

Lemma 5. The relations

EX¥1 = ¢ Xop1Es — " [k Xo e X571 s+1<t
BoXpy = ¢*X{,Eq + [RXE B, t<s
FoX§, = X5 Fy — "2 (k)1 XE7 X o110 K, s+1l<t
FSX{sz = X:s+1Fs + [k]Xt,thk.s_J:le_l t<s

k - - - -
Fstus‘*'l = X§,8+1F3 - E—E_‘;-—I.X:s-{{l (qk lKa -q k+1Ks 1)
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Xe o X8 =¢"X5 , Xes u<t
XooXE, =¢"XF, Xo u<t
Xr,thk:u = Xt’qur,s - (a- q_l)[k]Xr,quk,let,s r<t<s<u
XooXFy = " XE X e — (K] X, u X0 " s<t<u

are valid fork=1,2,....

According to PBW theorem the basis of the factor-space N, is formed by elements

— YTi,r+1 T1,n+1 T2,r+1 T2,n41 Tr,r41 Ty on4l
lz) = Xy 708 e P, SEUVEED. SRS, CHVEEIPPED, G SEPPIED, G
where z,; = 0,1,2,.... Moreover we denote special elements for which are z, ;=0
foru < s and u >t as |zs,...,Ts)

Let ¢ is a representation of the auxiliary quantum group £, which is generated
by elements Ej, F;, Kj, KJ-‘l, j#r, K, and K7 on a vector space V. If we put
o(Fy)v =0 for all v € V, we can extend this representation to the quantum group
Ug(L,) - Ug(NZ). Tt is not difficult to derive from the previous Lemmas

Theorem 1. For the factor-representation on the vector space, which is generated
by the elements |z) ® v the relations

fors<r
n+1 . .
Eslz)@v=- Z gXrr et =Xen(9) [Is+1,t] |z + 154 = 1o41,e) @+
t=r+1

+ X D-XIH ) @ (B, )
K, |z) @ v =g =X |5) @ o(K, )

n+l1
Fy|z)®@v=— Z qX:+1(s)—X{‘+1(a+1)—2 [Is,t] |z — 1, + 13+1't) ® QO(KS)U-F
t=r+1
+ |z) ® p(Fs)v
fors>r
r

E,lz)@v = qui‘l(aﬂ)—xi“l(s) [T,6] |2 = Los + Le,s41) @ v+

t=1

+ X 2) @ (B o
Ky Jo) ® v =g T 0564 |2) © (K)o

,
Flev=Y gXin O =Xon () [ ] |2+ 1y — eep) ® 9(K; )0+
t=1
+ |z) ® p(Fy)v

fors=r
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Elz)®@v=¢" "z 41, )ev
K, |z) ® v =gX CHUXIE0) 12) @ (K, Y

Frle)@v=-— [x_;;_l} |z = 1rr1) ® (qX::xl(")‘l(p(Kr) - ql—X:‘:.‘(r)(p(Kr_l)) v
n+1 ntl
= > &2 g ] - 1) ® @K1, Kr) vt
t=r+2

r—1
+y g X DX O-XIH O [
t=1

t,r+1] |1, 2 = 1 pq) X

X Xt,r Ixt-{-h v .,.’E,-) ® (p(Kr_l)v’

¢ t
is valid. For abbreviation we use X%(u) = Zz“'k foru < r and Xi(u) = ka,u
' k=s

k=s
for u > T respectively.

Remark. The relation for F, |z) ® v in the Theorem 1 is not the representation of
this element on our vector space. We need commute element X, ; to the end and
arrange the outcome of the commutation. The resulting formula is very complicated.
It contain all possible terms of the form

s
R Z(ltmuk - 1tk+1.uk)> Xu-+1‘T s
k=1

where t; = t, tx < tx41, and we put X, , = 1. In the case r = 1 these terms vanished
and therefore we can be able to find induced representation [7].

Therefore we give this representation for special r only.

When r = n the element F,, has representation

Fn lz) QU=-— _[(;i_’_’.".q__t_lll q-X;‘_l(n—}-l) I.'E — 1"’n+1> ®
® (qX{'(rH—l)—lw(Kn) _ q—x;'(n+1)+1(p(K;1)) ot
n—-1
+ Z q—X{‘—l(n+1)—-X{‘(n+l)+l [wk,n+1] |z — 1k,n+1) ® (p(Xk,nK;l)’U i
k=1

When r = 2 the element F5 has representation

[224]
g—q7!
® (qm X O71p(Ky) - g @ (K1) ) vt

+ q"xém(l)_’"3+1 [z13] |z - 113) ® o(X1,2K57 ) v—

Fy l.’II) RQu=-— g T3 [:L‘ — 12,3> ®
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n+1
- Z ‘IX‘"“(Z)_2 [”’z,t] |z — 12,¢) ‘P(X3»‘)K2)v_

t=4
n+1

— Z q_xé(l)_xffll(z)-”'s“ [131,3] [12»‘] X
t=4
X |2] - 11,3 +1;— 12,t) ® ‘p(K2_l)v

When r = 3 the element F3 has representation

[z3.4]

Flz)@v=-— = q—X-f(‘*) |z —134)®

® (qu(4)+x:“(s>-1(p(K3) _ q—X?(4)—X:+‘(3)+1@(K3—1)) v—

n+1
=32 gy ] o — 13,) ® (X Ka) v+
t=5

" q_x;'+1(1)—x§(4)+1 [11,4] lz—114) ® (p(XLsK;l)v+

+ q—211,4—X:+1(2)":r3,4+1 [$2,4] |z _ 12’4> ® (,D(Xg,:;K:;l)v"
n+1

~q-qHY g~ X=X @)-X3(4)+1 [1,4] [£2,4] X
t=>5

X |.’L‘ —1ly4+1:— 12,¢) ®¢(X2,3K;1)'U—-
n+1

_ Z q—Xi(l)—h.»—XoTll(3)_Xg(4)+l [III1,4] [Z's,t] X
t=5
Xlz—11,a4+ 11— 134) ® <P(K3—1)U”'
n+1
_ Z g2 X=X () -z u+1 [z2,4] [z3,0]
t=5
X |z = 12,4+ 12 — 134) @ p(K3 v+
n+lt—1
Flg-g ) Y3 KO KO- X OO g, ] [, ] [z2.]
t=6 s=5

Xlz-114+ 11— 125+ 1, —134) @ w(Kg.—l)U
We obtain the realizations of U;(A,) from these representations by the standard
way. The realizations are given by the following

Theorem 2. Let v = 2, 8 or n. Let Uy(L;) is the quantum subalgebra Uy(Any)
generated by elements E;, F;, K; and K{l, wherei, 7 =1,2,...,n, j#r. Then
the mapping p : Uy(Ay) = H' (=m0 @ U,(L,) given by formulae

lOT‘S<7‘
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n+1
p(Es) =~ gD =Xea @020,y o, — X CHD)-XH G,
t=r+1

p(Ks) :qX::11(3+1)—X::11 (3)[{8

n+1l
ndl,y_ yndl
p(Fs) =— Z qX' (o)=%: (3+1)as,ta:+1,th+Fs
t=r+1
107' S>T
r
t-1 t—1 r -
p(Ea) =) g™ =T Clay saf ) + XA -XOE,
t=1

p(K,) =g )X+ D K

T
p(Fs) = ZqX{'H(s)_X{““(s+1)at,s+1a:sK;1 + Fs

t=1
fors=r
xr—l
p(Ey) =g ) L,
n41

p(Ky) =g XTI HHXS D g
and p(F;) is forr =n
p(Fa) =~ (g —q 1) g X () (qx‘"‘"“)Kn - q‘X‘"("“)K;‘) L

1
k n
n Z q—-X‘ (n+1)-X7 ("+1)ak,n+1Xk,nK1:1

k=1
forr =2
Cv—=1 _ nt1 _ _yn+l _
pFp)=—(g—q71) g (q"'a“‘“ @Ky — g ==X B g5 1) az3+
X3t (1) -z = Xpti(2)
+q 7 2a13— Y g% PagKyXge—
t=4
ntl

—-Xi()—-XrHN(2)—z2,34+1 + 7o-1
B Zq A= XEr =2atle) say 0] K
t=4

and forr =3

p(F3) = — (q _ q~1)—1q_x3(4) (qxf(4)+x;+1(3)K3 _ q‘Xl’(“)-XZ'“(”K;I) aza—

n+1

- qu"lﬂ(s)as,eKaX‘x,t‘i’
t=5

n n+1
+ q—X‘1 +1<1)_X§(4)G,1)4X1,3K:;1 + q—211|4—X4 + (2)-x3,4 02’4X2,3K3_1_

n+l
- _xt _yn+1 _y3 —
~(g-g71) 3 g XWX @O-X3W+1g, 4, af X, oK
t=>5

83
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n+1
_xt —- _yn+1 _x3 _
— g q Xq(l) T2,t Xt+1 (3) X2(4)+1al,4a3,ta-1*:zK3 1_
t=5

n+1l
- _xt — n+1 _ —
- E q 21,4= X4 (2) =X ) n:3"+1(12,4(13yt112—,1t}r{3 14
t=5

ntlt-1
1 X3 (1)-Xt,  (2)-X"H(3)-X3(4)+2 -1
+ (q_q ) E E q A(D-X, 1 )-X (3)-X3(9)+ a1,4az,sa3,tatsa-2+,tK3
t=6 s=5

is realizatian of quantum group U,y(An).

Partial support from the grant 202/96/0218 of Czech Grant Agency is gratefully
acknowledged.
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SOME REMARKS ON THE PLUCKER RELATIONS

MICHAEL G. EASTWOOD AND PETER W. MICHOR

1. THE PLUCKER RELATIONS

Let V denote a finite-dimensional vector space. An s-vector P € A*V is called decom-
posable or simple if it can be written in the form

P=uAvA---Aw foru,v,... , weV.

We shall use in the following both Penrose’s abstract index notation and exterior
calculus with the conventions of [3].

Theorem 1. Let P € A*V be an s-vector. Then P is decomposable if and only if one
of the following conditions holds:

. i(®)P AP =0 for all ® € A*"'V*. In indez notation Piayc..aPesg..n = 0.
. (ip¥)P =0 for all ¥ € ASTIV*,

. tayaena,_ P 15 decomposable for all a; € V*, for any fized k > 2.

- i(U)P AP =0 for all ¥ € A*"2V* In indez notation Ppc..aPef)g..n = 0.
. i(ip¥)P = 0 for all ¥ € AS+2V*,

Tl W N =

Proof. (1) These are the well known classical Pliicker relations. For completeness’
sake we include a proof. Let P € A"V and consider the induced linear mapping
fp : AS"1'V* — V. Its image, W, is contained in each linear subspace U of V with
P € A*U. Thus W is the minimal subspace with this property. P is decomposable if
and only if dim W = s, and this is the case if and only if w A P = 0 for each w € W.
But ig P for ¢ € A*"'V* is the typical element in W.

(2) This well known variant of the Pliicker relations follows by duality (see [4]):
(PAi(®)P,T) = (i(D)P,ip¥) = (P, O N ip¥) =
= (=1)C"(P,ip¥ A @) = (-1)C"D(i(ip¥) P, D).

MGE was supported as a Senior Research Fellow of the Australian Research Council. PWM was
supported by ‘Fonds zur Férderung der wissenschaftlichen Forschung, Projekt P 10037 PHY’. The
authors would also like to thank the organizers of the Nineteenth Winter School on Geometry and
Physics held in Srni, the Czech Republic, in January 1999, where discussions concerning this article
were initiated. )

This paper is in final form and no version of it will be submitted for publication elsewhere.
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(3) This is due to [6]. There it is proved using exterior algebra. Apparently, this result
is included in formula (4), page 116 of [7].

(4) Another proof using representation theory will be given below. Here we prove it
by induction on s. Let s = 3. Suppose that i(,P AP = 0 for all @ € V*. Then
for all B € V* we have 0 = ig(ioaP A P) = iqagP A P +1,P A igP. Interchange «
and g in the last expression and add it to the original, then we get 0 = 2i,P A igP
and in turn iengP A P = 0 for all o and B, which are the original Pliicker relations,
so P is decomposable. Now the induction step. Suppose that P € A*V and that
TayA-nas_o P AP =0 for all a; € V*. Then we have

0 =14, (im/\---/\a.—zp A P) = iaxA---/\a.~zP A imP = lapAAay-y (imP) A (ianp)

for all o;, so that by induction we may conclude that i,, P is decomposable for all o,
and then by (3) P is decomposable.

(5) Again this follows by duality. O

Let us note that the following result (Lemma 1 in [2]), a version of the ‘three plane
lemma’ also implies (3):

Let {P; : 7 € I} be a family of decomposable non-zero k-vectors in V such that each
P; + P; is again decomposable. Then

(a) either the linear span W of the linear subspaces W(P;) = Im(fp,) is at most
(k + 1)-dimensional
(b) or the intersection [);; W(P,) is at least (k — 1)-dimensional.

Finally note that (1) and (4) are both invariant under GL(V). In the next section we
shall decompose (1) into its irreducible components in this representation.

If dim V is high enough in comparison with s, then (4) seemingly comprises less equa-
tions.

2. REPRESENTATION THEORY

In order efficiently to analyse (1) and (4) it is necessary to take a small excursion
through representation theory. An extensive discussion of Young tableau may be
found in [1]. Here we shall just need

regarded as irreducible representations of GL(V). Then, as special cases of the Littlewood
Richardson rules, we have

A% ® AV = Y Ya+1,a-1 @ Ya+2,s—2 D Ys+3.s—3 DD Y2s,0
As+1 ® Aa—IV — Yn+1,s—1 @ Ya+2,s-—2 1) Ys+3.s—3 DD YZs,O
As+2 ® AV = Yst+2:s-2 D Ys+3.e-3 DD Y280
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and from the first two of these (1) says that P ® P € Y**. In fact,
(**) AV OAV = Y o) Ys+2,a—2 @ ...
AMVAANY = Ys+1.s—1 @ Ys+3,s—-3 o)

so we can also see the equivalence of (1) and (4) without any calculation. Having
decomposed A*VOA*V into irreducibles, it behoves one to investigate the consequences
of having each irreducible component of P ® P vanish separately. The first of these
gives us another improvement on the classical Pliicker relations:

Theorem 2. An s-form P is simple if and only if the component of PQ P in Y $+%s~2
vanishes.

Proof. The representation Y*+25-2 may be realised as those tensors

Talblazbz...a,_zb,_zcde]

which are symmetric in the pairs a;b; for j = 1,2,...s — 2, skew in cdef, and have
the property that symmetrising over any three indices gives zero. The corresponding
Young projection of

Plnaz...a,_zchb1bz...b,_zef
is obtained by skewing over cdef and symmetrising over each of the pairs a;b; for
j=1,2,...,s— 2. Its vanishing, therefore, is equivalent to the vanishing of

Q[chef] where Q.q = a™per .. '7a‘-2 ajas...a5-2cd

forall @, §%,...,7* € V*. According to (4), this means that @4 is simple. Therefore,
the theorem is equivalent to criterion (3) of Theorem 1. O

Notice that this generally cuts down further the number of equations needed to char-
acterise the simple s-vectors. The simplest instance of this is for 4-forms: P is simple
if and only if
I)[abcdpef]gh = P[abcdpefgh]-
Written in this way, it is slightly surprising that one can deduce the vanishing of each
side of this equation separately. Theorem 2 is optimal in the sense that the vanishing
of any other component or components in the irreducible decomposition (x*) of P® P
is either insufficient to force simplicity or causes P to vanish. In the case of four-forms,
for example,
P[abcdpefgh] =0

if P = v A Q for some vector v and three-form Q. On the other hand, if the Y**

component of P ® P vanishes, then arguing as in the proof of Theorem 2 shows that
P=0. :

REFERENCES

[1] W. Fulton, Young Tableau: with Applications to Representation Theory and Geometry, Cam-
bridge University Press, 1997.

(2] J. Grabowski, G. Marmo, On Filippov algebroids and multiplicative Nambu-Poisson structures,
to appear in Diff. Geom. Appl., ESI preprint 668, math.DG/9902127.

(3] W. Greub, Multilinear Algebra, 2nd ed., Springer-Verlag, Berlin, 1978.



88 M. G. EASTWOOD - P. W. MICHOR

[4] P.A. Griffiths and J. Harris, Principles of Algebraic Geometry, 2nd ed., J. Willey & Sons, New
York, 1994.

(5] W. Slebodziniski, Erterior forms and their applications, PWN-Polish Scientific Publishers,
Warszawa, 1970.

(6] P.W. Michor and I. Vaisman, A note on n-ary Poisson brackets, This volume.

[7] R. Weitzenbock, Invariantentheorie, P. Noordhoff, Groningen, 1923.

P. W. MICHOR

INSTITUT FUR MATHEMATIK, UNIVERSITAT WIEN
STRUDLHOFGASSE 4, A-1090 WIEN, AUSTRIA
and

ERWIN SCHRODINGER INSTITUTE
BOLTZMANNGASSE 9, A-1090, WiEN, AUSTRIA
E-mail: MICHOR@ESI.AC.AT

M. EAsTWOOD

DEPARTMENT PURE MATH., UNIVERSITY OF ADELAIDE
ADELAIDE, SA 5005, AUSTRALIA

E-mail: MEASTWOO@MATHS.ADELAIDE.EDU.AU



