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PEAK FUNCTIONS ON CONVEX DOMAINS

MARTIN KOLAR

ABSTRACT. Let © C C™ be a bounded smooth convex domain and p € b§2 be a point
of finite type. This paper constructs continuous and Hélder continuous peak functions
at p on Q. The construction uses Bergman kernel estimates on and off the diagonal,
due to J.D.McNeal.

INTRODUCTION

Let 2 C C” be a domain with smooth boundary and p be a boundary point.
Let H(Q) denote the space of holomorphic functions on £2. A holomorphic function
fe HQ)NC*(), where k = 0,1, ..., 00, is called a C*-peak function at p if flp)=1
and |f(q)| <1 for g € @\ {p}.

If a peak function exists, it gives a powerful tool for analysis on 2. For various
applications of peak functions see e.g. [H] and [Ch].

If f is a peak function, then 1/(1 — f) is a holomorphic function on € which blows
up at p. Hence if Q has a peak function at every boundary point, it is necessarily
pseudoconvex.

The question of existence of peak functions on pseudoconvex domains is well
understood for strongly pseudoconvex domains. In this case one can introduce local
holomorphic coordinates around p such that the boundary is strongly convex in the
induced linear space, and that easily gives a local C®°-peak function. Then one
can pass to a global peak function by solving the 8-problem and using appropriate
regularity results (see [K]).

On the other hand, much less is known for weakly pseudoconvex domains. Most
attention here is paid to domains of finite type, introduced by Kohn and D’Angelo
in [K] and [D]. The first negative result is due to Fornaess, who proved that on
certain domains in C2, analogous to the Kohn-Nirenberg example (see [KN]), there
exists no C'-peak function (see [F]). This contrasts with a later result of Bedford
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and Fornaess in [BF] which shows that on pseudoconvex finite type domains in C?
there is always a continuous peak function.

In this paper we construct a continuous and a Hélder continuous peak function at
a point of finite type on a convex domain in C”. This construction, which links peak
functions to the assymptotic behaviour of the Bergman kernel, is originally used in
[FM] for an alternative proof of the result of Bedford and Fornaess. The Bergman
kernel estimates used in the construction were proved by McNeal (see [M1]). We
obtain a semiglobal peak function and then pass to a global peak function by a
geometric argument.

1. THE BERGMAN KERNEL ESTIMATES

We will assume that & C C” is a bounded, smooth convex domain and p € b2 is
a point of finite type T'.

Recall that the Bergman kernel K(w, z), w,z € C™ is the integral kernel associ-
ated to the orthogonal projection B from L2(f2) onto its subspace of holomorphic
functions H2(Q2),

Bf(w) = ‘/QK(w,z)f(z) dz.

K (w, z) is holomorphic in the first n variables and antiholomorphic in the second n
variables.

The construction of peak functions is based on the holomorphic functions
L _ K(w,2)

+(w) = K(z,2)
1. h, are bounded uniformly in z,
2. each h, is small outside of a certain neighbourhood of p, whose diameter goes to
Z€ro as z — p.

To prove the first property, we will use Bergman kernel estimates on and off the
diagonal, proved in [M1]. The second property will follow from pseudolocality of the
0-Neumann operator N, proved in [M2]. Both these results rely on the fact that
there is a subelliptic estimate for the 3-Neumann problem in a neighbourhood of p,
since p is of finite type.

From h, we obtain a sequence of approximate peak functions, and then, by
Bishop’s technique, a peak function at p.

In the following, U will denote a neighbourhood of p which is sufficiently small to
allow all the local constructions.

First we introduce notation and state the necessary results from [M1].

By arotation of the canonical coordinates we arrange that the normal direction to b2
at p is given by the Rz;-axis. Then using the implicit function theorem we obtain
a local defining function of the form r(zi,...,2,) = Rz1 — F(S21,..., Rz, S2n),
where F' is a convex function. For ¢ € U and € > 0 we will consider the level sets

. We will prove the following two properties:

Qe ={2€U; r(z) =e+r(g)}

which are also convex, by the choice of r.
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To every ¢ € U and a sufficiently small ¢ > 0 we assign coordinates (z1, ..., z,),
2; = T + iTn4i centered at ¢, obtained by translating and rotating the canonical
coordinates, and numbers 7;(g, €) which measure the distance from ¢ to b8, . along
the complex line determined by the z;-axis. First we choose z; so that 71(q,€¢) =
dist(q,b8q,), and that this distance is achieved along the positive z;-axis. The
choice of the remaining coordinates is such that it guarantees that the polydisc

P(q,€) = {]zi] < 7i(g,¢€), i=1,...,n}

is essentially the largest polydisc around z contained in the set {z € U ; r(z) <
r(q) + €}. Also the remaining z;, i = 2,...,n, have the property that the distance
from ¢ to b§2q . within the 2;-axis is achieved on the positive z;-axis. (For the whole
construction and for other properties of the coordinate system, which we will not
need, see [M1]).

We will use the following notation. For two quantities X,Y we write X <Y
if there is a constant C such that X < CY and C is independent of the variables
entering X and Y, which are clear from the context.

By definition, 71(g, €) = e. The numbers 7;(g,¢€), 2 < ¢ < n can be approximately
calculated from the coefficients in the Taylor expansion of r, restricted to the z;-axis.

Let -
T

10, 1,34y, 0) =1(q) + Y ak(q)zF + O(|z:|™+)
k=2

and denote A% (q) = |ai(g)|]. We have

Ti(q,c)zmin{(z;{-(a)%; 2_<_k§T}.

Now we state the lower estimates on the diagonal (see [M1]).

Proposition 1.1. There erists a neighbourhood V of p such that forqe VN Q

K(q7 Q) Z H Ti(q, T(Q))—Z'

=

Note that the right hand side is the volume of P(gq,7(q)). Since P(q,7(q)) C Q,
the reverse inequality with < is obvious, so in this sense the estimate is sharp.

We turn to the off-diagonal estimates, which are formulated in terms of a “pseu-
dometric”, determined by the polydiscs P(g,¢€). We define

M(q,q%) = inf{e > 0; ¢* € P(¢",¢€)}.

M is not a metric, but symmetry and triangle inequality are satisfied with respect
to the relation <, i.e. M(z,w) ~ M(w,z2) and M(z,23) S M(z1,22) + M(z2, 23).
In terms of the Taylor expansion of r we have

. n T
(1.1) M(¢', ) =gl - gfl+ DY Aile)ld - & 1*

1=2 k=2
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in the coordinates assigned to ¢! and M(q},¢?).

. . . 0 .
In the following theorem, D; denotes the differential operator £ in the coordi-
Zi
nates associated to ¢ and 6. For multiindices p,v let

D“D” = Di ... DD ... Die,

where the holomorphic derivatives act on the first n variables in K and the anti-
holomorphic derivatives act on the last n variables.

Proposition 1.2 ([M1]). There ezists a neighbourhood V of p so that for all mul-
tiindices p1, v there ezists a constant C,, such that for all ¢*,q> € VN Q2

ID*D"K(q",¢%)| < Cuy [ [ milg?,8) 7271~
i=1

where § = |r(q")| + |r(¢®)| + M(q", ¢%).

Now let N denote the set of points in U lying on the inner normal to bQ at p. In
the following g will always denote a point on N and we denote d(q) = dist(q, bQ) =
dist(g,p). A consequence of the compatible estimates of Proposition 1.1 and 1.2 is
the following lemma.

Lemma 1.3. There ezists a positive constant C such that

K@)l _

K(q,9)

forallge N and w € Q.

Proof. Follows immediately from proposition 3.1 and 3.2 and from the fact that
there is a subelliptic estimate of order € > 0 in a neighbourhood of p, and so K (z,w)
is C™ off the boundary diagonal (see [Ke]). O

K(w,q)
) K(g,9)
pseudolocality of the 8-Neumann operator N. Recall that a subelliptic estimate of
order € > 0 is said to hold in a neighbourhood V of p € bQ, if there is a constant
C > 0 such that

To prove the second property of

, we need the following theorem about

lledle < C(l9all + [18* ]| + floll)

for all infinitely smooth (0,1) - forms supported in V, which are in the domain of
0*. Here ||.||c denotes the tangential Sobolev norm of order € on (0, 1)-forms and the
norms on the right are L?-norms.

For n > 0 let B(p,n) denote the ball centered at p with radius 7.
Let a be a smooth (0, 1)-form with support in B(p, ) which is in the domain of the
Kohn Laplacian O = §0* + 8*3. Let £ € C*°(C™) be a function satisfiing £ = 1 in
Q\ B(p,n) and £ =0 in B(p, 7).
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Proposition 1.4 ([M2]). Let Q be a smooth bounded pseudoconver domain in C*,
and let p € bQ have a neighbourhood, where a subelliptic estimate of order € > 0
for the 0-Neumann problem on (0,1)-forms holds. For s,t € R* there is a constant
Cst > 0 so that

[ENa? < Cop(n) " 2E+9) a2, .

Since p is of finite type, there is an € > 0 for which Proposition 1.4 applies, and
we use it to prove the following property of hq.

Lemma 1.5. There ezxists a constant C independent of q¢ such that
K (g, w)]
K(q,9)

for w e Q\ B(p,n), where n = d(q) T+,

Proof. Following Kerzman, we will use Kohn’s formula which relates the Bergman
projection to the operator N:

< Cd(q)

B=1-0"NJ.

Let ¢4 be a nonnegative radial function centered at ¢ with support in €, and such
that [ @q = 1. By the mean value theorem

K(w,q) = Bpg(w) .

Note that ¢, is supported in B(g,d(q)). If n is appropriately larger than d(g), then
the support of 0@, is contained in B(p, ). By Kohn’s formula

E(w)K (w,q) = £pg — £0*NOpy = £6* N, .
Since ||0* NO@gl|s—1 < ||NO¢,||s, Proposition 1.4 gives
16(w) K (1, )lls-1 < Coan™ >93]l

If s > n, then by Sobolev’s lemma, sup |£(w)K (w,q)| < CllE(.)K(.,q)||s. Also, if
t > n, another application of Sobolev’s lemma gives

1964112, < llgqllZes1 = sup{l(dg, /)i | € C&° lIflle-1 <1} < /|¢qlsup Ifl<C.

Together we get
— s+t
sup [¢(w)K (w, g)| < O~ 2555+ |
w

Now we take n = d(q)™»+9, which gives |K(w,q)| < Cd(q)~" for' w outside of
B(p,n). On the other hand, from Proposition 1.1 we obtain K(gq,q) > Cd(q)~2,

since 1(g,7(q)) = d(q) and all other 7; are bounded, say by 1. That proves the
lemma. a



108 M. KOLAR

2. THE CONSTRUCTION OF A CONTINUOUS PEAK FUNCTION

By Lemma 1.3 and 1.5, the holomorphic functions

_ K(w,q)
halw) = K(q,q)

have the following properties:

(i) |hg(w)] < C for w € © and a constant C independent of g.

(i) Ihg(w) < } in @\ B(p,n)

(i) holg) = 1.

Properties (i) and (iii) are immediate, (ii) follows from Lemma 1.5 if d(q) < 7%.
Now we translate the functions hq to p. Define h;(w) = hq(w+q —p).

The functions h; provide approximate peak functions at p, and Bishop’s technique

can be applied to construct a continuous local peak function.

Proposition 2.1. There ezists a sequence of points {gn}32, converging to p, and
a real number ¢, 0 < ¢ < 1, such that the function

Hw)=(1-0))  c"h, (w)
n=0

is a local continuous peak function at p.

Proof. {g,}%, will be a sequence of points on N converging monotonically to p. It
is defined inductively as follows. Let h,, = h;n and let U, denote the neighbourhood
of p, outside of which h, < %

1. Choose an arbitrary point on N to be go. If w is outside Uy, we can estimate
H(w) by [H(w)| < 31— o) St = .
2. Let n > 1, and suppose that gi are already chosen for ¥ < n. We choose ¢, in
such a way that |hx(w)| < rn for w € U, and k < n, where r, > 1 is a number close
to 1, to be determined later. Since the hj are continuous and hx(p) = 1, a point
sufficiently close to p will satisfy the requirement.

Let us estimate H(w) on Uy, \ U,—1, to see how to choose c.

1
|Hw)| < 1 =c)(ra Z;ck fc"c +3 éck) =
1t (1-¢)(C—1)c" — i

+ (rn —1).

In order to get |H(w)| < 1, we need

(1-e)(C-1)e < T

(neglecting temporarily r,, — 1), which gives ¢ > 1 — 55— . So we choose ¢ = 1 — 5,
and make r, sufficiently close to 1.

Notice that h; is defined only on QN g, where Q,_g is the translate of Q by
p—q, and so H is not a global peak function on Q. Using the fact that Q is convex,
we can construct a global peak function by a geometric argument, without having
to solve the d-problem.



PEAK FUNCTIONS ON CONVEX DOMAINS 109

Proposition 2.2. IfQ C C* is a bounded, smooth convezr domain and p € b2 is a
point of finite type, then there ezists a global peak function at p, continuous in 2.

Proof. Consider the dilation by a factor of two with center at p, and let Q be the
resulting image of Q. We have p € bQ and 2 C Q, from convexity. Convexity of §2
also implies the following property of Q:

(P) Let ¢ € Q be a point on the inner normal at p. Then  translated by ¢ — p is
still contained in Q.

In fact, §2 is still the double dilated domain of the translated domain, this time with
center at p — 2(q — p), i.e. the reflection of p around gq.

Now we can consider the Bergman kernel of Q. If g €  lies on N, we define hg and
h; as before, using Kg. From the previous observation, h; is defined in all of €.

Therefore H, constructed for Q as in Proposition 2.1 is a global peak function for €.
a

3. THE CONSTRUCTION OF A HOLDER CONTINUOUS PEAK FUNCTION

To construct a Holder continuous peak function, we will use the following prop-
erties of hq. Let Uy = B(p,n) for n from Lemma 1.5.

Lemma 3.1. There ezists a constant C > 0 independent of q¢ such that
(i) hqe(q)=1
(i) he(w) <C

(i) hy(w) < Cdlg) in Q\U,

(

1
lV) ——‘hq(’LU)SC;RqL—@); j:l,...,n

a‘wj
a 1 .
(V) 'é;]‘;hq('IU)SCmT ]:1,...,n

Proof. (i) - (iii) are immediate; (iv) follows from Proposition 1.1 and 1.2, since
7i(q,6) > 7j(q,d(q)). (v) follows from Propositions 1.1 and 1.2 and from (1.1), since
75(a,8) > 73(q, M(g,w)) > |w|™. O

Now we choose gx so that d(gx) = 5%, where s is a small number to be determined
later, and denote di = d(gx). As before, we define hi(z) = hq, (2+¢—p), and denote
U, =U,,.

Proposition 3.2. For a suitable positive constant ¢ < 1, the function
(o]
H(z)=(1-¢) Eckhk(z)
k=0

15 a local Holder continuous peak function at p, with Holder exponent v = %—}—g’g&

Proof. First we show that for suitable ¢ and s, H is a local peak function at p. We
will estimate the size of H at a point z € U. If z lies outside of Uy, then we get from
k .

(iii) of Lemma 3.1 that |H(2)| < (1 —¢) Y. Cs& < 3,if s < 55.
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Now assume that z € U, \Un—1. Let m be the largest integer such that M (g, 2)
for all K < m. For k < m we can use (iv) to estimate

By (1.1) and (1.2) we have

zz;uz..,z(AW) <55 < ()"

=2 =2 j=2

Together we obtain
dn\ T
) -1 52+ ()
dx
For m < k < n we get from Proposition 1.1 and 1.2

|K (2, i)l o 7(qk, M(z, Qk)) -2
K(ge,qe) ~ 711(gx, de) 2

< di < 4

~ (M (2,qk) + Mgk, qm))? ~ M(2,qm)?

The same estimate holds with m replaced by m + 1.
Next we have h,(z) < C and hi(2) < dj, for k > n. Together we obtain

h(2)] =

&
[H(2)| S(1—c) Z (1+C§—m~)c + Z +Cc"? —l—chC
k<m B m<k<n "‘+1 k>n
_ ~m+1 l'érﬂ -
Q™4 (1-ct 2T 5%
1-¢c2T
FL= )3 C™ 4 (1-¢) G + O(5)™s
1 _ g-i
-+ (1-ct——T T
c=(3)7
(1= )3 C™ 4 (1-¢) Ce + ()3

if s < 7. We take ¢ so that ¢ > (3 )T andil———CLC,'-<4,1e c>1——§2—)— Then

(T
each of the four last summands is < 3c™*!, and so |H(2)| < 1.

Now we turn to Hélder continuity . Let =,y € U. Without loss of generality we can ‘
assume that 0 < |y| < |z|. Fix m < n so that dpy1 < |y| < dp and dm4q < |2| £ din-

First we estimate the first m terms of the series. From (iv) we get

(1-0) 3 Flhsy) — b (@) < (1= C Y dla - yl2? < Clo - y(20)™

j<m

<dy

)
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To get |z —y|(2¢)™ < Clz —y|” we need |z —y|'™¥ <
holds when v < 'Flggz—'

Now we consider the remaining part of the series. First let n > m + 4. Then we can
estimate from (ii):

(2c),,,. Since |z —y| < 22, this

(1-¢) Y Flhuly) - he(z) < Cc™
k=m

We have |z — y| 2 55, so ¢™ < C|z — y|” holds again for v < —_171;52—".
Now let n < m + 3.

Case A: Let |z — y| < |y|T. By (v) we have

(1—c)2 c*|hi(z) — hi(y) C)ch'l lTy‘ < Cc™z —yl2mT.

k=m

This will be less than Clz — y|” if we take v < %Tlgg-g.

Case B: Let |z — y| > lle. )

Now we have |z—y| 2 2—,,,-,— and we can again use the estimate Z c*lhe(y)—hi(z)] <
k>m

Cc™. In order to get ¢™ < C|z — y|” we need again v < ;—llgg—;a

Remark. Using convexity of 2, we get a global Holder continuous peak function at

p as in Proposition 2.2.
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