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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 66 (2001) pp. 59-81 

IRREDUCIBLE HOLONOMY REPRESENTATIONS 

LORENZ J. SCHWACHHOFER 

1. INTRODUCTION AND HISTORY 

An affine connection is one of the basic objects of interest in differential geometry 
It provides a simple and invariant way of transferring information from one point of a 
connected manifold M to another and, not surprisingly enjoys lots of applications in 
many branches of mathematics, physics and mechanics. Among the most informative 
characteristics of an affine connection is its (restricted) holonomy group which is de­
fined, up to conjugacy, as the subgroup of Aut(TpM) consisting of all automorphisms 
of the tangent space TPM at p G M induced by parallel translations along p-based 
loops in M. The notion of the holonomy group was introduced by E. Cartan in 1923 
[Carl, Car3]. 

Throughout this report, we let M denote a smooth connected n-manifold and let 
V be an affine connection on M, i.e. a connection on the tangent bundle TA4. Fix a 
point p e M, let 

£P = { 7 : [0 ,1 ] -*M|7(0 ) = 7(1)=P} 

be the set of piecewise smooth loops based at p, and let Cp C Cp be those loops which 
are homotopic to the trivial loop. 

For 7 G Cp, denote by P7 : TPM —•» TPM the linear automorphism induced by 
V-parallel translations along 7. The holonomy of V atp £ M is defined as the subset 

Hoi, := {P7 I 7 6 Cp} C Aut(TpM), 

and the restricted holonomy is given by 

Ho£ := {P7 I 7 e C°p} C Holt,. 

One of the first remarkable results which Cartan proved about the holonomy group 
is the following 

Theorem 1.1. [Car2] Let (M,g) be a Riemannian symmetric space without Euclidean 
factor. Then the identity components of the holonomy group and the isotropy group of 
M coincide. 

The paper is in final form and no version of it will be submitted elsewhere. 
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Here, a symmetric space is a manifold such that the geodesic reflection at any point 
is globally defined and an isometry. Since the notion of a symmetric space is defined 
in terms of the connection only, one may similarly define an affine symmetric space 
as a manifold with a connection whose geodesic reflections at any point are globally 
defined and connection preserving. Cartan's theorem then generalizes to the class of 
affine symmetric spaces with irreducible isotropy group. 

In the 1950's, the concept of holonomy became the subject of further investigation. 
Some of the basic properties of the holonomy group which were established during this 
time period are the following. 

Proposition 1.2. [BL, Nl, N2] Let (M, V), p 6 M and Holp3 C Holp c Aut(TpM) be 
defined as above. Then the following hold. 

1. Holp is the identity component O/Holp. 
2. If 7r : M —> M is the universal cover and V is the lift of V to M, then Holp- = 

Holp. where 7r(p) = p. Thus, by lifting the connection to the universal cover, we 
may assume that the holonomy group is connected. 

3. Holp is a closed Lie subgroup of Aut(TpM); its Lie algebra f)o\p C End(TpM) is 
called the holonomy algebra at p. 

4. Holp = Holg for all p%q G M, with an isomorphism being induced by parallel 
translation along any path from p to q. Thus, if one fixes a linear isomorphism 
2 : TPM -> V, where V is a fixed vector space of the appropriate dimension, then 
the conjugacy class of i(Ho\p) C Aut(V) does not depend on the choice of p G M 
or 2. 

By a slight abuse of terminology, we refer to the conjugacy class of Hol := i(Holp) C 
Aut(V) (respectively, HoP := %(HoPp) C Aut(V)) as the holonomy group (respectively, 
restricted holonomy group) of V. The Lie algebra rjof C End(V) of Hoi c Aut(V) is 
called the holonomy algebra of V. 

To an affine connection V we can associate two tensors, the torsion and the curva­
ture, which are given by the formulae 

Torp(x, y) = VXY - VyK - [X, Y], and 

Rp(x, y)z = VxVy2T - VyVXZ - V [ J W Z . 

Here, x,y,zG TpM, and X,Y,Z are vector fields with Xp — x,Yp = y and Zp = z. 
We call a connection V torsion free if Tor = 0. In this case, it is easy to show that 

the curvature satisfies the first and second Bianchi identity, i.e. 

(1) R(xyy)z + R(y,z)x + R(z,x)y = 0, and 

(2) {VxR){y,z) + (VyR)(z,x) + (VzR){x,y) = 0 

for all x, u, z £ TpM. 
The irreducible holonomy problem which shall be of primary interest in this report 

is the following. 

Given a finite dimensional vector space V, which are the irreducible (closed) 
connected Lie subgroups H C Aut(V) that can occur as the holonomy group 
of a torsion free affine connection? 
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The condition of torsion freeness is necessary in order to make this problem non-
trivial; namely, by a result of Hano and Ozeki [HO], any (closed) Lie subgroup 
H C Aut(V) can be realized as the holonomy of an affine connection on some manifold 
M (with torsion, in general). Thus, throughout this report, we shall assume all con­
nections to be torsion free. Also, by Proposition 1.2.2, the condition of connectedness 
can be achieved by passing to an appropriate cover of M and thus only disregards 
parts of the topological structure of M. 

On the other hand, the assumption of irreducibility is a severe restriction which is 
necessary to make the holonomy problem more accessible. Indeed, the classification 
of reducible holonomy groups has been completed in very special cases only (e.g. 
[BI1, BI2]). 

Since connected Lie subgroups are completely characterized by their Lie algebras, 
the following description of the holonomy algebra was an important step towards the 
treatment of the holonomy problem. 

Ambrose-Singer Holonomy Theorem [AS] Let V be an affine connection on M 
and let p £ M. Then the holonomy algebra at p is given by 

\)0\p = ({(P^R) (x, y) | x, y € TPM, 7 a path with end point p}), 

where (P^R)(x,y) := P1 • R(P~lx,P~ly) • P~l. 

It is obvious that P1R also satisfies the first Bianchi identity (1). This motivated 
Berger [Berl] to develop the following necessary condition for a Lie subalgebra to be 
the holonomy of a torsion free connection. 

Let V be a vector space and f) C End(V) a Lie subalgebra. We define the space of 
formal curvature maps 

(3) K(rj):= 

{It <E A2V* <g> rj I R(x, y)z + R(y, z)x + R(z, x)y = 0 for all x, y, z £ V), 

and the space of formal curvature derivatives 

Kl(t)) := {</> e V* ® K(rj) I <i>(x)(y,z) + (j>(y)(z,x) + <j>(z)(x,y) = 0 for all x,y,z£ V). 

We also let fi := {R(xyy) | R € K(fj), xyy € V} C \). Evidently, F) <3 fj. 
From (1) it follows that P1R G K(r;olp) for all path. 7 with end point p; hence the 

Ambrose-Singer Holonomy Theorem implies that lyoi = rjolp. Moreover, from (2) it 

follows that the map x H> \7XR lies in Kl(t)olp). Thus, if Kl(\)o\p) = 0 then Vtf = 0, 
i.e. the connection is locally symmetric. These facts motivate the following definition. 

Definition 1.3. A Lie subalgebra r) C End(V) is called a Berger algebra if fi = rj. 
A Berger algebra rj c End(V) is called symmetric if Kl(\}) = 0 and non-symmetric 
otherwise. 

A Lie subgroup H C Aut(V) is called a (symmetric respectively non-symmetric) 
Berger group if its Lie algebra r) C End(V) is a (symmetric respectively non-symmetric) 
Berger algebra. 

In the literature, the two criteria for a non-symmetric Berger algebra are usually 
referred to as Berger's first and second criterion. Our discussion from above now yields 
the following. 
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Proposition 1.4. [Berl] Let ff C Aut(V) be an irreducible Lie subgroup which occurs 
as the holonomy group of a torsion free affine connection on some manifold M. Then 
H must be a Berger group. If the connection is not locally symmetric, then H must be 
a non-symmetric Berger group. 

Therefore, the holonomy problem now splits into two parts: 

1. Classify all irreducible connected Berger subgroups H C Aut(V). 
2. Decide for each of these Berger subgroups if it can occur as a holonomy group. 

While the first problem is purely algebraic, the second is analytic in nature. By 
Theorem 1.1, the holonomy problem has the classification problem for irreducible 
symmetric spaces as a "sub-problem". This classification has been completed by Car-
tan in the Riemannian [Car2] and by Berger in the general irreducible case [Ber2]. In 
particular, this implies the classification of all irreducible symmetric Berger subgroups. 

In [Berl], Berger then proceeded to classify all (pseudo-)Riemannian Berger alge­
bras, i.e. the holonomies of Levi-Civita connections of (pseudo-) Riemannian metrics. 
(In the non-definite case, there were some slight errors which were later corrected by 
Bryant [Br4].) We list the resulting entries in Tables A and B1. 

l.L Holonomies of Riemannian manifolds. The list of possible Riemannian ho­
lonomies (Table A) received a tremendous amount of attention during the decades 
following Berger's classification. First, it turns out that the list of non-symmetric 
Riemannian holonomies is contained (in fact, is almost equal to) the list of transitive 
group actions on spheres [MoSal, MoSa2, Bol, Bo2]. This was later shown directly 
by Simons [Si]. 

Moreover, in this case, the assumption of irreducibility of the holonomy group is 
quite natural. Namely, the deRham splitting theorem [dR] states that the reducibility 
of the holonomy group of a Riemannian manifold (M, g) implies that the metric is 
locally a product metric; this holds even globally if the metric is complete and M is 
simply connected. 

We shall now give a brief account of the geometric interpretation and the existence of 
these holonomies, focusing our attention to the question of existence of local, complete 
and compact Riemannian manifolds with these holonomies. 

This survey is by no means complete. For a much more thorough treatment of 
Riemannian holonomies and their significance for the topology and geometry of the 
underlying manifold we refer the interested reader to the books by Besse [Bes] and 
Salamon [Sa] and the survey article [Br5]. 

1. Hoi — SO(ra). This is the "generic" case, i.e. a "generic" Riemannian metric on 
an oriented manifold will have this holonomy Thus, the holonomy characterizes 
no geometric structure on M except the Riemannian metric itself. 

2. Hoi — U(m). In this case, there is a parallel orthogonal almost complex structure 
on M. The torsion freeness of the connection implies that this almost complex 
structure is integrable, thus we have the following result: 

Evidently, the entries in Table A reoccur in Table B, so we could have omitted Table A altogether. 
However, since we shall discuss the Riemannian holonomies in more detail, it seems useful to list them 
separately. 
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Table A 
LIST OF IRREDUCIBLE NON-SYMMETRIC RIEMANNIAN 

BERGER SUBGROUPS II C SO(n) [Berl] 

No. H V restrictions 

1 SO(n) Rn n > 2 

2 U(m) E n -C™ m > 2,n = 2m 

3 SU(m) Rn -C™ m > 2,n = 2m 

4 Sp(l) .Sp(m) Rn _ И™ m > 2,n = 4m 

5 Sp(m) E n î_ EP m > 2,n = 4m 

6 G2 R7 =• ImO 

7 Spin(7) R8 _ 0 

Lis' 
Tab le B 

Г OF IRREDUCIBLE NON-SYMMETRIC PSEUDO-RlEMANNIAN 
B E R G E R SUBGROUPS H C SO(n,m) [Berl, Br4] 

No. н V restгictions 

1.1 
1.2 

SO(p,o) 
SO(m,C) 

JRP+9 

E 2 m -̂ C™ 
p + o > 2,pqф 1 

m > 3 

2 U(p,<?) ĵ 2(p+g) _• Qp+q P + 9 > 2 

3 SU(p,ç) £2(p+g) _< Q)+q V + Я > 2, pq ф 1 

4.1 
4.2 
4.3 

Sр(n,E) -SL(2,E) 
Sp(n,C) -SL(2,C) 

Sp(p,g)-Sp(l) 

|̂ 4n _ £2n ø £2 

E8^ 1= C2" ® C2 

Ĵ 4(p+?) _ Щp+'ï 

n > 2 
n > 2 

p + o > 2 

5 Sp(íм) JJj4(p+î) _ jңp+g p + ç > 2 

6 1 
6.2 
6.3 

G 2 C S0(7) 
G 2 c S O ( 4 , 3 ) 

G? 

R7 

E 7 

E 1 4 şţ£ţ 

7.1 
7.2 
7.3 

Spin(7) c S0(8) 
Spin(4,3)cSO(4,4) 

Spin(7,C) 

R8 

E 8 

E 1 6 ^ C 8 

Table C 
LIST OF CONFORMAL PSEUDO-RIEMANNIAN 

BERGER SUBGROUPS H c R* - SO(n,m) [Berl, Br4] 

NOTATIONS: TF DENOTES ANY CONNECTED SUBGROUP OF F . 

No. H V restгictions 

1.1 
1.2 

TR-SO(p,ç) 
Tc-SO(n,C) 

w+q 

E2n - C 1 
p + q>2ypqфl 

n > 3 

2 GL(1,H) R4 _ H 
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Table D 
LIST OF IRREDUCIBLE CONFORMALLY SYMPLECTIC BERGER SUBGROUPS H C P - Sp(n) 

ZF denotes either {1} or F*, F = R or C 
©PV denotes the symmetric tensors of V of degree p. 

NOTATIONS: 

No. H V restrictions 

1.1 

1.2 

1.3 

1.4 

Sp(n, R) 

Sp(n,C) 

ZR-Sp(2,R) 

zc-Sp(2,C) 

R2" 

C 2 n 

R4 

C4 

n > 3 

n > 3 

2.1 

2.2 

SL(2,R)-SO(p,ç) 
Sp(l).SO(n,H) 

R 2 <g> RP+9 

W1 

p + ç > 3 

n > 2 

3.1 
3.2 

zR • SL(2, R) 
ZC-SL(2,C) 

3R2  

3C2 

4.1 

4.2 

Sp(3,R) 

Sp(3,C) 

R14 C Л 3R 6 

C14 C A3€? 

No. H V 

5.1 

5.2 

5.3 
5.4 

SL(6,R) 

SU(1,5) 

SU(3,3) 
SL(6,C) 

Л3Rб 

{u Є Л^C6 | *u = u} 

{u Є Л^C6 | *u = u} 
\*& 

6 1 Spin(2,10) д+ 
(2,10) 

6.2 Spin(6,6) д + 

" ( 6 , 6 ) 

6.3 

6.4 

Spin(6,H) 

Spin(6,C) 

7.1 E 7 
R56 

7.2 E 7 
R56 

7.3 E 7 
C56 

Proposition 1.5. Let (M,g) be a Riemannian manifold. Then Hoi C U(m) iff there 
is an orthogonal complex structure J on M such that (M,g, J) is Kdhler. 

Of course, Kahler metrics are known to exist, for example any smooth closed sub-
manifold of CPn will be compact Kahler. Moreover, the holonomy of a "generic' 
Kahler metric will be all of U(m) and will not be locally symmetric2. 

3. Hoi -= SU(m). By Proposition 1.5, a manifold with this holonomy must be 
Kahler, and further calculation shows that the holonomy is contained in SU(m) 
iff it is Ricci flat [L]. Such a Riemannian manifold (M,g) is called special Kahler. 

The first (incomplete) example of a special Kahler manifold was found by Calabi in 
1960 [Cal]. In 1970, Calabi also obtained complete examples of such manifolds. Finally, 
in 1978 Yau produced a solution to the Calabi conjecture, stating the following. 

Theorem 1.6. [Y] Let [M,gQ) be a compact Kahler manifold and let C\(M) e H2(M,R) 
be the first Chern class of M. Then for any closed (1,1) -form p which represents 
2irci(M) in the deRham cohomology, there exists a unique Kahler metric g on M such 
that the Kahler forms of g and go represent the same cohomology class, and the Ricci 
curvature of g is given by 

Ric(x,y) = p(x,Jy) 

for all x,y € TM. In particular, a compact Kahler manifold admits a special Kahler 
metric iff its first Chern class vanishes. 

With this result, many compact manifolds admitting a Riemannian metric with 
holonomy SU(m) can be constructed, e.g. algebraic hypersurfaces of degree m + 2 in 
CPm+1 [Bea]. 

2The only symmetric spaces which are Kahler are CPn and its non-compact dual CP*. Thus, a 
Kahler manifold is locally symmetric iff it is locally isometric to one of these two spaces. 
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T a b l e E LIST OF HOLONOMY GROUPS OF GENERAL TYPE 

TF denotes any connected subgroup of F*. 

0 P V denotes the symmetric tensors of V of degree p. 
NOТAТЮNS 

No. H V restrictions 

1.1 TR-SL(n,C) {A Є Лf»(Q | A = A*} n > 3 

1.2 TR-SL(n5M) -SL(m,E) En <g>Em n>m> 2,nm ф 4 

1.3 TR-SL(n,H) •SL(m,]H) W ØнIИ771 n>m> l,nm ф 1 

1.4 Tc-SL(n,C) •SЦm,C) Cn øC"1 n>m> 2,nm ф 4 

2.1 TR • SL(n, E) En n > 2 

2.2 TR-SL(n,H) 1 n > 2 

2.3 Tc-SL(n,C) Cn n > 2 

2.4 TC'SЩp,q) C2 p + q = 2, Tc £ E* 

3.1 TR • SL(n, E) Л2En n > 5 

3.2 Tc-SL(n,C) Л^C* n > 5 
3.3 TR-SL(n,H) {AeMn(Щ \A = A*} n> 3 

4.1 TR • SL(n, E) 2 E n n > 3 
4.2 Tc-SL(n,C) 2 ^ n > 3 

4.3 TR-SL(n,IH0 {A € Mn(Щ | A = -A*} n > 2 

5.1 TR-Spin(5,5) A(5,5) 

5.2 TR-Spin(l,9) Aí,9) 
5.3 Tc-Spin(10,C) (AÍo)C 

6.1 Т R - E 6 E2 7 

6.2 TR-E6 E2 7 

6.3 З c - E c C27 

4. Ko/ = Sp(ra) • Sp(l). A Riemannian manifold whose holonomy is contained in 
Sp(m) • Sp(l) is called quaternion-Kahler. 

Proposition 1.7. [G] Let (M,g) be a Am-dimensional Riemannian manifold. Then 
the following are equivalent. 

(a) The holonomy group of (M,g) is contained in Sp(m) • -Sp(l). 
(b) M is covered by open sets on which there exist three orthogonal almost complex 

structures Ii, I2,13 and l-forms a,/3,7 such that U • Ii+i = Ii+2 (with indices mod 
3) and such that for all v 6 TM the following relations hold: 

VJx = 7W-I2 - P(v)-h 
V-/2 = - 7(«) 'Ii + a(v) • h 
Vv/3 = 0(v)-h ~ a(v)-h 

If these conditions are satisfied then there is a (globally defined) parallel S2-subbundle 
Q C End(TM), consisting of orthogonal almost complex structures. Locally, it is given 
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Examples of quaternion-Kahler manifolds are the quaternionic symmetric spaces 
MFn and its non-compact dual. But there are also others, for example the homogeneous 
manifolds found by Alekseevskii [A] in 1968. Clearly, these metrics are complete. 

There are up to date no known examples of compact Riemannian manifolds with 
holonomy Sp(ra) • Sp(l) which are not locally symmetric. 

5. Hoi — Sp(m). A Riemannian manifold whose holonomy is contained in Sp(m) is 
called hyperkahler. Since Sp(m) C SU(m) it follows that a hyperkahler metric 
is a fortiori special Kahler. Indeed, a hyperkahler metric is characterized by the 
existence of three parallel orthogonal complex structures I, satisfying I; • IM = 
I;+2 (with indices mod 3). 

The first examples of hyperkahler manifolds whose holonomy equals Sp(m) 
were discovered only in 1979 by Calabi [Cal]. The first compact examples of 
manifolds with holonomy Sp(m) were obtained in 1982 [Bea]. 

6. Hoi = G2 and Hoi = Spin(7). These two exceptional holonomy groups on Berger's 
list (Table A) were the last to be shown to exist; this was achieved by R. Bryant 
[Brl] in 1986. His method of proof turned out to be extremely useful for the 
investigation of local existence of many non-Riemannian holonomy groups as 
well. It is based on the translation of the structure equations for a given holonomy 
group into an exterior differential system, and then to use Cartan-Kahler theory 
[BCG3] to conclude the existence of such metrics. 

Also, in 1996 D. Joyce has constructed a number of compact simply connected 
manifolds with these exceptional holonomies [J]. 

1.2. Non-Riemannian Holonomy groups. 

1.2.1. Pseudo-Riemannian Holonomy groups (cf Table B). As mentioned above, one 
of the most effective methods to solve the existence problem for connections with 
prescribed holonomy was Bryant's approach to describe torsion free connections with 
given holonomy as solutions to an Exterior Differential System [Br2], and then to use 
Cartan-Kahler theory [BCG3] to prove the local existence of such connections. Using 
this method, Bryant was able to show the following. 

Theorem 1.8. [Br4] All entries of Table B occur as the holonomy of a (pseudo)-
Riemannian manifold. Indeed, the local generality of metrics with these holonomies is 
given in Table F. 

1.2.2. Conformal holonomy groups (cf. Table C). There are only very few possible 
holonomy groups which are contained in the conformal group CO(p, q) := R* • SO(p, q) 
but not in SOfaq) (cf. Table C). 

A connection whose holonomy equals CO(p, q) is called a Weyl connection of a 
conformal structure. Likewise, a connection with holonomy C* • SO(n, C) is a complex 
Weyl connection of a complex conformal structure. Weyl connections are known to 
exist for any conformal structure. 

Next, a connection on a 4-manifold whose holonomy equals GL(1,H) corresponds 
to a (generic) Yang-Mills connection on a half-conformally flat 4-manifold. 

The only holonomy groups in Table B which were not classically known are the 
groups HA • SO(n,C) where HA := {exp(t(X + i)) \ t € R} C C* with A > 0. These 
were detected as possible holonomy groups by Bryant [Br4]. 
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T a b l e F : LOCAL GENERALITY OF METRIC HOLONOMIES 
(MODULO D I F F E O M O R P H I S M S ) 

(Notation: "d of /" means "d functions of l variables") 

n H local generality 

p + 9 > 2 
2p 

SO(p,o) 
SO(p,C) 

\n(n- 1) of n 
ì p ( p - l ) c o f P

c 

2(p + o)>4 
2(p + o)>4 

U(р,g) 
SU(p,g) 

1 of n 
2 of n - 1 

4(p + o)>8 Sp(p,«) 2(p + ç)of (2p+2? + l) 

4(p + ö ) > 8 
4 p > 8 
8 p > l б 

Sp(p ,ç)-Sp(l) 
Sp(p,R)-SL(2,R) 
Sp(p,C)-SL(2,C) 

2(p + o)of (2p + 2? + l ) 
2pof ( 2 p + l ) 

2 p c o f ( 2 p + l ) c 

7 
7 
14 

G2 

G2 

G c 

б o f б 
б o f б 

б c o f б c 

8 
8 
16 

Sрin(7) 
Spin(4,3) 
Spin(7,C) 

12 of 7 
12 of 7 

1 2 c o f 7 c 

1.2.3. Holonomy groups of general type (cf. Table E). In [Br4], there is also a classi­
fication of those irreducible Berger algebras H C Aut(V) which do not preserve any 
(symmetric or skew-symmetric) bilinear form up to a scale. Again, a treatment of 
these holonomies with the Cartan-Kahler machinery yields the following result. 

Theorem 1.9. [Br4, Br5] The irreducible subgroups H C Aut(V) listed in Table E are 
Berger subgroups. Moreover, all of them occur as holonomies of torsion free connec­
tions on some manifold. 

1.2A. Conformal symplectic holonomy groups (cf. Table D). Historically, these holo­
nomies which are listed in Table D were the last to be discovered. Of course, the full 
symplectic groups Sp(n,R) and Sp(n, C), respectively were known to occur: indeed, 
given a (holomorphically) symplectic manifold (M, Q) then the "generic" (holomor-
phic) torsion free connection V with the property that VQ = 0 will have holonomy 
Sp(n, K) (Sp(n, C), respectively). This can be easily seen by considering Darboux 
coordinates. 

Also, it is well known that only in dimensions n -= 2,4 there may be torsion free 
connections on a (holomorphically) symplectic manifold (Mn,Q) which preserve Q 
only up to a scale, i.e. Vx-^ = ct(X)£l for some non-vanishing 1-form a. Again, it is 
easy to write down such a connection in Darboux coordinates explicitly. This means 
that the holonomy groups 1.1 - 1.4 in Table D can easily be realized as holonomies. 

Definition 1.10. Let (M, fi, V) be a symplectic manifold with a torsion free con­
nection V such that Vft = 0. If the holonomy group of V is absolutely irreducible 
and properly contained in Sp(n, R) (Sp(n, C), respectively) then V is called a special 
symplectic connection, and its holonomy group is called a special symplectic holonomy 
group. 
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The first examples of special symplectic holonomy groups were found by Bryant 
[Br3] in 1991. These were examples on (real or complex) symplectic manifolds of (real 
or complex) dimension 4. Thus, their conformal extensions also occurs as a holonomy 
group. These are the entries 3.1 and 3.2 in Table D. 

The remaining entries of Table D were discovered by Chi, Merkulov and this author 
[CS, CMS1, CMS2, MeScl, MeSc2]. We shall discuss the construction of connections 
with these holonomies and some of their geometric properties in section 3. 

Finally, in [MeScl, MeSc2], a complete classification of irreducible Berger groups 
was given. 

Theorem 1.11. [MeScl, MeSc2] The entries of Tables B,C,D,E yield a complete list 
of non-symmetric Berger subgroups. All of them can occur as holonomies of a torsion 
free connection on some manifold. 

Let V be a complex vector space with dimV =: n, and let H C Aut(V) be a 
connected irreducible Lie subgroup. We let C C V*\{0} be the H-orbit of a highest 
weight vector of the dual representation, and let C C P(V*) be its projectivization. C 
is called the sky of H. 

The list of special symplectic holonomy groups is quite special indeed. There are 
several equivalent descriptions available which we collect in the following proposition. 

Proposition 1.12. Let H C Sp(V,u)) be an absolutely irreducible connected closed 
subgroup and let \) C $p(V) be its Lie algebra. Then the following are equivalent. 

1. H is the holonomy group of a symplectic connection. 
2. There is a Adfj-invariant symmetric bilinear form ( , ) on \] and a bilinear map 

o : 0 2V —> rj such that for all x,y,z GV and A 6 rj, the following equations are 
satisfied: 

(4) 
(A,xoy). = u)(Ax,y) 

(x o y)z - (x o z)y = 2u)(y, z)x - u)(x, y)z + UJ(X, z)y 

3. There is an irreducible symmetric space of the form G/(SL(2, ¥) • II) with ¥ = R 
orC. 

Furthermore, *ifV and H are both complex and H C Sp(V), then the above conditions 
hold iff the sky C C ¥(V) of H is a Legendre submanifold and H= Aut(C). 

While the first of these equivalences are shown e.g. in [MeScl, Scl], the charac­
terization of the sky of the representation follows from the work of Alekseevskii and 
Cortes [AC]. 

2. T H E MERKULOV TWISTOR SPACE 

In this section, we shall give a brief exposition of a twistor theory which can be 
associated to a holomorphic torsion free connection on a complex manifold M. This 
twistor theory has been developed by Merkulov in [Ml, M2, M3, M4]. Throughout 
this section, we shall work in the complex category That is, all manifolds, functions, 
vector fields, forms etc. are understood to be holomorphic. Also, TM and T*M stand 
for the holomorphic (co-)tangent bundle of the manifold M. 
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Definition 2.1. Let Y be a manifold, let V be a codimension-1 distribution on y, 
and define the line bundle L by the exact sequence 

0 — > V — > F y — > L — > 0. 

If the L-valued 2-form 0 on V given by 0(:r, y) := [x, y] mod D is non-degenerate, then 
V is called a contact structure on y , and L is called the contact line bundle of Y. 

A submanifold X c V i s called a contact submanifold if TK CD . If X is a contact 
submanifold with dimX = (dimy - l)/2 then X is called a Legendre submanifold. 

Note that from the maximal non-integrability of D it follows that Legendre sub-
manifolds are contact submanifolds of maximal dimension. 

Given a contact manifold Y and a compact Legendre submanifold X0 C Y, a natural 
question is when the moduli space of "close-by" Legendre submanifolds carries the 
structure of a manifold. To make this more precise, we need the following definition. 

Definition 2.2. Let Y be a contact manifold. An analytic family of compact Legendre 
manifolds is a submanifold S <-+ MxY with some manifold M such that the projection 
7Ti : S -» M is a submersion, and Xp := fl^TTf l(p)) C V is a compact Legendre 
submanifold for all p £ M. Here, 7rt- is the projection o f M x V onto the i-th factor. 
In this case, we call M a moduli space of Legendre submanifolds, and say that the 
submanifolds Xp, p G M, are contained in the analytic family 

5 is called maximal (locally maximal, respectively) if for every analytic family S' C 
M' x y with M C M' and 5 C 5', it follows that S = 5" and M = M' (5 open in S' 
and M open in M', respectively). 

Then one can show the following deformation result. 

Theorem 2.3. [Ml] Le£ Y be a contact manifold with contact line bundle L —> Y, 
and let XQ C Y be a compact Legendre submanifold. If H1(XQ,LXQ) = 0 then there 
exists a maximal analytic family S <—> Y x M containing XQ. Moreover, there is a 
canonical isomorphism TpM = H°(Xp) Lxp), and hence, dimM = dimH0(K0, Lx0). 

Now, let y be a contact manifold, X cY compact Legendre, and assume that X 
is homogeneous, i.e. X = G/P where G is a semi-simple Lie group and P C G a 
parabolic subgroup. W.l.o.g. we assume that G = Aut(K) is the biholomorphism 
group of X. Furthermore, suppose that the restriction Lx is very ample. It is well-
known that in this case Hl(X, Lx) = 0, whence the moduli space M from Theorem 2.3 
is a manifold. 

Remarkably, there are cases when M comes equipped with a torsion free connection. 
Namely the following holds. 

Theorem 2,4. [Ml] Let Y be a contact manifold with contact line bundle L —> Y, 
and let X0 C Y be a compact Legendre submanifold. Suppose that XQ is a generalized 
flag variety X0 — G/P, such that the restriction L -> XQ is a homogeneous very ample 
line bundle. 

Let N := JlL denote the first jet bundle of L. If Hl(X0, L ® ©2N) = 0 then there 
exists a holomorphic torsion free connection on M whose holonomy is contained in G. 

Further, if H°(XQ,L ® ©2N) = 0 then this connection is unique. 

The remarkable fact in this theory is that this process can be reverted in the sense 
that every torsion free holomorphic connection can be realized locally as the canonical 
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connection on an associated moduli space, and we shall now explain this process in 
some more detail. 

To begin with, let M be a complex manifold, and let TT : T*M -» M be its holomor-
phic cotangent bundle. We let X denote the Liouville form on T*M which is given by 
the equation 

X(ve):=e(^{ve)) 

for all vQ G Te(T*M). The 2-form 

u) := dX 

is non-degenerate and is called the canonical symplectic form on T*M. It is also easy 
to verify that 

m*tX = tX and m*u) = ta>, 

where mt :T*M ->T*M denotes the scalar multiplication by t G C*. 
Consider a G-structure F C J on M. Clearly, the cotangent bundle of M and its 

projectivization can be expressed as T*M = F xG V* and FT*M = F xG F(V*). Let 

S : = . F x G C c r * M \ { 0 } , 

and 

S:=FxGCcFT*M. 

Obviously S is the quotient of S by the natural C*-action. The restriction u)$ of u is 
no longer non-degenerate, and we let M C TS be its annihilator, i.e. 

N:={veTS\vJu)s = 0}. 

If we denote the canonical projection by n : S —J> M, then it is easy to see that for all 
p G M, 

AfnTn-l(p) = 0. 

We make the simplifying assumption that dim A/" is constant. Since u)$ is closed, it 
follows that N is integrable. Thus, restricting to a sufficiently small open subset of 
M, we may assume that the set of integral leafs of N is a manifold Y, i.e. we have a 
submersion 

fi:S—>Y 

such that J\f is precisely the tangent space of the fibers of ft. 
Let v be a vector field on S with vs C M for all s G S. Then &VUJ§ = vJdu^ + 

d(v-\u)g) = 0, and therefore u)g can be pushed down to Y via ft\ in other words, there 
is a 2-form UJ on Y with 

Ws = ji*(u)). 

It is obvious that u is nondegenerate. Moreover, 0 = du)§ = /L*(c/lJ)), and since fi is a 
submersion, it follows that du = 0, i.e. {Yy&) is a symplectic manifold. 

Since the distribution N is invariant under the natural C*-action on 5, there is an 
induced C* -action on Y for which 

(5) m*Cj = tu) for all teC*. 
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Also, J\f factors through to an integrable distribution on S = S/C*, and if we denote 
the leaf space of this distribution by Y then we get a submersion fi: S -+Y, and Y is 
the quotient of Y by the C-action. We denote the canonical projection by p : Y -> Y. 

Let dt denote the vector field on Y whose flow induces this C*-action. Then by (5), 
£;3,u) = u), and since u is closed, this implies that 

Cb = d\, where A = ftJw. 

Evidently, \{dt) = 0, and A is nowhere vanishing. Thus, for each y G Y, there is 
a unique 1-form 0 ^ Â  € T*Y where y = p(y)t such that p*(\y) = Ay. "Hence, the 
map i : Y <-» T*y\{0} with i(y) :— Â  is well-defined and, by (5), a C*-equivariant 
embedding whose image is a C*-subbundle. It is now evident that A = 2* Ay where Ay 
denotes the Liouville 1-form on T*Y, and thus u = ^*u)Y where UJY is the canonical 
symplectic form on T*Y. But since u is non-degenerate on y, it follows that the 
distribution V on Y which is annihilated by i(Y) defines a contact structure on Y, 
and i(Y) C T*y\{0} is precisely the dual of the contact line bundle L -» Y. Thus, 
identifying Y with its image under this inclusion, we get the following commutative 
diagram: 

S -*-> L*\{0} 
/ |c ic 

M <- s - ^ y 

For p e M, we let 5P := 7r'l(p) C 5. Since JV H TSP = 0, it follows that the map 
7r x n : S -> M x y is an embedding. Moreover, it follows easily from the construction 
that Yp :— fi(Sp) C V i s a contact submanifold, and hence, S determines an analytic 
family of compact contact submanifolds. 

Let us now address the question under which circumstances the contact submanifolds 
Yp C y are Legendre. A dimension count yields that this is the case iff dimJV" = 
codim(5 C PT*M) = codim(5 C T*M). Evidently, we have the inequality dimA!" < 
codim(5 C T*M), as u is non-degenerate on T*M. Thus, Yp C Y is Legendre iff the 
dimension of A/" is maximal. If this is the case at some point, then by semi-continuity 
of the rank, this holds for a neighborhood of that point as well. If dim AT is maximal 
everywhere then we call the G-structure F non- degenerate. 

Proposition 2.5. Let M be a manifold, and let F c 3 be a non-degenerate G-
structure with irreducible G C Aut(V), and let S C FT* M be as before. Then the 
inclusion TT X \x : S «-> M x Y is a locally maximal analytic family of Legendre sub­
manifolds ofY. 

The reason why we are particularly interested in this twistor description of non-
degenerate G-structures is the following result whose proof is merely a straightforward 
calculation. 

Theorem 2.6. Every torsion free G-structure F on M with irreducible G C GL(n,C) 
is non-degenerate, and thus M can be realized as a locally maximal analytic family of 
compact homogeneous Legendre submanifolds of a contact manifold Y. 
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We call a submanifold E C M conic if for each p e E, (FpE)-1 c T*M is tangent 
to Cp C T*M. Then by a dimension count, we get as an immediate but striking 
consequence of Proposition 1.12 the following result: 

Corollary 2.7. [Sc2] Let (M, ft, V) be a symplectic manifold with a special symplectic 
connection. Then every conic submanifold of M is Lagrangian. In fact, the Merkulov 
twistor space is the moduli space of all maximal conic totally geodesic Lagrangian 
submanifolds E c A f . 

This double duality (points in M) «-» (Legendre submanifolds of Y) and (points in 
F)«-> (conic Lagrangian submanifolds of M) makes the twistor theory for the special 
symplectic holonomy groups particularly intriguing. 

3. CONSTRUCTION OF SPECIAL SYMPLECTIC CONNECTIONS 

We shall now describe the method to construct torsion free connections with special 
symplectic holonomy For this, we need the following definitions. 

Definition 3.1. Let (P, { , }) be a Poisson manifold. A symplectic realization of P 
is a symplectic manifold (S, Q) and a submersion 

n:S—>P 

which is compatible with the Poisson structures, i.e. 

(6) {**(fW(9)}s = «*({f,9}) forallLPec°0(P,R)1 

where the Poisson bracket { , }s on S is induced by the symplectic structure. 

The following result ensures the existence of such realizations, at least locally 

Proposition 3.2. [W] Let (P, { , }) be a Poisson manifold. Then for every point 
Po € P, there is an open neighborhood U ofpQ and a symplectic realization IT : S —> U. 

If 7r : S -> P is a symplectic realization then, in order to avoid confusion, we 
denote the Hamiltonian vector fields on S by ^ where h € C°°(S)) while we denote 
the Hamiltonian vector fields on P by rjj for / £ C°°(P). With this, we have for all 

/ , j e C » ( P ) 

't.(£-•(/)) = Vf and [£»•(/),6-'(j,)l H{*'UW(g)}s 

(7) -*-*«/.,}) by (6). 

This implies that the distribution E on S given by 

Ss = m-(f))s I / € C°°(P)} for all 5 € 5 
is integrable. Evidently, (£**(/))s only depends on d/V^), and since 7r is a submersion, 
the map TT* : -Q^P -r T*S is injective. Thus, the canonical map 

6 : Es - > T;{S)P 
(Z**f)s '—> dfn(s) 

is a linear isomorphism and hence, H has constant rank equal to the dimension of P. 
Moreover, if F C S is an integral leaf of E then by (7), there is a symplectic leaf E C P 
such that 7T: F -> E is a submersion. 
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Let H C Aut(V) be a Lie subgroup with Lie algebra \) C End(V). If there is a torsion 
free connection on some manifold M with holonomy H, then there is a principal H-
bundle F -» M and on F with an \) © V-valued coframing u + 6 where 8 and u are 
the tautological respectively the connection 1-form [KN]. For each w E f) © V, we let 
£w E X(F) be the vector field characterized by (a; + 0)(£w) = w. Then the structure 
equations for the connection [KN] yield the following. 

[€A,ZB] = t[A,B] 
(8) [€A,€X] = %A-x 

[€x,Zy]{s) = £&,(*.*)> 
where AyB G f), x, y G V and Ps : A2V -4 I) is the curvature map at s. Conversely, 
if there are vector fields fw satisfying (8) then F can be embedded into a principal 
H-bundle over M := F/H which is - at least locally - a manifold, such that the 
distribution on F given by {£x | x E V} yields a connection on M [KN]. 

The basic idea of our construction is now to consider & Poisson structure on the 
vector space P := (Pj © V)* and a symplectic realization TT : S -» U C P of some open 
neighborhood U. If we let F C S be a leaf of the distribution E, then T5F =* T;(s)P =* 
fj © V since P is a vector space. Thus, we get again an rj © V-valued coframe on F. 
Now from (7) it is evident that this coframe satisfies the structure equations (8) iff the 
Poisson structure on P is of the form 

(9) {f,9}(p) ^ P([A + x,B + y]) + 4>(P[}.)(xyy), 

where, dfp = A + x and dgp = B + y are the decompositions of d/p, dgp E T*P* = P = 
rj © V, p^ denotes the f)*-component of p and 0 : r)* —> A2V* is a smooth map. Now 
it is straightforward to verify the following 

Lemma 3.3. The equation (9) defines a Poisson structure on P iff <f> satisfies the 
following properties: 

(i) <j> is H-equivariant, 
(ii) for every p £ \f, the dual map (d4>p)* : A2V —• \] is contained in K(\)) (cf. (3)). 

Of course, it is a priori not evident that such functions 0 exist for a given I) C 
End(V). However, in the case of special symplectic holonomies, such a <f) can be 
explicitly given. Namely, we have the following result. 

Theorem 3.4. [CMS1, CMS2, MeScl] Let He Sp(n,F), ¥ = E or C be a symplectic 
holonomy group, i.e. an entry of Table D. Then the map </>: r) = r)* -» A2V* given by 

<t>(A)(x, y) := (2(A, A) + c)u(x, y) - 2v{Ax, Ay) 

satisfies the conditions in Lemma 3.3 for any constant c G F. In particular, there are 
torsion free connections whose holonomy equals H. 

This can be verified immediately from (4), where we use the identification f) = rj* 
via the inner product ( , ). Surprisingly, the converse of Theorem 3.4 is true as well. 

Theorem 3.5. [CMSl, CMS2, MeScl] Let H C Sp(n,F), F = R or C be a special 
symplectic holonomy group, i.e. an entry of Table D, except 1.1-1.4 and 3.1, 3.2 with 
Z¥ = F*. Then every torsion free connection is locally equivalent to a connection of 
the form described in Theorem 3.4-
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From this complete characterization, we can now deduce the following properties. 

Corollary 3.6. Let M be a manifold which carries a torsion free connection whose 
holonomy is contained in a special symplectic holonomy group H C 5p(V,fi). Then 
the following hold. 

(1) The connection is analytic. 
(2) The map n : F -> P has constant even rank 2k which we shall call the rank of 

the connection, k = 0 iff the connection is flat. 
(3) 7r(F) is contained in a 2k-dimensional symplectic leaf E of the Poisson structure 

on P induced by <f>. In particular, n : F —> E is a submersion onto its image. 
(4) Conversely, every symplectic leaf E C P can be covered by open neighborhoods 

{UQ} such that there is a special symplectic connection with ir(FQ) = UQ. 
(5) The moduli space of torsion free connections with any of the above holonomies is 

finite dimensional. Indeed, the 2nd derivative of the curvature at a single point 
in M completely determines the connection on all of M. 

(6) Let g be the Lie algebra of infinitesimal symmetries, i.e. of vector fields X on 
F with the property that Cx{w + 0) = 0. Then dim0 = dimP - 2k = dimfj + 
dimV — 2k where k is the rank of the connection. Moreover, dimg > rk(rj) > 0. 

Of course, (4) is not an optimal statement. One would like to show that there 
are connections such that 7r(F) is an maximal symplectic leaf. The difficulty is that, 
in general, one cannot expect to have a global symplectic realization -K : S —> P. 
Moreover, due to the existence of infinitesimal symmetries there is no canonical way 
to glue germs of these connections together since they can always be "slided" along 
the infinitesimal symmetries. 

Definition 3.7. Let (M, 0, V) be a triple consisting of a symplectic manifold (M, Q) 
and a connection with special symplectic holonomy We call V maximal if M is not 
equivalent to a proper open subset of another manifold with a symplectic connection, 
i.e. if there is no connection preserving immersion & : M <-> M' whose image is a 
proper open subset of M'. 

From the construction and Theorem 3.5, the following is now evident. 

Proposition 3.8. Let (M, fi, V) be a symplectic manifold with a connection with spe­
cial symplectic holonomy, let F -> M be the holonomy bundle and n : F -> E C P 
be the symplectic realization where E C P is a maximal symplectic leaf of the Pois­
son structure on P := (F) © V)*. Moreover, let 0 be the Lie algebra of infinitesimal 
symmetries. 

If 7T : F -> E is surjective and a principal G-bundle where G is a Lie group with 
Lie algebra g such that the flow of the infinitesimal symmetries generates the principal 
action of G on F, then (M, fi, V) is maximal. 

We shall now focus our attention to homogeneous examples, i.e. to such examples 
for which the (local) action of the symmetry group G on M is locally transitive. This 
is equivalent to saying that the (local) action of G x H on F is transitive and thus 
equivalent to say that 7r(F) C E C (r) © V)* consists of a single H-orbit. In other 
words, we wish to determine those symplectic leafs E C (f) © V)* which contain an 
open H-orbit. 
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Table G: Flat homogeneous vector bundles E —> G/L0 with symplectic holonomy H 
Notation: F = R or C 

H C End(V) G/L0 

L0 C Aut(W) 
where E = G xт W 

Sp(3,F) 

V = ( Л 3 F % 

Spin(4,3)/(Spin(3,2). Spin(l, 1)) 
or 

Spin(7,C)/(Spin(5,C) -SpiiiføQ) 

L 0 ^Sp(2 ,F ) - F 

W = P 

SL(2,R)-SO(n + l ,n) 
or 

SL(2,C)-SO(2n + l,C) 

V = F2 F2"4*1 

SL(n + 2, F)/S(GL(2, F) • GL(n, F)) w = ғ2 ® ғ 

SL(2,R)-SO(2p+l,2g) 

V = R2 ® 1R-ÍP+9)+1 
S U ( p + l l 9 + l ) / S ( U ( l , l ) . U ( p , g ) ) 

L0.= S(GL(2,R).U(p,9)) 

W = R2 ® R 

Table H: Homogeneous Spaces with special symplectic holonomy of type 2 
Notation: F = R or C 

H c End(V) G 
M = G - n C ø * = ø 

wheгe n Є ø* -= ø equals: 

H = SL(2, F) 

V = 3ғ* 
SL(2,F) x F 2 

ГJ = x + v, where 
0 ^ x Є s í ( 2 , F ) is nilpotent 
OфvЄ ker(x) C F 2 

Sp(3,F) 

V = (Л31B% 

G*'3 * R7 if F = 1 

G!r X C7 if F = C 

Г) = xa + Ł»x, WllЄГЄ 
0 # x« Є (ftø)*. a a long root of 02 
0 ф vx Є ( F 7 ) л , Л a weight of F 7 

( a , Л ) = 0 

Let (M, fi, V) be a symplectic manifold with a symplectic connection, i.e. a torsion 
free connection s.th. Vft = 0. Since the volume form Qn with n = ^dimM is then 
also parallel, all curvature endomorphisms are trace free, i.e. tr(Rp(v,w)) = 0 for all 
v} w G TpM and all p € M. Thus, the first Bianchi identity for Rp implies that the 
Ricci curvature which is given by 

Ricp(v,w) := tr(Rp(v,_)w) 

is symmetric, i.e. Ricp(v,w) = Ricp(w,v). We define the section of the endomorphism 
bundle Rj_c e T(End(TM)) by 

RiCp(v) w) = Q(Ricpv, w) for all v, w G TPM, p € M. 

From the symmetry of Ricp it follows that Ricp e sp(TpM, flp) and hence, trRicp = 0. 
Therefore, the definition of scalar curvature which would be analogous to the one 
from Riemannian geometry contains no information at all. Instead, we introduce the 
following notion. 
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Table I: Homogeneous Spaces with special symplectic holonomy of type 3 
notations/conventions: F = E oг C, [ØІ, Ø;] = øj+;. 

H C End(V) 5 = L,=0 ði restrictions 

H = Sp(3,E) 

V = (Л 3 E 6 ) 0 

øo = sl(2,E) 5o(p,ç) 
øi = E2 ( 2R™)0 

02 = E ( 2Rp'9)o 
øз = E2 0 E 

(P,«) = (3,0) 

oг 

(P,9) = (2,l) 

H = Sp(3,C) 

V = (Л3C«)o 

øo = sl(2,C) so(3,C) 
øi = C2 ® ( 2C3)0 

02 = C 0 ( 2C3)0 

øз = C2 0 C 

H = SU(3,3) 

V = {a Є Л^C6 | *a = a} 

øo = sl(2,E) su(p,ç) 
ø! = E2 0 su{p,q) 
02 = E 0 su{p,q) 
øз = E2 0 E 

(P,î) = (3,0) 
or 

(P,î) = (2,l) 

H = SL(6,F) 

V^Л3!6 

øo = sl(2,F) sï(3,F) 
øi = Ѓ 0 sí(3,F) 
02 = F 0 sl(3,F) 
øз = ІЇ> <g> F 

H 
í Spin(6,6) forF = E, 

" \ Spin(12,C) forF = C 

V = A i 2 ^ I ^ 2 

øo = fil(2, sp(3,F) 
øi = P ® ( Л 2 F % 
02 = F ® ( Л 2 Ѓ ) 0 

øз = Ѓ ® F 

H = Spin(6,ШГ) 

V = Д J =! E 3 2 

Øo = sl(2,E) sp{p,q) 
øi = E2 0 (Л2Iť)o 
02 = E 0 ( Л Җ o 
øз = l 2 O F 

(P,9) = (3,0) 

or 

(P,9) = (2,l) 

H 
í Spin(6,6) forF = E, 

"" \ Spin(12,C) forF = C 

V = A i 2 = Ѓ 2 

øo = «p(3,F) 
øi = ( Л 3 F ) 0 Ѓ 
02 = (Л 2J^) 0 lF* 

øз = IP6 

2 non-equivalent 
connections 
for F = E 

ŕ E ^ with F = E, 
H = ^ E<7) with F = E, 

( E^ with F = C 

ø0 = вl(2,I?) (íiû)) 
øi = F2 ø Ѓ 6 

02 = F ø F26 

øз = F6 ® F 

f'a) = < 

í Ќ » f o r H = E<5>, 

f<5) f o r H = E<7>, 

f4 f o r H = E<7

7\ 

. fř Ь'H = E? 

Definition 3.9. Let (M, ft, V) be a symplectic manifold with a symplectic connection 
V, and define Ric £ T(End(FM)) as above. Then the symplectic scalar curvature of 
V is the function seal: M -» F given by sea/ := tr(Ric2). 
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Table I: Homogeneous Spaces with special symplectic holonomy of type 3 (cont.) 
H C End(V) ø = ŁІ=Ù ØІ restrictions/remarks 

н í E^5) forF = R, 
\ Ef forF = C 

v = ғ6 6 

øo = sp(4,F) 
Øi - (Л 3l^)o 

0 2 = (Л2J^)o 

03 = 1* 

SL(2,R) -SO(p,ҙ) 

V = R2 RP+ 9 

00 

01 

02 

03 

sp(k + 1,R) so(p'yq
() 

R2<*+1) ® (RP'«*' R) 

Л 2R 2^+ 1 ) ® R 
R ® (Rp''9' R) 

R2(*+1) ® R 

P > 2, Я> -

p' := p - 2k - 2 

ç' := ç - 2k - 1 
Ъ<k<min(2ү^) 

SL(2,C) -SO(n,C) 

V = c 2 ® c n 

00 

01 

02 

03 

sp(k + 1,C) so(m,C) 
c2(*+1) 0 (Cm©C) 

Л 2 C 2 ( A + 1 ) 0 C 

C ® ( C n C) 

c 2 ( f c + 1 ) ® c 

n > 3 

m := ?г - 4k - 3 

0 < k < ^ 

Evidently, the action of the symmetry group preserves the symplectic scalar cur­
vature, whence any homogeneous connection must have constant symplectic scalar 
curvature. However, as it turns out, the converse of this is almost true as well. More 
precisely, we have the following result. 

Theorem 3.10. [Sc4] Let (M, fi, V) be a symplectic manifold with a special symplectic 
connection. Call a point p € M symmetric if (VR)P — 0, R being the curvature o/V. 
Then the following are equivalent. 

1. M is locally homogeneous, i.e. there is a locally transitive group action via local 
diffeomorphisms preserving Q. and V. 

2. M contains no symmetric points and has constant symplectic scalar curvature. 
3. M contains no symmetric points, and there is a point p E M for which the 

function seal — scal(p) vanishes at p of order at least three. 

Since the Poisson structures on (f)®V)* are explicitly known, it is possible to classify 
those symplectic leafs £ which have an open H-orbit. The resulting classification can 
be described as follows. 

Theorem 3.11. [Sc4] Each of the total spaces of the flat homogeneous vector bundles 
over symplectic symmetric spaces 7r : E —> G/LQ in Table G carries a G-invariant sym­
plectic connection with special symplectic holonomy group H whose symplectic scalar 
curvature is constant non-zero. These connections are maximal and share the following 
properties. 

1. The 0-section EQ C E is totally geodesic, and the restriction of the connection to 
EQ = O/Lo is equivalent to the symmetric connection on G/LQ. 

2. All fibers Ep = TT"1^) are totally geodesic. Moreover, Q\EP is the (unique) L0-
invariant symplectic form on Ep where Q, is the parallel symplectic form on E. 
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Table J : N u m b e r of homogeneous connec t ions for all special symp lec t ic ho lonomies 
H C End(V) V #(homog. conn. with Hol = H) 

SL(2,R) 

SL(2,C) 

3R2 = R4  

3C? =0 

1 

1 

Sp(3,R) 

Sp(3,C) 

( Л 3 R 6 ) 0 ^ R 1 4 

( Л 3 C 6 ) 0 ^ C 1 4 

4 

3 

SU(1,5) 

SU(3,3) 

SL(6,R) 

SL(6,C) 

{a € A30 \*a = a} = R20 

{a € Л 3*? | *a = a} = R2 0 

Л3R6 Sŕ R2 0 

Л3C? = C 2 0 

0 

2 

1 

1 

Spin(2,10) 

Spin(6,6) 

Spin(6,H) 

Spin(12,C) 

A 2 Д o = R3 2 

A6,б = R3 2 

ДИ = R 3 2 

Af2 = C 3 2 

0 

3 

2 

2 

E 7

5 ) 

E 7

7 ) 

E 7 

R5 6 

R56 

C56 

2 

2 

2 

Sp(l)-SO(n,H) 

SL(2,R) -SO(p,g) 

SL(2,C)>SO(n,C) 

EP = - R 4 n , n > 2 

R2 <g> R™, p > g, p + q > 3 

C^ C ^ ^ n ^ З 

g + є, є = < 

0 

1 if p = q and ç odd 
1 if p + ç odd, p > g + 2 
2 ifp = g + l 
0 otherwise 

í 0 foг n even 
'' ~ 1 1 foг n odd 

3. Let ri be the horizontal distribution on E induced by the symmetric connection 
on G/LQ. Then ri is Vt-orthogonal to the fibers, and Q|^ = TI*(W) where u is the 
symplectic form on G/LQ. 

Moreover, every connection with special symplectic holonomy and with non-zero con­
stant symplectic scalar curvature is locally equivalent to one of these connections. 

Of course, the complement of the 0-section of each vector bundle in Table G. i.e. 
the complement of the set of symmetric points, is G-homogeneous. 

Every locally homogeneous space is modelled on a globally homogeneous space, and 
these are completely classified. 

Theorem 3.12. [Sc4] Let M = G/L be a homogeneous space with a G-invariant 
symplectic form £1 and a G-invariant special symplectic connection V. Then - up 
to coverings - M is the complement of the Q-section of one of the vector bundles in 
Table G, or an entry of one of Table H or I. 
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Moreover, the homogeneous connections in Table H are maximal, while the homoge­
neous connections in Table I are not. 

For the sake of simplicity of the presentation, we give only the Lie algebra of the 
symmetry group of the homogeneous spaces from Table I. The explicit form of L C G 
is given in [Sc4]. 

Recall that a homogeneous space M = G/L is called reductive if there is a vec­
tor space decomposition 0 = i © m where 0 and ( are the Lie algebras of G and L, 
respectively, such that [I, m] C m. 

After passing to an appropriate cover of M if necessary, we may assume that there 
is a momentum map \i : M —¥ 0* where 0 is the Lie algebra of G. The homogeneity 
implies that \i is an immersion - in fact a covering map - hence we may identify M 
with its image JJL(M) C 0*. Recall that the coadjoint orbit of any element in 0* carries 
a canonical symplectic structure. Wre determine which homogeneous spaces /JL(M) C 0* 
are coadjoint orbits. 

Theorem 3.13. [Sc4] Let -K : E —> G/L0 be a homogeneous vector bundle from Ta­
ble G. Then the momentum map JI : K\0 —> 0* is the double cover of a coadjoint orbit 
and thus, \x : E —> 0* is a branched double cover of its image. 

The homogeneous spaces in Table H are equivalent to coadjoint orbits while the 
homogeneous spaces in Table I are not. 

The two homogeneous spaces in Table H with holonomy H = 51(2, F), F = R or C, 
are reductive; the remaining homogeneous spaces are not reductive. 

Since every holonomy irreducible symmetric space must be pseudo-Riemannian, 
there cannot be any locally symmetric connections with special symplectic holonomy. 
By our classification, there are also some special symplectic holonomy groups which do 
not even admit any locally homogeneous connections or, equivalently, no connections 
of constant symplectic scalar curvature. The number of possibilities of non-isomorphic 
homogeneous connections for the various special symplectic holonomy groups are listed 
in Table J. 
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