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IRREDUCIBLE HOLONOMY REPRESENTATIONS

LORENZ J. SCHWACHHOFER

1. INTRODUCTION AND HISTORY

An affine connection is one of the basic objects of interest in differential geometry.
It provides a simple and invariant way of transferring information from one point of a
connected manifold A to another and, not surprisingly, enjoys lots of applications in
many branches of mathematics, physics and mechanics. Among the most informative
characteristics of an affine connection is its (restricted) holonomy group which is de-
fined, up to conjugacy, as the subgroup of Aut(7,M) consisting of all automorphisms
of the tangent space T,M at p € M induced by parallel translations along p-based
loops in M. The notion of the holonomy group was introduced by E. Cartan in 1923
[Carl, Car3).

Throughout this report, we let M denote a smooth connected n-manifold and let
V be an affine connection on M, i.e. a connection on the tangent bundle TM. Fix a
point p € M, let

Ly ={y:[0,1] = M | v(0) = 7(1) = p}

be the set of piecewise smooth loops based at p, and let £2 C L, be those loops which
are homotopic to the trivial loop.

For v € £,, denote by P, : T,M — T,M the linear automorphism induced by
V-parallel translations along y. The holonomy of V at p € M is defined as the subset

Hol, := {P, |y € L,} C Aut(T,M),
and the restricted holonomy is given by
Hol) := {P, |y € L3} C Hol,.

One of the first remarkable results which Cartan proved about the holonomy group
is the following

Theorem 1.1. [Car2] Let (M, g) be a Riemannian symmetric space without Euclidean
factor. Then the identity components of the holonomy group and the isotropy group of
M coincide.

The paper is in final form and no version of it will be submitted elsewhere.
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Here, a symmetric space is a manifold such that the geodesic reflection at any point
is globally defined and an isometry. Since the notion of a symmetric space is defined
in terms of the connection only, one may similarly define an affine symmetric space
as a manifold with a connection whose geodesic reflections at any point are globally
defined and connection preserving. Cartan’s theorem then generalizes to the class of
affine symmetric spaces with irreducible isotropy group.

In the 1950’s, the concept of holonomy became the subject of further investigation.
Some of the basic properties of the holonomy group which were established during this
time period are the following.

Proposition 1.2. [BL, N1, N2] Let (M, V), p € M and Hol) C Hol, C Aut(T,M) be
defined as above. Then the following hold.

1. Holg is the identity component of Hol,.

2. Ifm: M — M is the universal cover and V is the lift of V to M, then Hol; =
Holg, where 7(p) = p. Thus, by lifting the connection to the universal cover, we
may assume that the holonomy group is connected.

3. Holg is a closed Lie subgroup of Aut(T,M); its Lie algebra hol, C End(T,M) is
called the holonomy algebra at p.

4. Hol, = Hol, for all p,q € M, with an isomorphism being induced by parallel
translation along any path from p to q. Thus, if one fizes a linear isomorphism
1 T,M — V', where V' is a fized vector space of the appropriate dimension, then
the conjugacy class of 1(Hol,) C Aut(V') does not depend on the choice of p € M
or 1.

By a slight abuse of terminology, we refer to the conjugacy class of Hol := 1(Hol,) C
Aut(V) (respectively, Hol := z(Holg) C Aut(V)) as the holonomy group (respectively,
restricted holonomy group) of V. The Lie algebra hol'C End(V') of Hol C Aut(V) is
called the holonomy algebra of V.

To an affine connection V we can associate two tensors, the torsion and the curva-
ture, which are given by the formulae

Tory(z,y) = VxY - VyX - [X,Y], and

Rp(x, y)z = vayZ - VyVXZ - V[X,)']Z.

Here, z,y,2 € T,M, and X,Y, Z are vector fields with X, = z,Y, =y and Z, = z.
We call a connection V torsion free if Tor = 0. In this case, it is easy to show that
the curvature satisfies the first and second Bianchi identity, i.e.

(1) R(z,y)z + R(y, z)z + R(z,z)y = 0, and
(2) (VaR)(y,2) + (VyR)(2,7) + (V.R)(z,9) = 0
for all z,y,z € T,M.

The irreducible holonomy problem which shall be of primary interest in this report
is the following.

Given a finite dimensional vector space V, which are the irreducible (closed)
connected Lie subgroups H C Aut(V) that can occur as the holonomy group
of a torsion free affine connection?
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The condition of torsion freeness is necessary in order to make this problem non-
trivial; namely, by a result of Hano and Ozeki [HO], any (closed) Lie subgroup
H C Aut(V) can be realized as the holonomy of an affine connection on some manifold
M (with torsion, in general). Thus, throughout this report, we shall assume all con-
nections to be torsion free. Also, by Proposition 1.2.2, the condition of connectedness
can be achieved by passing to an appropriate cover of M and thus only disregards
parts of the topological structure of M.

On the other hand, the assumption of irreducibility is a severe restriction which is
necessary to make the holonomy problem more accessible. Indeed, the classification
of reducible holonomy groups has been completed in very special cases only (e.g.
[BI1, BI2)).

Since connected Lie subgroups are completely characterized by their Lie algebras,
the following description of the holonomy algebra was an important step towards the
treatment of the holonomy problem.

Ambrose-Singer Holonomy Theorem [AS] Let V be an affine connection on M
and let p € M. Then the holonomy algebra at p is given by

hol, = ({(PyR) (z,v) | =,y € T,M,v a path with end point p}),
where (PyR)(z,y) := P, - R(P;'z, P;'y) - Py

It is obvious that PyR also satisfies the first Bianchi identity (1). This motivated
Berger [Berl] to develop the following necessary condition for a Lie subalgebra to be
the holonomy of a torsion free connection.

Let V be a vector space and h C End(V) a Lie subalgebra. We define the space of
formal curvature maps

(3) K(b):=
{(Re A’V*®b | R(z,y)z + R(y, 2)x + R(z,z)y = 0 for all z,y,2 € V},
and the space of formal curvature derivatives
K'(h) = {¢ € V*@ K(b) | #(z)(y, 2) + d(v)(2,2) + ¢(2)(z,y) = 0 for all z,y,z € V}.
We also let h := {R(z,y) | R € K(h), x,y € V} Ch. Evidently, h <.
From (1) it follows that P,R € K(hol,) for all path v with end point p; hence the
Ambrose-Singer Holonomy Theorem implies that f]_o_lp = hol,. Moreover, from (2) it

follows that the map z — VR lies in K*(hol)). Thus, if K'(hol,) =0 then VR = 0,
i.e. the connection is locally symmetric. These facts motivate the following definition.

Definition 1.3. A Lie subalgebra § C End(V') is called a Berger algebra if h = b.
A Berger algebra h C End(V) is called symmetric if K!'(h) = 0 and non-symmetric
otherwise.

A Lie subgroup H C Aut(V) is called a (symmetric respectively non-symmetric)
Berger group if its Lie algebra h C End(V) is a (symmetric respectively non-symmetric)
Berger algebra.

In the literature, the two criteria for a non-symmetric Berger algebra are usually
referred to as Berger’s first and second criterion. Our discussion from above now yields
the following.
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Proposition 1.4. [Berl] Let H C Aut(V) be an irreducible Lie subgroup which occurs
as the holonomy group of a torsion free affine connection on some manifold M. Then
H must be a Berger group. If the connection is not locally symmetric, then H must be
a non-symmetric Berger group.

Therefore, the holonomy problem now splits into two parts:

1. Classify all irreducible connected Berger subgroups H C Aut(V).
2. Decide for each of these Berger subgroups if it can occur as a holonomy group.

While the first problem is purely algebraic, the second is analytic in nature. By
Theorem 1.1, the holonomy problem has the classification problem for irreducible
symmetric spaces as a “sub-problem”. This classification has been completed by Car-
tan in the Riemannian [Car2] and by Berger in the general irreducible case [Ber2]. In
particular, this implies the classification of all irreducible symmetric Berger subgroups.

In [Berl], Berger then proceeded to classify all (pseudo-)Riemannian Berger alge-
bras, i.e. the holonomies of Levi-Civita connections of (pseudo-)Riemannian metrics.
(In the non-definite case, there were some slight errors which were later corrected by
Bryant [Br4].) We list the resulting entries in Tables A and B!.

1.1. Holonomies of Riemannian manifolds. The list of possible Riemannian ho-
lonomies (Table A) received a tremendous amount of attention during the decades
following Berger’s classification. First, it turns out that the list of non-symmetric
Riemannian holonomies is contained (in fact, is almost equal to) the list of transitive
group actions on spheres [MoSal, MoSa2, Bol, Bo2]. This was later shown directly
by Simons [Si].

Moreover, in this case, the assumption of irreducibility of the holonomy group is
quite natural. Namely, the deRham splitting theorem [dR] states that the reducibility
of the holonomy group of a Riemannian manifold (M, g) implies that the metric is
locally a product metric; this holds even globally if the metric is complete and M is
simply connected.

We shall now give a brief account of the geometric interpretation and the existence of
these holonomies, focusing our attention to the question of existence of local, complete
and compact Riemannian manifolds with these holonomies.

This survey is by no means complete. For a much more thorough treatment of
Riemannian holonomies and their significance for the topology and geometry of the
underlying manifold we refer the interested reader to the books by Besse [Bes] and
Salamon [Sa] and the survey article [Br5].

1. Hol = SO(n). This is the “generic” case, i.e. a “generic” Riemannian metric on
an oriented manifold will have this holonomy. Thus, the holonomy characterizes
no geometric structure on M except the Riemannian metric itself.

2. Hol = U(m). In this case, there is a parallel orthogonal almost complex structure
on M. The torsion freeness of the connection implies that this almost complex
structure is integrable, thus we have the following result:

!Evidently, the entries in Table A reoccur in Table B, so we could have omitted Table A altogether.
However, since we shall discuss the Riemannian holonomies in more detail, it seems useful to list them
separately.
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Table A

LIST OF IRREDUCIBLE NON-SYMMETRIC RIEMANNIAN
BERGER SUBGROUPS H C SO(n) [Berl]

No. H |4 restrictions

1 SO(n) R? n>2
2 U(m) R* = C™ m>2,n=2m
3 SU(m) R* = C™ m>2,n=2m
4 | Sp(1)-Sp(m) | R* = H™ m>2,n=4m
5 Sp(m) R* > H™ m>2,n=4m
6 G2 R = ImO
7 Spin(7) RE=0

Table B

LIST OF IRREDUCIBLE NON-SYMMETRIC PSEUDO-RIEMANNIAN
BERGER SUBGROUPS H C SO(n,m) [Berl, Br4]

No. H v restrictions
11 SO(p,q) Re+e pP+qg>2,pg#1
1.2 SO(m,C) R*™ ~Cm m>3

2 U(p,q) RP+0) = Cp+e p+q>2

3 SU(p,q) R2P+a) =« O+ | p+g>2,pg# 1
41| Sp(n,R)-SL(2,R) |R!» >R @ R? n>2

42 | Sp(n,C)-SL(2,C) |R" = @C? n>2

43| Sp(p,g)-Sp(l) | RiPH) = pra p+q>2

5 Sp(p,q) RAP+0) = ppt+a ptqg>2

6.1 G, € SO(7) ®

62| G,cs0(4,3) iy
6.3 G§ R4 2 7
7.1 | Spin(7) c SO(8) R®
7.2 | Spin(4,3) C SO(4,4) R®
7.3 Spin(7,C) RS = C®

Table C

LIST OF CONFORMAL PSEUDO-RIEMANNIAN
BERGER SUBGROUPS H C R* - SO(n,m) [Berl, Br4]

NOTATIONS: Tf DENOTES ANY CONNECTED SUBGROUP OF F*.

No. H | %4 restrictions
11| Tr-SO(p,q) | RPH¢ P+q22,pg#1
1.2 | T¢ -SO(n,C) | R?» = C" n>3

2 GL(1, H) R*=H

63
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Table D
LIST OF IRREDUCIBLE CONFORMALLY SYMPLECTIC BERGER SUBGROUPS H C F* - Sp(n)

Zr denotes either {1} or F*, F=Ror C.

NOTATIONS: . .
®PV denotes the symmetric tensors of V' of degree p.
N H % tricti . 1 4
0. restrictions
o S ) = >3 51| SL(6,R) 3A3Rﬁ
Lo Sp(n. O) o n>3 52| SU(1,5) |{weAC|*w=uw)}
' Pitt: = 53| SUB,3) |{we AT | ww=uw)
13| Zr-Sp(2,R) R 54 | SL(6,C) ASCE
14| Zc-520 ¢ 6.1 | Spin(2, 10) Ao
. 2 + ,
Z; SSL(2» R)Soso(pv Q) R THLRP i Pp+gq 2 3 6.2 Spin(6, 6) A?é 6)
: . > :
p(1) - SO(n, H) nz2 6.3 | Spin(6, H) AH
3.1 Zg -SL(2,R O%R? . c
32 Zz - SLE2, C; %C? 64 Spm(f,C) as
56
41 Sp(3,R) R C ASRS :; EZ ﬁss
4.2 Sp(3,C CH c A3C ' !
p(3,C) 73| ES s

Proposition 1.5. Let (M, g) be a Riemannian manifold. Then Hol C U(m) iff there
is an orthogonal complex structure J on M such that (M, g, J) is Kdhler.

Of course, Kihler metrics are known to exist, for example any smooth closed sub-
manifold of CP, will be compact Kéhler. Moreover, the holonomy of a “generic”
Kahler metric will be all of U(m) and will not be locally symmetric?.

3. Hol = SU(m). By Proposition 1.5, a manifold with this holonomy must be
Kahler, and further calculation shows that the holonomy is contained in SU(m)
iff it is Ricci flat [L]. Such a Riemannian manifold (M, g) is called special Kéhler.

The first (incomplete) example of a special Kahler manifold was found by Calabi in
1960 [Cal]. In 1970, Calabi also obtained complete examples of such manifolds. Finally,
in 1978 Yau produced a solution to the Calabi conjecture, stating the following.

Theorem 1.6. [Y] Let (M, go) be a compact Kihler manifold and let ¢, (M) € H*(M, R)
be the first Chern class of M. Then for any closed (1,1)-form p which represents

2mcy (M) in the deRham cohomology, there ezists a unique Kdhler metric g on M such

that the Kdhler forms of g and go represent the same cohomology class, and the Ricci

curvature of g is given by

Ric(z,y) = p(z, Jy)
for all z,y € TM. In particular, a compact Kihler manifold admits a special Kdhler
metric iff its first Chern class vanishes.

With this result, many compact manifolds admitting a Riemannian metric with
holonomy SU(m) can be constructed, e.g. algebraic hypersurfaces of degree m + 2 in
CPpny1 [Beal.

2The only symmetric spaces which are Kihler are CP, and its non-compact dual CP;. Thus, a
Kihler manifold is locally symmetric iff it is locally isometric to one of these two spaces.
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Table E LIST OF HOLONOMY GROUPS OF GENERAL TYPE

Tr denotes any connected subgroup of F*.

NOTATIONS: ©PV denotes the symmetric tensors of V of degree p.
No. H \4 restrictions
1.1 Tr - SL(n,C) {Ae M,(C) | A= A"} n>3
1.2 | T - SL(n,R) - SL(m, R) R* ® R™ n>m>2,nm#4
1.3 | Tr - SL(n, H) - SL(m, H) H* @y H™ n>m>1,nm#1
14 | T¢ - SL(n,C) - SL(m,C) creC™ n>m>2,nm#4
2.1 Tr - SL(n, R) R® n>2
2.2 T - SL(n, H) H" n>2
2.3 T¢ - SL(n,C) cr n>2
24 Tc - SU(p,q) C p+g=2TcZR
3.1 Tk - SL(n, R) AR n>5
3.2 Tc - SL(n,C) AC? n>5
3.3 T - SL(n, {Ae M,(H) | A= A"} n>3
4.1 Tg - SL(n, R) OR" n>3
4.2 Tc - SL(n,C) et n>3
4.3 Tk - SL(n, H) {AeMy(H) | A= -A"} n>2
5.1 Tr - Spin(5, 5) A:s.s)
5.2 Tx - Spin(1,9) Ao
5.3 Tc¢ - Spin(10, C) (Af)¢
6.1 Tw-E} R
6.2 Tr-E§ R
6.3 Tc - ES ¥

65

4. Hol = Sp(m) - Sp(1). A Riemannian manifold whose holonomy is contained in
Sp(m) - Sp(1) is called quaternion-Kdahler.

Proposition 1.7. [G] Let (M, g) be a 4m-dimensional Riemannian manifold. Then
the following are equivalent.

(a) The holonomy group of (M, g) is contained in Sp(m) - Sp(1).

(b) M is covered by open sets on which there ezist three orthogonal almost complex
structures I, Iy, I3 and 1-forms o, 8,7y such that I;- I;y; = I;yo (with indices mod
3) and such that for allv € TM the following relations hold:

V., = yw)- I — B(v)-I
Volo = = ~(v)- I - + afv)Is
VvI3 = ﬂ(v) . 11 - a(v) . IQ

If these conditions are satisfied then there is a (globally defined) parallel S?-subbundle
Q C End(TM), consisting of orthogonal almost complez structures. Locally, it is given

by Q={>cli| Y =1}
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Examples of quaternion-Kéhler manifolds are the quaternionic symmetric spaces
HP" and its non-compact dual. But there are also others, for example the homogeneous
manifolds found by Alekseevskii [A] in 1968. Clearly, these metrics are complete.

There are up to date no known examples of compact Riemannian manifolds with
holonomy Sp(m) - Sp(1) which are not locally symmetric.

5. Hol=Sp(m). A Riemannian manifold whose holonomy is contained in Sp(m) is
called hyperkdhler. Since Sp(m) C SU(m) it follows that a hyperkahler metric
is a fortiori special Kahler. Indeed, a hyperkdhler metric is characterized by the
existence of three parallel orthogonal complex structures I; satisfying [; - [, =
I; 1o (with indices mod 3).

The first examples of hyperkahler manifolds whose holonomy equals Sp(m)
were discovered only in 1979 by Calabi [Cal]. The first compact examples of
manifolds with holonomy Sp(m) were obtained in 1982 [Bea].

6. Hol = Gy and Hol= Spin(7). These two ezceptional holonomy groups on Berger’s
list (Table A) were the last to be shown to exist; this was achieved by R. Bryant
[Br1] in 1986. His method of proof turned out to be extremely useful for the
investigation of local existence of many non-Riemannian holonomy groups as
well. It is based on the translation of the structure equations for a given holonomy
group into an exterior differential system, and then to use Cartan-Kéhler theory
[BCG?] to conclude the existence of such metrics.

Also, in 1996 D. Joyce has constructed a number of compact simply connected
manifolds with these exceptional holonomies [J].

1.2. Non-Riemannian Holonomy groups.

1.2.1. Pseudo-Riemannian Holonomy groups (¢f. Table B). As mentioned above, one
of the most effective methods to solve the existence problem for connections with
prescribed holonomy was Bryant’s approach to describe torsion free connections with
given holonomy as solutions to an Exterior Differential System [Br2], and then to use
Cartan-Kihler theory [BCG?] to prove the local existence of such connections. Using
this method, Bryant was able to show the following.

Theorem 1.8. [Brd] All entries of Table B occur as the holonomy of a (pseudo)-
Riemannian manifold. Indeed, the local generality of metrics with these holonomies is
given in Table F.

1.2.2. Conformal holonomy groups (c¢f. Table C). There are only very few possible
holonomy groups which are contained in the conformal group CO(p, q) := R* -SO(p, q)
but not in SO(p, q) (cf. Table C).

A connection whose holonomy equals CO(p,q) is called a Weyl connection of a
conformal structure. Likewise, a connection with holonomy C* - SO(n,C) is a complez
Weyl connection of a complex conformal structure. Weyl connections are known to
exist for any conformal structure.

Next, a connection on a 4-manifold whose holonomy equals GL(1, H) corresponds
to a (generic) Yang-Mills connection on a half-conformally flat 4-manifold.

The only holonomy groups in Table B which were not classically known are the
groups Hy - SO(n,C) where Hy := {ezp(t(A +1)) | t € R} C C* with A > 0. These
were detected as possible holonomy groups by Bryant [Brd].
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Table F: LOCAL GENERALITY OF METRIC HOLONOMIES
(MODULO DIFFEOMORPHISMS)
(Notation: “d of I” means “d functions of | variables”)

n H local generality
p+g>2 SO(p, q) %n(n—-l) ofn
2p SO(p,0) 3o(p—1)€ of p°
2(p+q) 24 U(p, q) Lofn
2(p+q) >4 SU(p,q) 20fn-1
4p+q) 28 Sp(p,9) 2(p+q)of 2p+2¢+1)
4(p+q)>8| Sp(p,g)-Sp(1) |2(p+g)of (2p+2g+1)
4p>8 Sp(p,R) - SL(2,R) 2pof (2p+1)
8 >16 | Sp(p,C)-SL(2,0) 2p% of (2p+ 1)C
7 G2 6 of 6
7 Gy 6 of 6
14 G 6 of 6°
8 Spin(7) 120f 7
8 Spin(4, 3) 120f 7
16 Spin(7,C) 12C of 7€

1.2.3. Holonomy groups of general type (cf. Table E). In [Brd], there is also a classi-
fication of those irreducible Berger algebras H C Aut(V') which do not preserve any
(symmetric or skew-symmetric) bilinear form up to a scale. Again, a treatment of
these holonomies with the Cartan-Kéahler machinery yields the following result.

Theorem 1.9. [Br4, Br5] The irreducible subgroups H C Aut(V) listed in Table E are
Berger subgroups. Moreover, all of them occur as holonomies of torsion free connec-
tions on some manifold.

1.2.4. Conformal symplectic holonomy groups (c¢f. Table D). Historically, these holo-
nomies which are listed in Table D were the last to be discovered. Of course, the full
symplectic groups Sp(n,R) and Sp(n,C), respectively were known to occur: indeed,
given a (holomorphically) symplectic manifold (M, Q) then the “generic” (holomor-
phic) torsion free connection V with the property that VQ = 0 will have holonomy
Sp(n,R) (Sp(n,C), respectively). This can be easily seen by considering Darboux
coordinates.

Also, it is well known that only in dimensions n = 2,4 there may be torsion free
connections on a (holomorphically) symplectic manifold (M™,Q) which preserve
only up to a scale, i.e. VxQ = a(X)§ for some non-vanishing 1-form a. Again, it is
easy to write down such a connection in Darboux coordinates explicitly. This means
that the holonomy groups 1.1 — 1.4 in Table D can easily be realized as holonomies.

Definition 1.10. Let (M,Q, V) be a symplectic manifold with a torsion free con-
nection V such that VQ = 0. If the holonomy group of V is absolutely irreducible
and properly contained in Sp(n,R) (Sp(n, C), respectively) then V is called a special
symplectic connection, and its holonomy group is called a special symplectic holonomy
group.
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The first examples of special symplectic holonomy groups were found by Bryant
[Br3] in 1991. These were examples on (real or complex) symplectic manifolds of (real
or complex) dimension 4. Thus, their conformal extensions also occurs as a holonomy
group. These are the entries 3.1 and 3.2 in Table D.

The remaining entries of Table D were discovered by Chi, Merkulov and this author
[CS, CMS1, CMS2, MeScl, MeSc2]. We shall discuss the construction of connections
with these holonomies and some of their geometric properties in section 3.

Finally, in [MeScl, MeSc2], a complete classification of irreducible Berger groups
was given.

Theorem 1.11. [MeScl, MeSc2] The entries of Tables B,C,D,E yield a complete list
of non-symmetric Berger subgroups. All of them can occur as holonomies of a torsion
free connection on some manifold.

Let V be a complex vector space with dimV =: n, and let H C Aut(V) be a
connected irreducible Lie subgroup. We let ¢ C V*\{0} be the H-orbit of a highest
weight vector of the dual representation, and let C C P(V*) be its projectivization. C
is called the sky of H.

The list of special symplectic holonomy groups is quite special indeed. There are
several equivalent descriptions available which we collect in the following proposition.

Proposition 1.12. Let H C Sp(V,w) be an absolutely irreducible connected closed
subgroup and let ) C sp(V) be its Lie algebra. Then the following are equivalent.

1. H is the holonomy group of a symplectic connection.
2. There is a Ad g-invariant symmetric bilinear form (, ) onl and a bilinear map
o: OV = b such that for all ,y,z € V and A € b, the following equations are
satisfied:

(A7 xo y) :
@ (woy)z~(zo2)y

3. There is an irreducible symmetric space of the form G/(SL(2,F) - H) with F =R
or C.

Furthermore,"if V and H are both complez and H C Sp(V'), then the above conditions
hold iff the sky C C P(V) of H is a Legendre submanifold and H = Aut(C).

w(Az,y)
2w(y, 2)z — w(z,y)z + w(z, 2)y

While the first of these equivalences are shown e.g. in [MeScl, Scl], the charac-
terization of the sky of the representation follows from the work of Alekseevskii and
Cortés [AC].

2. THE MERKULOV TWISTOR SPACE

In this section, we shall give a brief exposition of a twistor theory which can be
associated to a holomorphic torsion free connection on a complex manifold M. This
twistor theory has been developed by Merkulov in [M1, M2, M3, M4]. Throughout
this section, we shall work in the complex category. That is, all manifolds, functions,
vector fields, forms etc. are understood to be holomorphic. Also, TM and T* M stand
for the holomorphic (co-)tangent bundle of the manifold M.
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Definition 2.1. Let Y be a manifold, let D be a codimension-1 distribution on Y,
and define the line bundle L by the exact sequence

0—D—TY —L—N0.

If the L-valued 2-form 6 on D given by 6(z,y) := [z,y] mod D is non-degenerate, then
D is called a contact structure on Y, and L is called the contact line bundle of Y.

A submanifold X C Y is called a contact submanifold if TX C D. If X is a contact
submanifold with dim X = (dimY — 1)/2 then X is called a Legendre submanifold.

Note that from the maximal non-integrability of D it follows that Legendre sub-
manifolds are contact submanifolds of maximal dimension.

Given a contact manifold Y and a compact Legendre submanifold X, C Y, a natural
question is when the moduli space of “close-by” Legendre submanifolds carries the
structure of a manifold. To make this more precise, we need the following definition.

Definition 2.2. Let Y be a contact manifold. An analytic family of compact Legendre
manifolds is a submanifold S < M xY with some manifold M such that the projection
m : S = M is a submersion, and X, := m(m'(p)) C Y is a compact Legendre
submanifold for all p € M. Here, 7; is the projection of M x Y onto the i-th factor.
In this case, we call M a moduli space of Legendre submanifolds, and say that the
submanifolds X, p € M, are contained in the analytic family.

S is called mazimal (locally mazimal, respectively) if for every analytic family S’ C
M xY with M C M and S C ', it follows that S = 5" and M = M' (S open in §’
and M open in M’, respectively).

Then one can show the following deformation result.

Theorem 2.3. [M1] Let Y be a contact manifold with contact line bundle L — Y,
and let Xo C Y be a compact Legendre submanifold. If H'(Xo, Lx,) = O then there
exists a mazimal analytic family S — Y x M containing Xo. Moreover, there is a
canonical isomorphism T,M = H°(X,, Lx,), and hence, dim M = dim H(X,, Lx,).

Now, let Y be a contact manifold, X C Y compact Legendre, and assume that X
is homogeneous, i.e. X = G/P where G is a semi-simple Lie group and P C G a
parabolic subgroup. W.l.o.g. we assume that G = Aut(X) is the biholomorphism
group of X. Furthermore, suppose that the restriction Lx is very ample. It is well-
known that in this case H!(X, Lx) = 0, whence the moduli space M from Theorem 2.3
is a manifold.

Remarkably, there are cases when M comes equipped with a torsion free connection.
Namely, the following holds.

Theorem 2.4. [M1] Let Y be a contact manifold with contact line bundle L — Y,
and let Xo CY be a compact Legendre submanifold. Suppose that X, is a generalized
flag variety Xo = G/ P, such that the restriction L — X, is a homogeneous very ample
line bundle.
Let N := J'L denote the first jet bundle of L. If H*(Xo, L ® @2N) = 0 then there
ezists a holomorphic torsion free connection on M whose holonomy is contained in G.
Further, if H*(Xo, L ® ®?>N) = 0 then this connection is unique.

The remarkable fact in this theory is that this process can be reverted in the sense
that every torsion free holomorphic connection can be realized locally as the canonical
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connection on an associated moduli space, and we shall now explain this process in
some more detail.

To begin with, let M be a complex manifold, and let 7 : T*M — M be its holomor-
phic cotangent bundle. We let A denote the Liouwville form on T*M which is given by
the equation

A(vg) == 0(m.(vs))
for all vy € Tp(T*M). The 2-form
w:=dA
is non-degenerate and is called the canonical symplectic form on T*M. It is also easy
to verify that
m;A=tA and mjw = tw,
where m, : T*M — T*M denotes the scalar multiplication by ¢t € C*.

Consider a G-structure F' C § on M. Clearly, the cotangent bundle of M and its
projectivization can be expressed as T*M = F xg V* and PT*M = F xg P(V*). Let
S :=F xgC c T*M\{0},

and

S =FxgCCPI"M.
Obviously, S is the quotient of S by the natural C*-action. The restriction wz of w is
no longer non-degenerate, and we let N’ C T'S be its annihilator, i.e.

N :={ve TS |viw; =0}.
If we denote the canonical projection by 7 : S — M, then it is easy to see that for all
pEM,
NNTr(p)=0.
We make the simplifying assumption that dim A is constant. Since wg is closed, it
follows that A is integrable. Thus, restricting to a sufficiently small open subset of
M, we may assume that the set of integral leafs of N is a manifold Y, i.e. we have a
submersion
IR S—Y

such that A is precisely the tangent space of the fibers of ji.

Let v be a vector field on S with v, C N for all s € S. Then L,w; = vdw; +

d(vJwg) = 0, and therefore wgz can be pushed down to Y via fi; in other words, there
is a 2-form @ on Y with

wg = " (@).
It is obvious that @ is nondegenerate. Moreover, 0 = dwg = *(d@), and since i is a
submersion, it follows that do = 0, i.e. (Y, ) is a symplectic manifold.
Since the distribution A is invariant under the natural C*-action on S, there is an
induced C*-action on Y for which

(5) m;& =t for all t € C*.
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Also, NV factors through to an integrable distribution on S = § /C*, and if we denote
the leaf space of this distribution by Y then we get a submersion p: S —Y,and Y is
the quotient of ¥ by the C*-action. We denote the canonical projection by p: ¥ — Y.

Let 8, denote the vector field on ¥ whose flow induces this C*-action. Then by (5),
£50 = @, and since @ is closed, this implies that

@=d\, where \=38_d.

Evidently, A(8,) = 0, and X is nowhere vanishing. Thus, for each ye Y, there is
a unique 1-form 0 # A; € T;Y where y = p(7), such that p*(};) = A;. Hence, the
maps:Y < T*Y\{O} w1th ) := A; is well-defined and, by (5), a C*-equivariant

embedding whose image is a C*-subbundle. It is now evident that X = 1*\y where Ay
denotes the Liouville 1-form on T*Y, and thus & = 2*wy where wy is the canonical
symplectic form on T*Y. But since & is non-degenerate on Y, it follows that the
distribution D on Y which is annihilated by 2(Y) defines a contact structure on Y,
and oY) € T*Y'\{0} is precisely the dual of the contact line bundle L — Y. Thus,
identifying Y with its image under this inclusion, we get the following commutative
diagram:

S iy I\{0}
v lc
M« S —=5 Y

Forp € M, we let S, := n7!(p) C S. Since N NTS, = 0, it follows that the map
wxu:S— MxY is an embedding. Moreover, it follows easily from the construction
that Y, := u(S,) C Y is a contact submanifold, and hence, S determines an analytic
family of compact contact submanifolds.

Let us now address the question under which circumstances the contact submanifolds
¥, C Y are Legendre. A dimension count yields that this is the case iff dimN =
codim(S € PT*M) = codim(S € T*M). Evidently, we have the inequality dim N <
codim(S € T*M), as w is non-degenerate on T*M. Thus, Y, C Y is Legendre iff the
dimension of A is maximal. If this is the case at some point, then by semi-continuity
of the rank, this holds for a neighborhood of that point as well. If dim A is maximal
everywhere then we call the G-structure F' non-degenerate.

Proposition 2.5. Let M be a manifold, and let F C F be a non-degenerate G-
structure with irreducible G C Aut(V), and let S C PT*M be as before. Then the
inclusion m x p: S — M xY is a locally mazimal analytic family of Legendre sub-
manifolds of Y.

The reason why we are particularly interested in this twistor description of non-
degenerate G-structures is the following result whose proof is merely a straightforward
calculation.

Theorem 2.6. Every torsion free G-structure F' on M with irreducible G C GL(n,C)
is non-degenerate, and thus M can be realized as a locally mazimal analytic family of
compact homogeneous Legendre submanifolds of a contact manifold Y.
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We call a submanifold & C M conic if for each p € I, (T,X)* C T; M is tangent
to C, C T;M. Then by a dimension count, we get as an immediate but striking
consequence of Proposition 1.12 the following result:

Corollary 2.7. [Sc2] Let (M, Q, V) be a symplectic manifold with a special symplectic
connection. Then every conic submanifold of M is Lagrangian. In fact, the Merkulov

twistor space is the moduli space of all maximal conic totally geodesic Lagrangian
submanifolds © C M.

This double duality (points in M) ¢ (Legendre submanifolds of ¥) and (points in
Y)4 (conic Lagrangian submanifolds of M) makes the twistor theory for the special
symplectic holonomy groups particularly intriguing.

3. CONSTRUCTION OF SPECIAL SYMPLECTIC CONNECTIONS

We shall now describe the method to construct torsion free connections with special
symplectic holonomy. For this, we need the following definitions.

Definition 3.1. Let (P,{, }) be a Poisson manifold. A symplectic realization of P
1s a symplectic manifold (S, ) and a submersion
n:S— P

which is compatible with the Poisson structures, i.e.

(6) {m*(f),m*(9)}s =m"({f,g}) forall f,g € C*(P,R),
where the Poisson bracket { , }s on S is induced by the symplectic structure.

The following result ensures the existence of such realizations, at least locally.

Proposition 3.2. [W] Let (P,{, }) be a Poisson manifold. Then for every point
po € P, there is an open neighborhood U of py and a symplectic realizationw : S — U.

If r : S — P is a symplectic realization then, in order to avoid confusion, we
denote the Hamiltonian vector fields on S by &, where h € C*(S), while we denote
the Hamiltonian vector fields on P by 7y for f € C*(P). With this, we have for all
f,9€ C=(P)

u(&rer) = 0y and [Ga (), ()] = (D= ()5

(7 =Ce(iroy by (6).
This implies that the distribution = on S given by

Zs={(rp)s| f€C®(P)} forallse S
is integrable. Evidently, (&x-(s))s only depends on dfx(), and since 7 is a submersion,
the map 7* : T7 ) P — T;S is injective. Thus, the canonical map

©: =, — T;(S)P
(Erep)s = dfx(s)

is a linear isomorphism and hence, = has constant rank equal to the dimension of P.
Moreover, if F' C S is an integral leaf of = then by (7), there is a symplectic leaf & C P
such that 7 : FF — X is a submersion.
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Let H C Aut(V) be a Lie subgroup with Lie algebra h C End(V). If there is a torsion
free connection on some manifold M with holonomy H, then there is a principal H-
bundle FF — M and on F with an h @ V-valued coframing w + @ where 6 and w are
the tautological respectively the connection 1-form [KN]. For each w € h @ V, we let
&w € X(F) be the vector field characterized by (w + 6)(£,) = w. Then the structure
equations for the connection [KN] yield the following.

[an 63] = f[A,B]
) Ead] = Cas
12 fy] (8) = &Ry

where A,B € b, 2,y € V and R, : A2V — b is the curvature map at s. Conversely,
if there are vector fields &, satisfying (8) then F' can be embedded into a principal
H-bundle over M := F/H which is — at least locally - a manifold, such that the
distribution on F given by {&; | z € V'} yields a connection on M [KN].

The basic idea of our construction is now to consider a4 Poisson structure on the
vector space P := (h® V)* and a symplectic realization 7 : S — U C P of some open
neighborhood U. If we let F C S be a leaf of the distribution Z, then T,F = T7 P =
h @ V since P is a vector space. Thus, we get again an b @ V-valued coframe on F.
Now from (7) it is evident that this coframe satisfies the structure equations (8) iff the
Poisson structure on P is of the form

9) {f,9}() =p([A+z,B +y]) + $(py-) (7, ¥),

where, df, = A+ 7 and dg, = B +y are the decompositions of df,, dg, € T;P* = P =
h® V, py- denotes the h*-component of p and ¢ : h* — A2V* is a smooth map. Now
it is straightforward to verify the following

Lemma 3.3. The equation (9) defines a Poisson structure on P iff ¢ satisfies the
following properties:
(i) & is H-equivariant,
(ii) for every p € b*, the dual map (d¢,)* : A2V — b is contained in K(§) (cf. (8)).
Of course, it is a priori not evident that such functions ¢ exist for a given § C

End(V). However, in the case of special symplectic holonomies, such a ¢ can be
explicitly given. Namely, we have the following result.

Theorem 3.4. [CMS1, CMS2, MeScl] Let HC Sp(n,F), F =R or C be a symplectic
holonomy group, i.e. an entry of Table D. Then the map ¢ : h = h* — A2V™ given by
$(4)(z,y) := (2(4, 4) + cw(z,y) — 2w(Az, Ay)

satisfies the conditions in Lemma 3.3 for any constant ¢ € F. In particular, there are
torsion free connections whose holonomy equals H.

This can be verified immediately from (4), where we use the identification f = h*
via the inner product (, ). Surprisingly, the converse of Theorem 3.4 is true as well.

Theorem 3.5. {CMS1, CMS2, MeScl] Let H C Sp(n,F), F = R or C be a special
symplectic holonomy group, i.e. an entry of Table D, except 1.1-1.4 and 3.1, 3.2 with
Zy = F*. Then every torsion free connection is locally equivalent to a connection of
the form described in Theorem 3.4.
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From this complete characterization, we can now deduce the following properties.

Corollary 3.6. Let M be a manifold which carries a torsion free connection whose
holonomy is contained in a special symplectic holonomy group H C Sp(V,Q). Then
the following hold.

(1) The connection is analytic.

(2) The map w : F — P has constant even rank 2k which we shall call the rank of
the connection. k = 0 iff the connection is flat.

(3) m(F) 1s contained in a 2k-dimensional symplectic leaf ¥ of the Poisson structure
on P induced by ¢. In particular, 7 : F — X is a submersion onto its image.

(4) Conversely, every symplectic leaf ¥ C P can be covered by open neighborhoods
{U,} such that there is a special symplectic connection with w(F,) = U,.

(5) The moduli space of torsion free connections with any of the above holonomies is
finite dimensional. Indeed, the 2nd derivative of the curvature at a single point
in M completely determines the connection on all of M.

(6) Let g be the Lie algebra of infinitesimal symmetries, i.e. of vector fields X on
F with the property that Lx(w + 6) = 0. Then dimg = dim P — 2k = dimb +
dimV — 2k where k is the rank of the copnection. Moreover, dimg > rk(f) > 0.

Of course, (4) is not an optimal statement. One would like to show that there
are connections such that n(F) is an mazimal symplectic leaf. The difficulty is that,
in general, one cannot expect to have a global symplectic realization 7 : S — P.
Moreover, due to the existence of infinitesimal symmetries there is no canonical way
to glue germs of these connections together since they can always be “slided” along
the infinitesimal symmetries.

Definition 3.7. Let (M, Q, V) be a triple consisting of a symplectic manifold (M, Q)
and a connection with special symplectic holonomy. We call V mazimal if M is not
equivalent to a proper open subset of another manifold with a symplectic connection,
i.e. if there is no connection preserving immersion 1 : M < M’ whose image is a
proper open subset of M'.

From the construction and Theorem 3.5, the following is now evident.

Proposition 3.8. Let (M,, V) be a symplectic manifold with a connection with spe-
cial symplectic holonomy, let F — M be the holonomy bundle and 7 : F - £ C P
be the symplectic realization where & C P is a mazimal symplectic leaf of the Pois-
son structure on P := (h ® V)*. Moreover, let g be the Lie algebra of infinitesimal
symmetries.

If 7 : FF = X is surjective and a principal G-bundle where G is a Lie group with
Lie algebra g such that the flow of the infinitesimal symmetries generates the principal
action of G on F, then (M,, V) is mazimal.

We shall now focus our attention to homogeneous examples, i.e. to such examples
for which the (local) action of the symmetry group G on M is locally transitive. This
is equivalent to saying that the (local) action of G X H on F is transitive and thus
equivalent to say that 7(F) C £ C (h & V)* consists of a single H-orbit. In other
words, we wish to determine those symplectic leafs ¥ C (h & V)* which contain an
open H-orbit.
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Table G: Flat homogeneous vector bundles E — G/Ly with symplectic holonomy H
Notation: F =R or C

Lo C Aut(W)

H C End(V) G/Lo where E =G x;, W
Sp(3,F) Spin(4, 3)/(Spin(3,2) - Spin(1, 1)) Lo = Sp(2,F) - F*
or
V = (A%F%) Spin(7,C)/(Spin (5, C) - Spin(2, C)) w=F

SL(2,R) - SO(n + 1,n)

or

SL(2,0) -SO(2n +1,C) | SL(n + 2,F)/S(GL(2,F) - GL(n,F)) W=FQF
V =F QFnt!
SL(2,R) - SO(2p + 1,2q) Lo = S(GL(2,R) - U(p,q))
SU(p + 1,4 +1)/8(U(1,1) - U(p, q))
V = R @ RptoH W=R®R

Table H: Homogeneous Spaces with special symplectic holonomy of type 2
Notation: F =R or C

M=G-nCg=g
H ¢ End(V) G where 1 € g* & g equals:

H =SL(2,F) n= z+v, where
SL(2,F) x [? 0 # z € sl(2,F) is nilpotent
V = 0% 0 # v € ker(z) C F?
Sp(3,F) G WK ifF=R | 7= Zatun Where

0 # Z4 € (g2)0, @ a long root of g;
0 # vy € (F")), A a weight of 7

S — 3 C T H —
V=(F) | GIxC ifF=C @A) =0

Let (M, ), V) be a symplectic manifold with a symplectic connection, i.e. a torsion
frec connection s.th. V = 0. Since the volume form Q" with n = %dim M is then
also parallel, all curvature endomorphisms are trace free, i.e. tr(R,(v, w)) = 0 for all
v,w € T,M and all p € M. Thus, the first Bianchi identity for R, implies that the
Ricci curvature which is given by

Ric,(v,w) := tr(Rp(v, Jw)

is symmetric, i.e. Ric,(v,w) = Ric,(w,v). We define the section of the endomorphism
bundle Ric € T'(End(TM)) by

Ricy(v,w) = Q(Ric,v,w) for allv,w € T,M,pe M.

From the symmetry of Ric, it follows that Ric, € sp(T,M,,) and hence, trRic, = 0.
Therefore, the definition of scalar curvature which would be analogous to the one
from Riemannian geometry contains no information at all. Instead, we introduce the

following notion.
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Table I: Homogeneous Spaces with special symplectic holonomy of type 3
notations/conventions:

F=RorC, [gig;] = gi+j-

r H C End(V) g= E?:Q gi restrictions
H= R g = 5‘(21R) & So(qu) —
Sp(3r ) 0 = RZ ® (O2Rp,q )0 (pv Q) or (3y 0)
i = R ® (O
V= (1R - g oRY (p.0) = (2,1
H= ) g = sl(2,0) © s50(3,C)
Sp(3.0) @ = C? ® (@2@3 Yo
= 208
V = (/ 3 g2 = C" ® (G C )0
(o n= C & C
= sl2R) © su(pq)
H=SU(3,3 fo = % =
(3,3 o = R? ® su(p,q) X)) - (3,0)
= R ® su(p,
V=feeNCla=a) | B I F O 0 (r.0) = (2,1
= g = sl2,F) o sl3F)
H=5L6H) n = F @ s@F
— A3 g2 = F ® 51(3,1"')
V=P g3 = P ® F
H= Spin(6,6) for F =R, g0 = sl2,F) & sp(3,F)
Spin(12,C) for F=C a = P @ (A,
g2 = F ® (A?P)o
V= A12 =~ FGZ g3 = Eq ® F
— Spi g = s2R) & sp(pg) -
H = Spin(6, H) n = R @ (Azg)o (p,9) - (3,0)
= R ® (A
V= alx g w= R oW (0) = 2,1)
[ Spin(6,6) for F=R, g = sp(3,F) .
H= { Spin(12,C) forF=C o = (AF)y o F 2 non-equl'va.lent
_ 9 connections
po= (WF) o F for F=R
V=04, 2F? g3 = -
E{” withF=R, (@) W 0]
H={ E withF =R, g? . 5[(52*;” g (]i;%) (a) o g}H{: 2‘7’)’
C . _ = a) _ 4 =Ly
E; withF=C @ = F © F 4 fo for H=EM,
V = F56 6w = F ®© F € for H=Ef

Definition 3.9. Let (M, (2, V) be a symplectic manifold with a symplectic connection
V, and define Ric € ['(End(TM)) as above. Then the symplectic scalar curvature of
V is the function scal : M — F given by scal := tr(Ric?).
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Table I: Homogeneous Spaces with special symplectic holonomy of type 3 (cont.)

[ H C End(V) g= ZLD i restrictions/remarks J
el EY forF=Rg, g = sp(4,F
ES forF=C @ = (A°F)
g2 = (Azp)o
V = Fe g =
go = spk+LR) & so(¥,q) P22 g21
SL(2,R) - SO(p, q) g = R&D g (RYER)
g = ARXKDL @ R pi=p-2k-2
V = R? @ RPH9 ® R ® (R oR) ¢ =q-2k-1
g = RGH) g R 0 <k <min(252,134)
go = sp(k+1,C) & so(m,C) >3
SL(2,C) - SO(n,C) = Q&Y g (C a0 "=
g = A2C2(k+1) I C . _
v=CecC o C © (Ce0 PPy
g = C2(k+1) ® C =" =77

Evidently, the action of the symmetry group preserves the symplectic scalar cur-
vature, whence any homogeneous connection must have constant symplectic scalar
curvature. However, as it turns out, the converse of this is almost true as well. More
preciscly, we have the following result.

Theorem 3.10. [Sc4] Let (M, Q, V) be a symplectic manifold with a special symplectic
connection. Call a point p € M symmetric if (VR), = 0, R being the curvature of V.
Then the following are equivalent.

1. M is locally homogeneous, i.e. there is a locally transitive group action via local
diffeomorphisms preserving Q and V.

2. M contains no symmetric points and has constant symplectic scalar curvature.

3. M contains no symmetric points, and there is a point p € M for which the
function scal — scal(p) vanishes at p of order at least three.

Since the Poisson structures on (h@V)* are explicitly known, it is possible to classify

those symplectic leafs ¥ which have an open H-orbit. The resulting classification can
be described as follows.

Theorem 3.11. [Scd] Each of the total spaces of the flat homogeneous vector bundles
over symplectic symmetric spacesm : E — G/Lqy in Table G carries a G-invariant sym-
plectic connection with special symplectic holonomy group H whose symplectic scalar
curvature is constant non-zero. These connections are mazimal and share the following
properties.

1. The 0-section FEy C E 1is totally geodesic, and the restriction of the connection to
Ey & G/ Ly is equivalent to the symmetric connection on G/ L.

2. All fibers E, = n~'(p) are totally geodesic. Moreover, Qg, is the (unique) Lo-
invariant symplectic form on E, where Q0 is the parallel symplectic form on E.



78

L.J. SCHWACHHOFER

Table J: Number of homogeneous connections for all special symplectic holonomies

[ HCEnd(V) 14 | #(homog. conn. with Hol = H) |

SL(2,R) O°R? 2 R 1
SL(2,0) o=t 1
Sp(3,R) (A%RS)p = RM 4
Sp(3,0) (A3C)p =M 3
SU(1,5) {a € A3CP | xa = o} 2 R?® 0
SU(3,3) {a € A3CS | xa = o} 2 R® 2
SL(6,R) ASRS = R 1
SL(6,C) ASCES = % 1
Spin(2, 10) AZ,IO = RGZ 0
Spin(6, 6) Ag e = R3? 3
Spin(6, H) Al ~ g32 2
Spin(12, C) AG, =2 2
EY) R 2
E.(,” R56 2
ES 6 2
Sp(1) - SO(n, H) H=R" n>2 0

1 ifp=gqgandqodd

) 2 y _ )1 ifp+qodd,p>q+2
SL,R) -SO(p.q) | R @R, p2q,p+a23 | q+e =9 5 0o 04
0 otherwise
0 for n even
. ntl -
SL(2,C) - SO(n,C) CeC,n>3 (] +e, € { 1 for n odd

3. Let H be the horizontal distribution on E induced by the symmetric connection
on G/Ly. Then H is Q-orthogonal to the fibers, and Q|y = 7*(w) where w is the
symplectic form on G/Ly.

Moreover, every connection with special symplectic holonomy and with non-zero con-
stant symplectic scalar curvature is locally equivalent to one of these connections.

Of course, the complement of the 0-section of each vector bundle in Table G. i.e.
the complement of the set of symmetric points, is G-homogeneous.

Every locally homogeneous space is modelled on a globally homogeneous space, and
these are completely classified.

Theorem 3.12. [Sc4] Let M = G/L be a homogeneous space with a G-invariant
symplectic form Q0 and a G-invariant special symplectic connection V. Then - up
to coverings - M is the complement of the 0-section of one of the vector bundles in
Table G, or an entry of one of Table H or I.
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Moreover, the homogeneous connections in Table H are mazimal, while the homoge-
neous connections in Table I are not.

For the sake of simplicity of the presentation, we give only the Lie algebra of the
symmetry group of the homogeneous spaces from Table I. The explicit form of L C G
is given in [Scd].

Recall that a homogeneous space M = G/L is called reductive if there is a vec-
tor space decomposition g = [ @ m where g and [ are the Lie algebras of G and L,
respectively, such that [[,m] C m.

After passing to an appropriate cover of M if necessary, we may assume that there
is a momentum map p : M — g* where g is the Lie algebra of G. The homogeneity
implies that y is an immersion — in fact a covering map — hence we may identify M
with its image pu(M) C g*. Recall that the coadjoint orbit of any element in g* carries
a canonical symplectic structure. We determine which homogeneous spaces u(M) C g*
are coadjoint orbits.

Theorem 3.13. [Scd] Let 7 : E — G/Ly be a homogeneous vector bundle from Ta-
ble G. Then the momentum map p: E\O — g* is the double cover of a coadjoint orbit
and thus, i : E — g* is a branched double cover of its image.

The homogeneous spaces in Table H are equivalent to coadjoint orbits while the
homogeneous spaces in Table I are not.

The two homogeneous spaces in Table H with holonomy H = SL(2,F), F=R or C,
are reductive; the remaining homogeneous spaces are not reductive.

Since every holonomy irreducible symmetric space must be pseudo-Riemannian,
there cannot be any locally symmetric connections with special symplectic holonomy.
By our classification, there are also some special symplectic holonomy groups which do
not even admit any locally homogeneous connections or, equivalently, no connections
of constant symplectic scalar curvature. The number of possibilities of non-isomorphic
homogeneous connections for the various special symplectic holonomy groups are listed
in Table J.
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