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ON A CLASS OF POLYNOMIAL LAGRANGIANS
MARCELLA PALESE* AND RAFFAELE VITOLO

ABSTRACT. In the framework of finite order variational sequences a new class of
Lagrangians arises, namely, special Lagrangians. These Lagrangians are the hori-
zontalization of forms on a jet space of lower order. We describe their properties
together with properties of related objects, such as Poincaré-Cartan and Euler-
Lagrange forms, momenta and momenta of generating forms, a new geometric object
arising in variational sequences. Finally, we provide a simple but important example
of special Lagrangian, namely the Hilbert-Einstein Lagrangian.

1. INTRODUCTION

The theory of variational sequences provides a geometric framework for the calcu-
lus of variations. In this theory the Euler-Lagrange operator is just a morphism in
an exact sequence of vector spaces (or sheaves of vector spaces). Geometric objects
like Lagrangians, momenta, Poincaré-Cartan forms, Helmholtz conditions, find a nice
interpretation in the vector spaces of the sequence.

We are concerned with some aspects of the theory of variational sequences in finite
order jet spaces (see [17, 18, 20] for the basics on this subject), as was mainly developed
in [14, 15] (see also [21, 22] for further developments). In this theory a subset of r-th
order Lagrangians is selected in a natural way by the geometric structure of finite
order jets. Namely, this distinguished subset is made by r—th order Lagrangians which
arc the horizontalization [14, 21, 22] of n—forms on the jet space of order 7 — 1. Such
Lagrangians are said to be special. ’

The aim of this paper is to study in detail the properties of special Lagrangians and
related geometric objects.

In the second section, we review the main results on the geometry of spaces of jets
J+Y of a fibration Y — X. We recall that the tangent space TJ,Y has a natural
splitting when pulled back to the higher order jet space J,,,Y. Namely, it splits into
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the (pullback of the) vertical subbundle plus a bundle which is fiberwise isomorphic to
TX. Then, we introduce horizontalization as the projection of forms on J, Y, or r—th

order forms, on forms on J, ;1Y having the highest exterior factor /k\T*X in their target
space. We then recall Krupka’s theory of finite order variational sequences [14]. A
variational sequence on J,Y is produced by taking the quotient of de Rham sequence
on J.Y with respect to a sequence defined through the kernel of horizontalization.
The commutative diagram built by the three sequences is said to be the (finite order)
variational bicomplex.

In the third section, we describe the horizontalization of k~forms, with k£ < n (here
n is the dimension of the base manifold). Horizontal n—forms of order r + 1 are usually
interpreted as (r + 1)-th order Lagrangians, [3, 5, 6, 9, 17, 19], but we prove that not
any horizontal form of order r + 1 is the horizontalization of some form of order r. We
see that the components of horizontalized (r + 1)-th order k-forms have polynomial
coefficients of degree k in the derivatives of order 7 + 1. Then, we define special
Lagrangians of order 7 + 1 to be n—forms coming from the horizontalization of a r-th
order n-form. We see that horizontalization provides an isomorphism of the quotient
space of n—forms in the variational sequence on J, Y with the space of (r +1)-th order
special Lagrangians.

The fourth section is devoted to Euler-Lagrange forms. We recall that Euler-
Lagrange forms are representatives of classes of (n + 1)—forms in the variational se-
quence [22], through horizontalization and a geometric version of Green’s formula [9)].
In particular, we are able to split any horizontalized (n + 1)-form, which we call gen-
erating form, into an Euler-Lagrange form (not necessarily induced by a Lagrangian)
and the horizontal differential (i.e. the total divergence) of a form, which is said to be
a momentum for the generating form. These momenta were first introduced in [22],
but here we study their properties in detail. Then, we prove that it is possible to
compute the Euler-Lagrange form for special Lagrangians both in the standard way
and by using the commutativity of the variational bicomplex. Finally, we describe the
polynomial structure of the Euler-Lagrange forms induced by special Lagrangians.

The fifth section contains a description of properties of momenta of generating
forms and their relationship with standard momenta of (special) Lagrangians. We
give a detailed analysis of their uniqueness properties. Namely, we prove that such
momenta are uniquely determined either for dim X = 1 or for generating forms of
order 2. We show that such a momentum can be naturally determined for generating
forms of order 3. We think that momenta for generating forms could play an important
role in multisymplectic theories (see [7, 8] and their rich bibliography). These theories
are a generalization of symplectic formalism to field theory. They all involve a closed
(n + 1)-form Q@ on J1Y as the main geometric object. An analysis of these theories
with the powerful tool of variational sequences has never been attempted. Indeed,
field equations can be easily recovered via the Euler-Lagrange form induced by the
generating form h(f2). Here, momentum should play an essential role. This will be the
subject of further studies. This is also a good motivation for introducing and studying
such objects.

In the sixth section, we give a characterization of Poincaré-Cartan forms for both
special and general Lagrangians. Namely, we prove that a form ¢ is a Poincaré-Cartan
form for a given Lagrangian if the Lagrangian is the horizontalization of 6, the vertical
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part of € is in the space of momenta and the momentum of the generating form h(d6)
can be chosen to be zero. Of course, this can also be taken as a definition of Poincaré-
Cartan form inspired by the variational sequences (and close to the theory of Lepagian
equivalents [13, 15, 16]).

In the last section, we will show a relevant example of special Lagrangian, namely
the Hilbert-Einstein Lagrangian. We provide also the related objects, such as the
Poincaré-Cartan form, the momentum, the Euler-Lagrange form and the momentum
of the natural generating form.

Here, manifolds and maps between manifolds are assumed to be C*.

2. JET SPACES AND VARIATIONAL SEQUENCES

In this section we recall some basic facts about jet spaces [2, 18, 20] and Krupka's
formulation of the finite order variational sequence [14, 22].

Our framework is a fibered manifold 7 : Y — X, with dimX = n and dimY =
n+m.

For r > 0 we are concerned with the r—jet space J.Y'; in particular, we set JoY =Y.
We recall the natural fiberings 7% : J,Y = J,Y,r > s, 7" : J,Y — X, and, among
these, the affine fiberings 77_;. We denote by V'Y the vector subbundle of the tangent
bundle TY of vectors on Y which are vertical with respect to the fibering 7.

Charts on Y adapted to 7 are denoted by (z*,y!). Greek indices A, 4, ... run from
1 to n and they label base coordinates, while Latin indices z,j,... run from 1 to
m and label fiber coordinates, unless otherwise specified. We denote by (9y, ;) and
(d*,d") the local bases of vector fields and 1-forms on Y induced by an adapted chart,
respectively.

We denote multi-indices of dimension n by the boldface Greek letters +,8. We
have v = (11,...,7,) with 0 < 7,, # =1,...,n; by an abuse of notation, we denote
by A the multi-index such that v, = 0if p # A, v, = 1 if p = A We also set
[Yl:=m++ 7 and yli=p! oyl ,

The charts induced on J,Y are denoted by (z ,yi,), with 0 < || < r; in particular,
we set y5 = y'. The local vector fields and forms of J,Y induced by the above
coordinates are denoted by (8') and (d), respectively.

In the theory of variational sequences a fundamental role is played by the contact
maps on jet spaces (see [2, 18, 20]). Namely, for r > 1, we consider the natural
complementary fibered morphisms over J,Y — J,_,Y

D:JY ;<{ TX -TJ,1Y, 9:4,Y x TJ, Y —-VJ._ Y,

Jr—l

with coordinate expressions, for 0 < |y| < r — 1, given by
D=d'®@D, =@ +¢,,0]), 9=9,80] = (d, - ,,d")®d] .
We have

(1) LY x T = (J Y x T*°X ) ®C,lY],
r—1

r1Y

where C,_1[Y] :=im J}.
Now, we introduce some distinguished sheaves of forms on jet spaces [22]. Let k > 0.
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K
1. For 7 > 0, we consider the standard sheaf A, of k-forms on J,Y. We have the
coordinate expression

— o1 T 1 i A A
a—'ailmih *\h+l~--'\kd37, /\.../\(ﬁ;‘h/\d ht1 /\..-Ad k.

k k
2. For 0 < s < r, we consider the sheaves H, ;) and H, of horizontal forms, i.e. of
local fibered morphisms over J,Y — J,Y and J,Y — X of the type, respectively,

k
a: LY 5 AT°LY  and ALY - AT'X;

in coordinates A = Ay, 5, dM A ... A .
k k
3. Furthermore, we consider the subsheaf H” C H, of local fibered morphisms

k
a € H, such that « is a polynomial fibered morphism over J,_1Y — X of degree
k. In coordinates, the components Ay, », are polynomials in yfy of degree k,
where |y| = r.

k k
4. For 0 < s < r, we consider the subsheaf C, ) C H(yq) of contact forms, i.e. of
local fibered morphisms over J,Y — J,Y of the type

k * k
a: Y = AC,[Y] C AT* LY,

k k k
and the subsheaf C, C C(;41,) of local fibered morphisms o € C(;41,) such that
U . . P
o= /p\ﬂjﬂo&, where & is a section of the fibration J,,Y xy AV*LY = J .Y
Jr

which projects down onto J,Y .

The fibered splitting (1) yields the sheaf splitting
k ko !
(2) H(r-}»l,r) = $l=0 c (r+1,r) A Hr+l

k

[20, 22]. We set h to be the restriction to A, of the projection of the above splitting
on the term with the highest degree of the horizontal factor. We set also v to be the
complementary projection v:=id —h. We say h to be the horizontalization of forms
on jet spaces.

The splitting (1) induces also a decomposition of the exterior differential on Y,
(r7*)*od = dy + dy, where dy and dy are defined to be the horizontal and the
vertical differential [20].

~ We recall now Krupka’s variational sequence on finite order jet spaces [14].
Let us denote by dker h the sheaf generated by the presheaf d ker h (see [23]). We set

*

O, := kerh + dker h. In [14] it is proved that the following diagram is commutative
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and that its rows and columns are exact:

0 0 0 0 0 0
|
0 0 0 é,- d ér d d ér d 0 -0
J
0——R—wh S p LR 4 4 f A4 4y
0 R—h A8 848 8 S—“Jf\,/é,i’-'il’,-i. L)
|
0

0 0 0 0 0
The top row of the above diagram is said to be the r—th order contact sequence and
the bottom row is said to be the r—th order variational sequence associated with the
fibered manifold Y — X (see [14, 22] for the relationship with calculus of variations).
The variational sequence can be read through some intrinsic isomorphisms of quo-
tient sheaves with sheaves of forms on jets [22]. This shows the connection of the
variational sequence with the geometric formulations of the calculus of variations
[3,5,6,9, 17, 19]. Here, we are concerned with the columns of n and n + 1 forms.

3. SPECIAL LAGRANGIANS

In this section, we introduce special Lagrangians as distinguished representatives

n n
of equivalence classes in A,/©,. More precisely, this representative will be obtained
through horizontalization.

For k < n, let us set
k. k
Hyp i =h(A).

k
We say H", | to be the sheaf of special horizontal forms of order r + 1.
Special horizontal k~forms are k-th degree polynomial in higher order derivatives,
k k k
ie. Hh  C HE,,. In fact, if a € A,, then
h(a) = yfrlﬁ»\x .. .yf,"hh\ha;’l{:f;:h)‘h*l,,_,\kd)“ A Nd*,

with 0 < h < k.

k
Remark 3.1. The sheaf ", admits the following characterization [22]: a section

k k k
a € HF,| is a section of the subsheaf !, if and only if there exists a section 3 € A,
such that

(43:0)' B = (Jr10)"a
for each sectionoc : X - Y.
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k
If dim X = 1 then the inclusion H,H C HF,, is an equality. In fact, in this case
the above coordinate expression turns out to be the general coordinate expression for

1
a section of HF, ;.

k k
If dim X # 1, then the inclusion H? , C HF,, is not an equality, in general, due
to the above characterization. We can check it via the following example. Consider

1 .

a l1-form B € Ao. Then we have the coordinate expressions 8 = f\d* + 8,d*, h(B) =
. 1 .
(Br+yiBi)d*. If a € HE, then we have the coordinate expression o = (o +y}e/))d .

1
It is evident that, in general, there does not exist § € A, such that A(8) = a.

Let us recall that, according to the standard definition, an r—th order Lagrangian is
defined to be a form A € H, [3, 5, 6, 9, 17, 19].

The horizontalization induces a natural sheaf isomorphism between A ./ @ and ’H
This motivates the following definition.

T+1°

n
Definition 3.2. We say forms in H* , to be special Lagrangians of order r + 1.

We also say a Lagrangian A\ € 7-{ to be general if it is not spec1al Eqmvalentl\ A
is general either if it is not the horizontalization of a form in Ar norif A¢g ’H"

Remark 3.3. Special Lagrangians of order r + 1 differs from both general and poly-
nomial Lagrangians of order r + 1 for one essential feature: they come from a form in

n
A, through horizontalization.

4. EULER-LAGRANGE FORMS AND SPECIAL LAGRANGIANS

Here we describe the properties of Euler-Lagrange forms induced by special La-
grangians. We see that any Euler-Lagrange form (even not induced by a Lagrangian)
is obtained from a horizontalized (n + 1)-form by adding a suitable form which is an
exact horizontal differential. The horizontalized (n+1)-form is said to be a generating
form, while a (horizontal) potential of the exact form is said to be a momentum for
the Euler-Lagrange form. Then, we prove that it is possible to compute the Euler-
Lagrange form for special Lagrangians both in the standard way and by using the
commutativity of the variational bicomplex. Finally, we describe the structure of
Euler-Lagrange forms of special Lagrangians.

The horizontalization induces the natural injective sheaf morphism
n +1 n+1 1 n —
( +/ © ) - (C, A?—Lf+1> /h(dkerh) : [a] = [h(e)].

- 1 n-1
Then, it can be proved that h(dkerh) C dy(C, A H*,)) [22]. So, we can use KoldF’s
geometric version of Green’s formula to provide an isomorphism of the above quotient

1 n
sheaf with a sheaf of forms on jet spaces. Namely, Let us consider h(a) € Cr A HE,;
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such a form is said to be a generating form. It is proved in [9] that for any generating
form h(c) then there is a unique pair of sheaf morphisms

1 n 1 n
3) Ena) € Cro) AHbprr  Fhio) € Clarg—n) A H3,
such that h(a) = Eh(a) + Fh(a) and Fh(a) is locally of the form Fh(a) = dyph(a), with

1 n—1
Phia) € Cor—1r-y N H Q,. Note that a global section py(a) such that Fhe) = dyph(a)
always exists [2, 3, 5, 9], essentially due to the fact that dg has zero cohomology when
restricted on certain subsequences (see (1] for a deeper discussion).

n+1
Definition 4.1. Let o € A ,. Then any form pp(y is said to be a momentum of the
generating form h(a).

Notice that we are able to consider momentum also for Euler-Lagrange forms which
are not variational, i.e. which do not come from any Lagrangian.

Remark 4.2. We think that momenta of this kind could play an important role in the
study of multisymplectic theories (see [7, 8] and their rich bibliography). These theories
are a generalization of symplectic formalism to field theory and all of them involve a
closed (n + 1)-form Q on J;Y as the main geometric object. An analysis of these
theories with the powerful tool of variational sequences has never been attempted.
Indeed, field equations can be easily recovered via the Euler-Lagrange form induced
by the generating form h(2). Here, momentum could play an essential role.

The above yields [22] the sheaf isomorphism
1 n - n+l
(4) (c, A ?i?H) /h(@kerR) =V, : [h(@)] = B,

n+l 1 n 1 n—-1 1 n .
where V ,:= (C, A ’HfH +dy(Corp—ty A Hor) ) N [ Ciarpro) A Horsr |- Tt is now
clear that generating forms of order r + 1 provide all Euler-Lagrange forms in the
quotient space of (n + 1)-forms in the variational sequence of order 7.

Let us recall the standard definition of Euler-Lagrange form and momentum for a

Lagrangian A € H, 2, 3, 5, 9, 17]. We apply (3) to obtain d)\ = Ey\ + dgpgy for any
choice of pgy. We say

- Egy to be the Euler-Lagrange form of the Lagrangian A;

- pax to be a momentum of the Lagrangian A.

The momentum of a Lagrangian is uniquely defined only in some special cases
[2, 3, 5, 9). Namely, either if dimX = 1 or if » = 1. If r = 2 then we are able to
naturally determine pgy through a further assumption [9]. If r = 3 then there does not
exist, in the general situation, a natural pgy [10]. Anyway, an intrinsic choice of pyy is
always possible [9].

We show that the operator £, of the variational sequence associates to any La-
grangian its Euler-Lagrange form through the above isomorphism (4).

Proposition 4.3. Let A € 77-Ll£'+1 and B € K, such that h(B) = A. Then we have
gn(/\) = Eh(dﬁ)- MOTGO'UC’I‘, Eh(dﬁ) = Ed)‘ .
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Proof. By the above decomposition formula, h(df) = Eng) + duprs) for any choice
of pn(¢p). But the commutativity of the diagram

n d n+1
A, A,
n &, nil
Hy vV,

yields £,(A) = Epag). As for the second result, we consider A as being a form \ € K,H.
In this case, £,(A) = E4x. By the inclusion of the r—th variational bicomplex into the
(r +1)-th one [14, 22], we obtain Ej,js) = Eg. ]

n
If A € H, is general, then the form Eyy is defined on J5,Y, and has a peculiar
structure with respect to the derivative coordinates of order greater than r. In fact, if
we assign to the variables g, with |y| = 7 + s the weight s, then it is easily seen that
Eyy is a polynomial with weighted degree r with respect to yf,, with |y| > r [12].

Corollary 4.4. If A € H, is special, then the form E, is defined on Jo,_1 Y, and the
coefficients of the polynomials in Eqy are polynomials of (standard) degree n + 1 with
respect to the coordinates yi, with |y| =7 +1.

5. MOMENTUM AND SPECIAL LAGRANGIANS
Now, we describe general properties of momentum for generating forms h(a) €

(13, A 7':l£‘ ,1- Then, we see the relationship with momenta for special Lagrangians.

We recall the coordinate expression h(a) = d?t?fy A w, where @] are polynomials of
(standard) degree n 4 1 with respect to the coordinates y?, with |y| = r + 1, with
coefficients the components of a.

As we already said, global momenta py(q) for any generating form h(c) exist. This is
essentially due to the fact that dy has zero cohomology. A proof of this can be found
in an early work by Kol4rf (see references in [9]). See also [1] for a cohomological proof.

Then, we check uniqueness properties of py(,). Of course, if dim X = 1 then pp(a)
is unique. This is because dy ph) = 0 implies pp) = 0, as it is easily seen in
coordinates.

Remark 5.1. There exists a natural sheaf morphism [10, 19, 20, 22]
1 n 1 n-—1
p: C(.,.)l) AH, > C(r'o) ANH,.

1 n . .
If ¢ € C(y,1) A'H, has the coordinate expression ¢ = ¢; 9' Aw + #2 9% Aw, then we have
the coordinate expression py = ¢} 9 A wj.

n
Theorem 5.2. (Uniqueness I). Let & € A;. Then, the momentum puy of h(a) is
unique. We have the coordinate expression

Ph(a) = 5(2\191. Awy .
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Proof. In fact, we deduce the above coordinate expression from (3). Then, it is clear
that py(,) is defined up a n—form whose horizontal differential vanish. It is easy to see
in coordinates that such a form must be zero. O

n
"Remark 5.3. It is easy to verify that if we start with @ € Ay we obtain h(a) €

1 n
C(31) A H}, so h(a) is not in the domain of p.

In the case 7 = 2 there is not a unique choice of momentum for the generating form
h(a). But we are able to choose it in a natural way.

Remark 5.4. There exists a natural sheaf morphism [10, 22]
1 n—1 1 n-2
SZC(T|1)/\ H, _)C(T,O)A H,.

1 n-1 . :
If p € Ciray A H , has the coordinate expression p = p;* 9 Aw, +p}* ¥y Aw,, then we
have the coordinate expression s(p) = p* 9 A wy,.

n
Theorem 5.5. (Uniqueness II). Let o € Ay. Then, there exists a unique momentum
Dria) Of h(a) such that s(pa(a)) = 0. We have the coordinate ezpression

Phi) = (6] — D &) 0 Awy + &0 0% Awy.

Proof. Suppose that pyas = p}* A wy + pg\“ﬁf‘ A wx. Then s(ppe)) = 0 yields

p;\“ = —pf'\. By (3) one obtains the above ps(4s) as the unique momentum fulfilling
the above requirement. O

Remark 5.6. It is easy to verify that if we start with h(a) € A; then we obtain
1 n 1 n
h(a) € C(qz) A A, hence pp(ay € Cs.2) A HE, s0 that pe is not in the domain of s.

Remark 5.7. The reader could have realized that the above proofs go in the same
way as in the case of general Lagrangians A [9]. The difference is that here we used
generating forms h(ca) instead. This means that, even if results refer to orders 1 and
2 as in the case of Lagrangians, generating forms are of order 2 and 3, respectively.

Now, we deal with the interplay between the two kind of momenta that we in-
troduced: momenta of (special) Lagrangians and momenta of generating forms. Let

n n
A € H!,, be a special Lagrangian. Then, there exists § € A, such that k(8) = X. So,
we can consider the generating form h(df3) and evaluate its momentum py(4g). It is
natural to ask the relationship between the momentum pg, of A and the momentum
Pap) of h(dB).
First of all, we note that § is not unique, hence all uniqueness results referring to
Pr(¢p) that we evaluated above cannot be related to A.

Theorem 5.8. We have h(dB) = h(dn v(B)) + d), hence the momenta puag) and pgx
can be chosen to be equal if and only if h(dg v(B)) = 0.
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Proof. In fact,

h(dp) = h((dr + dv)(X +v(8)))
= h(dr v(B) + dv A+ dv v(B))
= h(dg v(B)) +dv A,

where, in this case, dyA = dA.

n n
Corollary 5.9. Let A € H, C H", | be a general Lagrangian. Then, the momenta
Pr(ag) and pax can be chosen to be equal.

Proof. In fact, in this case 8 = A hence v(3) = 0 and we can choose phg) = par. O

6. POINCARE-CARTAN FORMS AND SPECIAL LAGRANGIANS

Here, we give a characterization of Poincaré-Cartan forms in the framework of
variational sequences. This characterization is inspired by and formulated through
special (r+1)-th order Lagrangians, but obviously it holds also for general Lagrangians
of any order.

We recall that, given a Lagrangian A € ”:lr, we define the form 0y := X +pyy € er_l
to be a Poincaré-Cartan form [2, 3, 5, 9, 17, 19, 20]. Such a definition is motivated
by the fact that the differential of the Poincaré-Cartan form splits into the sum of the
Euler-Lagrange form for A plus a contact form, namely df) = Ey4x+dypgy. Uniqueness
consideration for the Poincaré-Cartan form are the same as momentum (3).

Our characterization of Poincaré-Cartan forms is inspired by the fact that we can
choose zero momentum for the generating form h(d6,)!

Theorem 6.1. Let X € ’}nif“ be a special Lagrangian. Then there exists a unique
class of forms 0 € Xgr fulfilling
1-h(8)=2X;
1 n—1
2 - ’U(e) € Cor N H or;
8 - h(df) = Enag), or we can choose zero momentum for the generating form h(df).
Namely, 6 = 6,.

Proof. In fact, requirements 1 and 2 imply that 8 should be of the form § = A + p,
1 n-1
with p € Co, A H 5. Now,
h(df) = h(dup) + dvA = h(dup) + Eax — dpax

But h(df) = Exs) = Eax due to proposition 4.3. Moreover, requirement 2 implies

h(dyp) = dyp. Summing up, dy(p — par) = 0, hence p is also a momentum for A.
Conversely, it is trivial to see that Poincaré-Cartan forms fulfill the requirements of

the theorem. 0O

Remark 6.2. We would like to justify the requirements of the above theorem. The
first requirement is obviously necessary. The second requirement is a requirement
of ‘minimality’ of the vertical part of § with respect to the splitting 2. The third
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requirement is inspired by the main property of Poincaré-Cartan forms that we recalled
at the beginning of the section.

Remark 6.3. Of course, the requirements of the above theorem could be taken as a
definition of Poincaré-Cartan form naturally provided by variational sequences. This
in the same spirit as definitions of Lagrangians, Euler-Lagrange forms and momenta
in the above framework. Moreover, we stress that the structure of the variational
sequence, via Proposition 4.3, characterizes the Poincaré-Cartan form as a Lepagean
equivalent of A (see e.g. [13, 15, 16]). The last requirement of the above theorem
explicitely expresses that the generating form of the Poincaré-Cartan form coincides
with the associated Euler-Lagrange form.

7. THE HILBERT-EINSTEIN LAGRANGIAN

In this brief section we show an important and simple example of special Lagrangian,
namely the Hilbert-Einstein Lagrangian. We also derive all related geometric objects
like the momentum of the Hilbert-Einstein Lagrangian, its Euler-Lagrange form and
the momentum of the Euler-Lagrange form.

Let dimX = 4 and X be orientable. Let Lor(X) be the bundle of Lorenzian
metrics on X (provided that it exists). Local fibered coordinates on Jo(Lor(X)) are
(I’\; Guvy Guv,as g/tu,ap)-

4

The Hilbert-Einstein Lagrangian is the form Ayg € #H; defined by Ayp = Lygw,
were Lyg = r./g. Here r : Jo(Lor(X)) — R is the function such that, for any Lorenz
metric g, we have r o jog = s, being s the scalar curvature associated with ¢, and g is
the determinant of g.

The function Lyg is a linear function in the second derivatives of ¢g. In fact, let us
set GOPEY 1= goeghT 4 g@vghe — 29%Bg¢Y; then we have [4]

1 v
r= -2-G°"” (9evap + g ThsT2) -

4
We can prove even more. Indeed, \yz € H%. In fact, the momentum for the second
order Lagrangian Ay (in the sense of [9]) turns out to be [4]

l v
Pans = 5 (G*P1g,, 0" (ThSTY,) — Dp(G M /g)) Dy A +

1
50*"“” V3o Ay,

and the Poincaré—Cartan form

1
Orue = EGaﬂqguuFZﬂF:'v Vaw +
1
(G190 (ThT%) - DG /@) B A +
1
EGMW V90 AWy

4
Of course, 0, € A;. Moreover, a direct computation shows that
h(@;\”) - )‘HE .
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So, Aug is a special Lagrangian (r = 1).
In view of the previous results, its Euler-Lagrange form should be an element

4
En,: € é(g,o) A H3. But, due to a property of Ayg [4], we have Eyy,, € 5(210) A ’;{2.
Of course, a direct computation shows that Ey, . = G:=R - % s g, R being the Ricci
tensor of the metric g.

Another important consideration is that we can also compute Eyy,, , through propo-
sition 4.3, namely as Egy, . = Epp). In this case, we have a natural candidate of 3,

4
namely we can take § = 6, € A;. So,
dOryg = Eargg + dvParyp

(see the above section), which yields the natural generating form h(df,.) = Eg,, =
Eh(dok”)- So, by theorem 5.2, the unique momentum of the generating form h(df,,, )
is the zero form. This very peculiar behaviour is due to the geometric structure of
general relativity. It is also an example of a special Lagrangian with a non trivial
momentum and whose momentum of the natural generating form vanishes.
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