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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
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ON A CLASS OF POLYNOMIAL LAGRANGIANS 

MARCELLA PALESE* AND RAFFAELE VITOLO 

ABSTRACT. In the framework of finite order variational sequences a new class of 
Lagrangians arises, namely, special Lagrangians. These Lagrangians are the hori-
zontalization of forms on a jet space of lower order. We describe their properties 
together with properties of related objects, such as Poincare^-Cartan and Euler-
Lagrange forms, momenta and momenta of generating forms, a new geometric object 
arising in variational sequences. Finally, we provide a simple but important example 
of special Lagrangian, namely the Hilbert-Einstein Lagrangian. 

1. INTRODUCTION 

The theory of variational sequences provides a geometric framework for the calcu­
lus of variations. In this theory the Euler-Lagrange operator is just a morphism in 
an exact sequence of vector spaces (or sheaves of vector spaces). Geometric objects 
like Lagrangians, momenta, Poincare-Cartan forms, Helmholtz conditions, find a nice 
interpretation in the vector spaces of the sequence. 

WTe are concerned with some aspects of the theory of variational sequences in finite 
order jet spaces (see [17, 18, 20] for the basics on this subject), as was mainly developed 
in [14, 15] (see also [21, 22] for further developments). In this theory a subset of r-th 
order Lagrangians is selected in a natural way by the geometric structure of finite 
order jets. Namely, this distinguished subset is made by r-th order Lagrangians which 
are the horizontalization [14, 21, 22] of n-forms on the jet space of order r - 1. Such 
Lagrangians are said to be special 

The aim of this paper is to study in detail the properties of special Lagrangians and 
related geometric objects. 

In the second section, we review the main results on the geometry of spaces of jets 
JrY of a fibration Y —> X. We recall that the tangent space TJrY has a natural 
splitting when pulled back to the higher order jet space Jr+i^V- Namely, it splits into 
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the (pullback of the) vertical subbundle plus a bundle which is fiberwise isomorphic to 
TX. Then, we introduce horizontalization as the projection of forms on JrY, or r-th 

k 

order forms, on forms on Jr+1 Y having the highest exterior factor AT*X in their target 
space. We then recall Krupka's theory of finite order variational sequences [14]. A 
variational sequence on JrY is produced by taking the quotient of de Rham sequence 
on JrY with respect to a sequence defined through the kernel of horizontalization. 
The commutative diagram built by the three sequences is said to be the (finite order) 
variational bicomplex. 

In the third section, we describe the horizontalization of k-forms, with k < n (here 
n is the dimension of the base manifold). Horizontal n-forms of order r +1 are usually 
interpreted as (r + l)-th order Lagrangians, [3, 5, 6, 9, 17, 19], but we prove that not 
any horizontal form of order r + 1 is the horizontalization of some form of order r. We 
see that the components of horizontalized (r + l)-th order k-forms have polynomial 
coefficients of degree k in the derivatives of order r + 1. Then, we define special 
Lagrangians of order r + 1 to be n-forms coming from the horizontalization of a r-th 
order n-form. We see that horizontalization provides an isomorphism of the quotient 
space of n-forms in the variational sequence on JrY with the space of (r + l)-th order 
special Lagrangians. 

The fourth section is devoted to Euler-Lagrange forms. We recall that Euler-
Lagrange forms are representatives of classes of (n + l)-forms in the variational se­
quence [22], through horizontalization and a geometric version of Green's formula [9]. 
In particular, we are able to split any horizontalized (n + l)-form, which we call gen­
erating form, into an Euler-Lagrange form (not necessarily induced by a Lagrangian) 
and the horizontal differential (i.e. the total divergence) of a form, which is said to be 
a momentum for the generating form, These momenta were first introduced in [22], 
but here we study their properties in detail. Then, we prove that it is possible to 
compute the Euler-Lagrange form for special Lagrangians both in the standard way 
and by using the commutativity of the variational bicomplex. Finally, we describe the 
polynomial structure of the Euler-Lagrange forms induced by special Lagrangians. 

The fifth section contains a description of properties of momenta of generating 
forms and their relationship with standard momenta of (special) Lagrangians. We 
give a detailed analysis of their uniqueness properties. Namely, we prove that such 
momenta are uniquely determined either for dimX = 1 or for generating forms of 
order 2. We show that such a momentum can be naturally determined for generating 
forms of order 3. We think that momenta for generating forms could play an important 
role in multisymplectic theories (see [7, 8] and their rich bibliography). These theories 
are a generalization of symplectic formalism to field theory They all involve a closed 
(n + l)-form fi on ^ Y as the main geometric object. An analysis of these theories 
with the powerful tool of variational sequences has never been attempted. Indeed, 
field equations can be easily recovered via the Euler-Lagrange form induced by the 
generating form h(Q). Here, momentum should play an essential role. This will be the 
subject of further studies. This is also a good motivation for introducing and studying 
such objects. 

In the sixth section, we give a characterization of Poincare-Cartan forms for both 
special and general Lagrangians. Namely we prove that a form 0 is a Poincare-Cartan 
form for a given Lagrangian if the Lagrangian is the horizontalization of 0, the vertical 
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part of 6 is in the space of momenta and the momentum of the generating form h{dO) 
can be chosen to be zero. Of course, this can also be taken as a definition of Poincare-
Cartan form inspired by the variational sequences (and close to the theory of Lepagian 
equivalents [13, 15, 16]). 

In the last section, we will show a relevant example of special Lagrangian, namely 
the Hilbert-Einstein Lagrangian. We provide also the related objects, such as the 
Poincare-Cartan form, the momentum, the Euler-Lagrange form and the momentum 
of the natural generating form. 

Here, manifolds and maps between manifolds are assumed to be C°°. 

2. J E T SPACES AND VARIATIONAL SEQUENCES 

In this section we recall some basic facts about jet spaces [2, 18, 20] and Krupka's 
formulation of the finite order variational sequence [14, 22]. 

Our framework is a fibered manifold TT : Y —¥ __", with dim_Y = n and dim Y = 
n-fm. 

For r > 0 we are concerned with the r-jet space JrY\ in particular, we set J0Y = Y. 
We recall the natural fiberings 7r£ : JrY -» JSY, r > s, -KT : JrY -> X, and, among 
these, the affine fiberings 7Tr_l. We denote by VY the vector subbundle of the tangent 
bundle TY of vectors on Y wrhich are vertical with respect to the fibering IT. 

Charts on Y adapted to n are denoted by ( r \ yl). Greek indices A, /z,... run from 
1 to n and they label base coordinates, while Latin indices i, j , . . . run from 1 to 
m and label fiber coordinates, unless otherwise specified. We denote by {d\, di) and 
{dx

)d
l) the local bases of vector fields and 1-forms on Y induced by an adapted chart, 

respectively. 
We denote multi-indices of dimension n by the boldface Greek letters 7,6. We 

have 7 = (71, . . . , 7n) with 0 < 7M, \i — 1, . . . , n; by an abuse of notation, we denote 
by A the multi-index such that 7^ = 0 if Lt •=/=• A, 7M = 1 if Li = A. We also set 
l7l :=7i + - " + 7n and7.:=71! . . .7„! . 

The charts induced on JrY are denoted by {xx
yyl/)i with 0 < I7I < r; in particular, 

we set u0 = yl. The local vector fields and forms of JrY induced by the above 
coordinates are denoted by {&?) and (d^), respectively 

In the theory of variational sequences a fundamental role is played by the contact 
maps on jet spaces (see [2, 18, 20]). Namely, for r > 1, we consider the natural 
complementary fibered morphisms over JrY -» Jr-\Y 

V:JrY xTX --tTJ^Y, d:JrY x TJr.{Y -* VJr-XY, 
X Jr-lY 

with coordinate expressions, for 0 < |-y| < r — 1, given by 

v = dx®vx = dx®{dx + y^xd]), 1? = d^d] = ( ^ - ^+xd
x)®d]. 

We have 

(1) JTY x TJT^Y _ (J r Y х Г Х ) ф С м [ У ] ; 

Jr-гУ \ Jr-гУ ) 

where C r _ i [ y ] : = i m ^ . 
Now, we introduce some distinguished sheaves of forms on jet spaces [22]. Let k > 0. 
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1. For r > 0, we consider the standard sheaf Ar of k-forms on JrY. We have the 
coordinate expression 

<* = <1.:.i?Aft+1...A, < A . . . A d%h A dx»> A . . . A dA* . 

k k 

2. For 0 < 5 < r, we consider the sheaves H^^) and %r of horizontal forms, i.e. of 
local fibered morphisms over JrY —> JSY and JrY -> X of the type, respectively, 

a : Jry -> AT*J5y and A : JTY -> A T X ; 

in coordinates A = A;^..^^1 A . . . A dXk. 
k k 

3. Furthermore, we consider the subsheaf %f C %r of local fibered morphisms 
k 

a G Hr such that a is a polynomial fibered morphism over Jr_iy —> X of degree 
k. In coordinates, the components \\lm..\n are polynomials in y^ of degree k, 
where |-y| = r. 

k k 

4. For 0 < s < r, we consider the subsheaf C(r>5) C ri(r,s) of contact forms, i.e. of 
local fibered morphisms over JrY —> JSY of the type 

a : Jry -> AC5[y] C A r v s y , 

k k k 

and the subsheaf Cr C C(r+i,r) of local fibered morphisms a € C(r+i.r) such that 
v v 

a = At?!, nod, where a is a section of the fibration Jr+iy x AV*Jry -> Jr+iy 
JrY 

which projects down onto JrY. 

The fibered splitting (1) yields the sheaf splitting 
k k-l i 

(2) Hir-rlf) — 0f=O C (r+l,r) ^ ^r+1 

A: 

[20, 22]. We set h to be the restriction to Ar of the projection of the above splitting 
on the term with the highest degree of the horizontal factor. We set also v to be the 
complementary projection v:=\d—h. We say h to be the horizontalization of forms 
on jet spaces. 

The splitting (1) induces also a decomposition of the exterior differential on Y, 
(IT̂ "1"1)* o d = du -f- dy, where djj and dy are defined to be the horizontal and the 
vertical differential [20]. 

We recall now Krupka's variational sequence on finite order jet spaces [14]. 
Let us denote by dkerh the sheaf generated by the presheaf dker h (see [23]). Wre set 

0 r := kerh + dkerh. In [14] it is proved that the following diagram is commutative 
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and that its rows and columns are exact: 
0 0 0 0 

n d I d 
<ar • tír < 

d A 

—-e r 

E-
o 
Л r 

d \ 

— л r 

d A 
• A , 

d i 
• Л Г ' 

d '+i d 
- * A r — • 

Ar - 1 A r /0 r - i A r / e r • 
£'-l A /A £' 'A1 d 

. — A r / e r — • A r — • 

. . . - 0 

U 

d 
- 0 

0 0 0 0 0 0 
The top row of the above diagram is said to be the r-th order contact sequence and 

the bottom row is said to be the r-th order variational sequence associated with the 
fibered manifold Y -> X (see [14, 22] for the relationship with calculus of variations). 

The variational sequence can be read through some intrinsic isomorphisms of quo­
tient sheaves with sheaves of forms on jets [22]. This shows the connection of the 
variational sequence with the geometric formulations of the calculus of variations 
[3, 5, 6, 9, 17, 19]. Here, we are concerned with the columns of n and n + 1 forms. 

3. SPECIAL LAGRANCIANS 

In this section, we introduce special Lagrangians as distinguished representatives 
n n 

of equivalence classes in A r / 6 r . More precisely, this representative will be obtained 
through horizontalization. 

For k < n, let us set 

k+x--=h{k). 
k 

We say ?{{.+1 to be the sheaf of special horizontal forms of order r + 1. 
Special horizontal k-forms are k-th degree polynomial in higher order derivatives, 

k k k 
i.e. HJ.-+1 C ?£f+1. In fact, if a € Arj then 

h(a) = y*+Al •.. y ^ a ? : ^ A k + , . ^ d A l A . . . A d \ 

with 0 < h < k. 
k 

Remark 3.1. The sheaf ?^ + 1 admits the following characterization [22]: a section 
k k k 

a € Wr+i is a section of the subsheaf Ti^i ^ a n d only if there exists a section /? € Ar 

such that 

Uт°Yß = (jr+i<7)*a 

for each section a : X —> Y. 
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k k 

If dimX = 1 then the inclusion 7ih
+l C H^+\ is an equality In fact, in this case 

the above coordinate expression turns out to be the general coordinate expression for 
1 

a section of VJ^+v 
k k 

If dimX ^ 1, then the inclusion 7ih
+1 C 'Hr+1 is not an equality, in general, due 

to the above characterization. We can check it via the following example. Consider 
I 

a 1-form 0 e A0. Then we have the coordinate expressions /? — fi\dx -f- 0td
l, h((5) — 

((3\ + y\(3i)dx. If a € Hf, then we have the coordinate expression a = (a\ + y]lot,?\)dx. 
I 

It is evident that, in general, there does not exist /? E Ar such that h(/3) = a. 

Let us recall that, according to the standard definition, an r-th order Lagrangian is 

defined to be a form XeHr [3, 5, 6, 9, 17, 19]. 
n n n 

The horizontalization induces a natural sheaf isomorphism between A r / 0 r and 7i r+1. 
This motivates the following definition. 

n 

Definition 3.2. We say forms in 7^+1 t o be special Lagrangians of order r + 1. 
n 

We also say a Lagrangian A 6 %r to be general if it is not special. Equivalently, A 
n n 

is general either if it is not the horizontalization of a form in Ar_i, or if A £ 7ih. 
Remark 3.3. Special Lagrangians of order r + 1 differs from both general and poly­
nomial Lagrangians of order r + 1 for one essential feature: they come from a form in 
n 

Ar through horizontalization. 

4. EULER-LAGRANGE FORMS AND SPECIAL LAGRANGIANS 

Here we describe the properties of Euler-Lagrange forms induced by special La­
grangians. WTe see that any Euler-Lagrange form (even not induced by a Lagrangian) 
is obtained from a horizontalized (n 4- l)-form by adding a suitable form which is an 
exact horizontal differential. The horizontalized (n + l)-form is said to be a generating 
form, while a (horizontal) potential of the exact form is said to be a momentum for 
the Euler-Lagrange form. Then, we prove that it is possible to compute the Euler-
Lagrange form for special Lagrangians both in the standard way and by using the 
commutativity of the variational bicomplex. Finally we describe the structure of 
Euler-Lagrange forms of special Lagrangians. 

The horizontalization induces the natural injective sheaf morphism 

/ n+ l n+l \ / l n \ /  

( A r / 0 r J -> UrAHh
+l)/h(dkerh):[a]^[h(a)}. 

_ 

Then, it can be proved that h(dkexh) C dH(Cr A Ti r+1) [22]. So, we can use Kolaf's 
geometric version of Green's formula to provide an isomorphism of the above quotient 

1 n 

sheaf with a sheaf of forms on jet spaces. Namely Let us consider h(a) G Cr A Kr+1; 
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such a form is said to be a generating form. It is proved in [9] that for any generating 
form h(a) then there is a unique pair of sheaf morphisms 

1 n h l n h 
(3) Eh{a) £ C(2r,0) A 7-l2r+l > Eh(a) € C(2r,r-1) A H^ , 
such that h(a) — Eh{a) + Fh{a) and Fh{a) is locally of the form Fh{a) = dnPh(a), with 

1 n - l 

Ph(a) £ C(2r-i,r-i) A *H 2r- Note that a global section ph{a) such that Fh{a) = dHPh{a) 

always exists [2, 3, 5, 9], essentially due to the fact that dn has zero cohomology when 
restricted on certain subsequences (see [1] for a deeper discussion). 

n + l 

Definition 4.1. Let a £ A r. Then any form ph{a) is said to be a momentum of the 
generating form h(a). 

Notice that we are able to consider momentum also for Euler-Lagrange forms which 
are not variational, i.e. which do not come from any Lagrangian. 

Remark 4.2. We think that momenta of this kind could play an important role in the 
study of multisymplectic theories (see [7, 8] and their rich bibliography). These theories 
are a generalization of symplectic formalism to field theory and all of them involve a 
closed (n + l)-form Q on J\Y as the main geometric object. An analysis of these 
theories with the powerful tool of variational sequences has never been attempted. 
Indeed, field equations can be easily recovered via the Euler-Lagrange form induced 
by the generating form h(£l). Here, momentum could play an essential role. 

The above yields [22] the sheaf isomorphism 

/ i » . \ , n+1 

(4) (Cr A«J+1J /h(dkevh) -+ V r : [h(a)) ^ Eh{a), 

where *Vr := \Cr A ?fe+1 + dH(C{2T,r-i) A "H 2 r ) j H fc (2r+1,0) A # 2 r + 1 V It is now 

clear that generating forms of order r + 1 provide all Euler-Lagrange forms in the 
quotient space of (n + l)-forms in the variational sequence of order r. 

Let us recall the standard definition of Euler-Lagrange form and momentum for a 
n 

Lagrangian X € Hr [2, 3, 5, 9, 17]. We apply (3) to obtain dX = Ed\ + dHpd\ for any 
choice of pd\. We say 

- Ed\ to be the Euler-Lagrange form of the Lagrangian A; 
- pd\ to be a momentum of the Lagrangian A. 
The momentum of a Lagrangian is uniquely defined only in some special cases 

[2, 3, 5, 9]. Namely, either if dimX = 1 or if r = 1. If r = 2 then we are able to 
naturally determine pd\ through a further assumption [9]. If r = 3 then there does not 
exist, in the general situation, a natural pd\ [10]. Anyway, an intrinsic choice of pd\ is 
always possible [9]. 

We show that the operator £n of the variational sequence associates to any La­
grangian its Euler-Lagrange form through the above isomorphism (4). 

n n 

Proposition 4.3. Let X € 7^+1 and (3 E Ar such that h(/3) = A. Then we have 
£n(X) = Ehm. Moreover, Eh{dp) = EdX . 
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Proof. By the above decomposition formula, h{dff) = Eh(d/3)+dHPh(d0) for any choice 
°iPh(d0)- But the commutativity of the diagram 

n $ n+l 
Ar * A r 

n 
yields £n(X) = Eh(dj3)- As for the second result, we consider X as being a form A € Ar+i. 
In this case, £n(X) = Ed\. By the inclusion of the r-th variational bicomplex into the 
(r + l)-th one [14, 22], we obtain Eh^) = Ed\. D 

n 
If A G Hr is general, then the form Ed\ is defined on J2r-V, and has a peculiar 

structure with respect to the derivative coordinates of order greater than r. In fact, if 
we assign to the variables yl

y with I7I = r -f- s the weight s, then it is easily seen that 
Ed\ is a polynomial with weighted degree r with respect to yl, with I7I > r [12]. 

n 
Corollary 4.4. If X eHr is special, then the form Ed\ is defined on J2r-\Y, and the 
coefficients of the polynomials in Ed\ are polynomials of (standard) degree n + l with 
respect to the coordinates y^, with |—/| = r + 1. 

5. MOMENTUM AND SPECIAL LAGRANGIANS 

Now, we describe general properties of momentum for generating forms h(a) G 
1 n 
CT A Hj.+1. Then, we see the relationship with momenta for special Lagrangians. 

We recall the coordinate expression h(a) = aj^ A oj, where a] are polynomials of 
(standard) degree n + l with respect to the coordinates u^, with I7I = r + 1, with 
coefficients the components of a. 

As we already said, global momenta ph(a) for any generating form h(a) exist. This is 
essentially due to the fact that dH has zero cohomology. A proof of this can be found 
in an early work by Kolaf (see references in [9]). See also [1] for a cohomological proof. 

Then, we check uniqueness properties of ph(a). Of course, if dimX = 1 then ph(*) 
is unique. This is because dHPh(a) = 0 implies ph(a) = 0, as it is easily seen in 
coordinates. 

Remark 5.1. There exists a natural sheaf morphism [10, 19, 20, 22] 

p:C ( r>1)A?i r->C ( r io)An7Y r. 
I n . 

If <j> £ c(r,i) A Hr has the coordinate expression <j> = fc til A LJ + <f>f {)\ A CJ, then we have 
the coordinate expression p<p = <j)f d% A u\. 

n 
Theorem 5.2. (Uniqueness I). Let a € Ai. Then, the momentum ph(a) of h(a) is 
unique. We have the coordinate expression 

Ph(a) = Oii^ A LU\ . 
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Proof. In fact, we deduce the above coordinate expression from (3). Then, it is clear 
that ph(a) is defined up a n-form whose horizontal differential vanish. It is easy to see 
in coordinates that such a form must be zero. • 

n 
Remark 5.3. It is easy to verify that if we start with a G A2 we obtain h(a) G 
1 n 
£(3,i) A ^3? so h(a) is not in the domain of p. 

In the case T = 2 there is not a unique choice of momentum for the generating form 
h(a). But we are able to choose it in a natural way. 

Remark 5.4. There exists a natural sheaf morphism [10, 22] 

1 n - l 1 n - 2 

s : C(r,i) A r / r - > C(r>0) A % r . 

1 n-l 

If p G c(r,i) A H r has the coordinate expression p = p{
 M d% A u^ + p{ * fl\ A CJM, then we 

have the coordinate expression s(p) = p^ti1 A u\^. 
n 

Theorem 5.5. (Uniqueness II). Let a G A2. Then, there exists a unique momentum 
Ph(a) of h(a) such that s(ph(a)) = 0. We have the coordinate expression 

ph[a) = (ax - JVrA) ^A W A + of+A < A u\ . 

Proof. Suppose that Ph(dp) = Pi& A ux + p^d^ A u\. Then s(ph(a)) = 0 yields 
px^ = — pfA. By (3) one obtains the above Ph(d$) as the unique momentum fulfilling 
the above requirement. • 

n 
Remark 5.6. It is easy to verify that if we start with h(a) e A3 then we obtain 

I n I n 
h(a) e C(4,2) A Ti^y hence ph(a) G C(5,2) A %\, so that ph(a) is not in the domain of 5. 

Remark 5.7. The reader could have realized that the above proofs go in the same 
way as in the case of general Lagrangians A [9]. The difference is that here we used 
generating forms h(a) instead. This means that, even if results refer to orders 1 and 
2 as in the case of Lagrangians, generating forms are of order 2 and 3, respectively 

Now, we deal with the interplay between the two kind of momenta that we in­
troduced: momenta of (special) Lagrangians and momenta of generating forms. Let 

n n 

A G 'Hj.+i be a special Lagrangian. Then, there exists /? G Ar such that h((3) = A. So, 
we can consider the generating form h(d/3) and evaluate its momentum Ph(dp)- It is 
natural to ask the relationship between the momentum pd\ of A and the momentum 
Ph[d0) of h(d/3). 

First of all, we note that /? is not unique, hence all uniqueness results referring to 
Ph(d(5) that we evaluated above cannot be related to A. 

Theorem 5.8. We have h(d{3) = h(dn v(P)) + dX, hence the momenta Ph(d&) andpd\ 
can be chosen to be equal if and only if /i(dH v(fl)) = 0. 
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Proof. In fact, 

h(dp) = h((dH + dy)(\ + v(f3))) 

= h(dH v{/3) + dv\ + dv v{0)) 

= h(dHv(p)) + dv\, 

where, in this case, dy\ = d\. 

n n 

Corollary 5.9. Let A £ Hr C ^ + 1 be a general Lagrangian. Then, the momenta 
Ph{d0) and pd\ can be chosen to be equal. 

Proof. In fact, in this case /3 = \ hence v(f3) = 0 and we can choose Ph(d/3) = Pd\- ----

6. POINCARE-CARTAN FORMS AND SPECIAL LAGRANGIANS 

Here, we give a characterization of Poincare-Cartan forms in the framework of 
variational sequences. This characterization is inspired by and formulated through 
special (r+l)- th order Lagrangians, but obviously it holds also for general Lagrangians 
of any order. 

n n 

We recall that, given a Lagrangian A £ %r, we define the form 6\ := \ + pd\ £ A2T—I 

to be a Poincare-Cartan form [2, 3, 5, 9, 17, 19, 20]. Such a definition is motivated 
by the fact that the differential of the Poincare-Cartan form splits into the sum of the 
Euler-Lagrange form for A plus a contact form, namely d0\ = Ed\ + dvpdX. Uniqueness 
consideration for the Poincare-Cartan form are the same as momentum (3). 

Our characterization of Poincare-Cartan forms is inspired by the fact that we can 
choose zero momentum for the generating form h(d6\)\ 

n h Theorem 6.1. Let A £ %r+i be a special Lagrangian. Then there exists a unique 
n 

class of forms 0 £ A2r fulfilling 
1 - h(0) = A; 

2 -v(0) eC2rA
nH2r; 

3 - h(d0) = E^dQ), or we can choose zero momentum for the generating form h(d9). 

Namely, 0 = 8\. 

Proof. In fact, requirements 1 and 2 imply that 6 should be of the form 6 = A + p, 
1 n - l 

with p £ C2r A Ti 2r- Now, 
h(d6) = h(dHp) + dy\ = h(dHp) + EdX - dHpd\ 

But h(d0) = Fh(d0) = Ed\ due to proposition 4.3. Moreover, requirement 2 implies 
h(dHp) = dHp. Summing up, dH(p - pd\) = 0, hence p is also a momentum for A. 

Conversely, it is trivial to see that Poincare-Cartan forms fulfill the requirements of 
the theorem. D 

Remark 6.2. We would like to justify the requirements of the above theorem. The 
first requirement is obviously necessary The second requirement is a requirement 
of 'minimality' of the vertical part of 8 with respect to the splitting 2. The third 
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requirement is inspired by the main property of Poincare-Cartan forms that we recalled 
at the beginning of the section. 

Remark 6.3. Of course, the requirements of the above theorem could be taken as a 
definition of Poincare-Cartan form naturally provided by variational sequences. This 
in the same spirit as definitions of Lagrangians, Euler-Lagrange forms and momenta 
in the above framework. Moreover, we stress that the structure of the variational 
sequence, via Proposition 4.3, characterizes the Poincare-Cartan form as a Lepagean 
equivalent of A (see e.g. [13, 15, 16]). The last requirement of the above theorem 
explicitely expresses that the generating form of the Poincare-Cartan form coincides 
with the associated Euler-Lagrange form. 

7. T H E HILBERT-EINSTEIN LAGRANGIAN 

In this brief section we show an important and simple example of special Lagrangian, 
namely the Hilbert-Einstein Lagrangian. We also derive all related geometric objects 
like the momentum of the Hilbert-Einstein Lagrangian, its Euler-Lagrange form and 
the momentum of the Euler-Lagrange form. 

Let dimX = 4 and X be orientable. Let Lor(X) be the bundle of Lorenzian 
metrics on X (provided that it exists). Local fibered coordinates on J2(Lor(X)) are 
\% > 9fivi 9fiv,<T) 9tiv,apJ-

4 

The Hilbert-Einstein Lagrangian is the form XHE £ %2 defined by XHE = LI{Eu), 
were LHE = r y/§- Here r : J2(Lor(X)) —> R is the function such that, for any Lorenz 
metric g, we have r o j2g = s, being s the scalar curvature associated with g, and g is 
the determinant of g. 

The function LHE is a linear function in the second derivatives of g. In fact, let us 
set Gapel '=gaegpnf + gaV£ - 2sQV 7 ; then we have [4] 

4 

We can prove even more. Indeed, XHE € 7i2. In fact, the momentum for the second 
order Lagrangian XHE (in the sense of [9]) turns out to be [4] 

PA„£ = \ { G ^ g ^ ( r ^ r y - Vp(G^y/g)) i V A^A + 

and the Poincare-Cartan form 

*A„E = ^ e v v r 7 ^ + 
\ (Ga^g,vd^x ( I * , r g - Vp(G^y/g)) V A wx + 

G^y/gд^Aux. 

4 

Of course, 9\HE £ Ai. Moreover, a direct computation shows that 

M0AHB) = ^HE-
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So, XHE is a special Lagrangian (r = \). 
In view of the previous results, its Euler-Lagrange form should be an element 

1 4 1 4 
Ed\HE € C(2,o) A Uz. But, due to a property of XHE [4], we have Ed\HE € C(2)0) A U2. 
Of course, a direct computation shows that Ed\HE = G:=R-\sg, R being the Ricci 
tensor of the metric g. 

Another important consideration is that we can also compute Ed\HE through propo­
sition 4.3, namely as Ed\HE = F^d/,). In this case, we have a natural candidate of /?, 

4 

namely we can take (5 = 6\HE € Aj, So, 

d6\HE = Ed\HE + dvpd\HE 

(see the above section), which yields the natural generating form h(dO\HE) = Ed\HE = 
Eh{ddx )• So, by theorem 5.2, the unique momentum of the generating form h(dO\HE) 
is the zero form. This very peculiar behaviour is due to the geometric structure of 
general relativity It is also an example of a special Lagrangian with a non trivial 
momentum and whose momentum of the natural generating form vanishes. 

Acknowledgments. Thanks are due to Prof. I. Kolaf for useful discussions. The 
first author would like also to thank the Head of the Winter School Geometry and 
Physics, Prof. J. Vanzura, and the whole Organizing Committee, for the nice and 
stimulating stay in Srni. 
Commutative diagrams have been drawn by Paul Taylor's diagrams macro package. 

REFERENCES 

[1] R.J. Alonso, Decomposition of Higher Order Tangent Fields and Calculus of Variations, Proc. 
Diff. Geom. Appl. Satellite Conference of ICM in Berlin (Brno 98); I. Kolaf et al eds., Masaryk 
University in Brno (1999) 451-460. 

[2] M. Ferraris, Fibered connections and global Poincare-Cartan forms in higher-order calculus of 
variations, Proc. Diff. Geom. and Appl. (Nove Mesto na Morave, 1983); D. Krupka ed., J.E. 
Purkyne University (Brno, 1984) 61-91. 

[3] M. Ferraris, M. Francaviglia, On the Global Structure of Lagrangian and Hamiltonian Formalism 
in Higher Order Calculus of Variations, Proc. Int. Meet, on Geom. and Phys., Pitagora Editrice, 
Bologna, 1983, 12-15. 

[4] M. Francaviglia, Relativistic theories, Quaderni del G.N.F.M. of C.N.R., 1988; available at 
GNFM, v. S. Marta 13/A, 50139 Florence (Italy). 

[5] P. L. Garcia, J. Munoz, On the geometrical structure of higher order variational calculus, Proc. 
IUTAM-ISIMM Symp. on Modern Developments Anal. Mech., (Torino, 1982); S. Benenti, M. 
Francaviglia, A. Lichnerowicz eds., Tecnoprint (Bologna, 1983) 127-147. 

[6] P. L. Garcia, The Poincare-Cartan Invariant in the Calculus of Variations, Symposia Mathe­
matics 14 (1974), 219-246. 

[7] S. P. Hrabak, On a multisymplectic formulation of classical DRST symmetry for first order field 
theories, I and II; math-ph 9901012 and 9901013. 

[8] I. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, 
Rep. Math. Phys. 41 (1998) (1). 

[9] I. Kolaf, A geometrical version of the higher order hamilton formalism in fibred manifolds, J. 
Geom. Phys. 1 (1984) (2) 127-137. 

[10] I. Kolaf, Natural operators related with the variational calculus, Proc. Diff. Geom. Appl. (Opava, 
1992); O. Kowalski, D. Krupka eds., Silesian University (Opava, 1993) 461-472. 

[11] I. Kolaf, P. W. Michor, J. Slovak, Natural Operations in Differential Geometry, Springer-Verlag 
Berlin Heidelberg, (1993). 



ON A CLASS OF POLYNOMIAL LAGRANGIANS 159 

[12] I. Kolaf, M. Modugno, On the algebraic structure on the jet prolongations of fibred manifolds, 
Czech. Math. J. 40 (115), 1990. 

[13] D. Krupka, Some geometric aspects of variational problems in fibred manifolds, Folia Fac. Sci. 
Nat. UJEP Brunensis 14, J. E. Purkyne Univ. (Brno, 1973) 1-65. 

[14] D. Krupka, Variational sequences on finite order jet spaces, Proc. Diff. Geom. Appl. (Brno, 
1989); J. Janyska, D. Krupka eds., World Scientific (Singapore, 1990) 236-254. 

[15] D. Krupka, Topics in the calculus of variations: Finite order variational sequences, Proc. Diff. 
Geom. Appl. (Opava, 1992); O. Kowalski, D. Krupka eds., Silesian University, Opava (1993) 
473-495. 

[16] D. Krupka, Variational sequences and variational bicomplexes, Proc. VII Conf. Diff. Geom. Appl., 
Satellite Conf. of ICM in Berlin (Brno 1998); I. Kolaf et al. eds.; Masaryk University in Brno, 
1999, 525-531. 

[17] B.A. Kuperschmidt, Geometry of jet bundles and the structure of Lagrangian and Hamiltonian 
formalism, Lect. Notes in Math. 775: Geometric Methods in Mathematical Physics; Springer, 
Berlin (1980) 162-218. 

[18] L. Mangiarotti, M. Modugno, Fibered spaces, jet spaces and connections for field theories, Proc. 
Int. Meet, on Geom. and Phys., Pitagora Editrice (Bologna, 1983) 135-165. 

[19] L. Mangiarotti, M. Modugno, Some results on the calculus of variations on jet spaces, Ann. Inst. 
H. Poincare 39 (1983) (1) 29-43. 

[20] D.J. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press (Cambridge, 1989). 
[21] R. Vitolo, On different geometric formulations of Lagrangian formalism, Diff. Geom. and its 

Appl. 10 (1999) 225-255. 
[22] R. Vitolo, Finite order Lagrangian bicomplexes, Math. Proc. Cambridge Phyl. Soc. 125 (1) 

(1998) 321-333; see also h t t p : / / x x x . l a n l . g o v m hep-th/0001009. 
[23] R. O. Wells, Differential Analysis on Complex Manifolds, G T M 65, Springer-Verlag (Berlin, 

1980). 

M. PALESE 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORINO 

VIA C. ALBERTO 10, 10123 TORINO, ITALY 

E-mail: palese@dm.unito. i t 

R. VlTOLO 

DEPARTMENT OF MATHEMATICS " E . D E GlORGl", UNIVERSITY OF LECCE 

VIA ARNESANO, 73100 LECCE, ITALY 

E-mail: Raffaele . VitoloQunile. i t 


