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SPECIAL KAEHLER MANIFOLDS: A SURVEY

VICENTE CORTES

ABSTRACT. This is a survey of recent contributions to the area of special Kaehler
geometry. It is based on lectures given at the 21st Winter School on Geometry and
Physics held in Srni in January 2001.

1. REMARKABLE FEATURES OF SPECIAL KAEHLER MANIFOLDS

A (pseudo-) Kaehler manifold (M,J,g) is a differentiable manifold endowed with a
complex structure J and a (pseudo-) Riemannian metric g such that
(1) J is orthogonal with respect to the metric g, i.e. J*g = g and
(ii) J is parallel with respect to the Levi Civita connection D, i.e. DJ = 0.
In the following we will always allow pseudo-Riemannian, i.e. possibly indefinite met-
rics. The prefix “pseudo” will be generally omitted. The following definition is by now
standard, see [F].

Definition 1. A special Kaehler manifold (M, J,g,V) is a Kaehler manifold (M, J, g)
together with a flat torsionfree connection V such that

(i) Vw = 0, where w = g(,J-) is the Kaehler form and

(1) VJ is symmetric, i.e. (VxJ)Y = (VyJ)X for all vector fields X and Y.

More precisely, one should speak of affine special Kaehler manifolds since there is also
a projective variant of special Kaehler manifolds. In fact, there is a class of (affine)
special Kaehler manifolds M, which are called conic special Kaehler manifolds and
which admit a certain C*-action. The quotient of M by that action can be considered
as projectivisation of M and is called a projective special Kaehler manifold, see [ACD).
Originally [dWVP1], in the supergravity literature, by a special Kaehler manifold one
understood a projective special Kaehler manifold. This terminology was mantained in
the first mathematical papers on that subject [C1, C2, AC] and abandoned with the
publication of [F].

Example 1. Let (M, J, g) be a flat Kaehler manifold, i.e. the Levi Civita connection D
is flat. Then (M, J,9,V = D) is a special Kaehler manifold and VJ = 0. Conversely,
any special Kaehler manifold (M, J,g, V) such that VJ = 0 satisfies V = D = Levi
Civita connection of the flat Kaehler metric g. This is the trivial example of a special
Kaehler manifold.

The paper is in final form and no version of it will be submitted elsewhere.
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Before giving a general construction of special Kaehler manifolds, which yields plenty

of non-flat examples, I would like to offer some motivation for that concept.

o The notion of special Kaehler manifold was introduced by the physicists de Wit and
Van Proeyen [dWVP1] and has its origin in certain supersymmetric field theories.
More precisely, affine special Kaehler manifolds are exactly the allowed targets for
the scalars of the vector multiplets of field theories with N = 2 rigid supersymme-
try on four-dimensional Minkowski spacetime. Projective special Kaehler manifolds
correspond to such theories with local supersymmetry, which describe N = 2 su-
pergravity coupled to vector multiplets. N = 2 supergravity theories occur as low
energy limits of type II superstrings and play a prominent role in the study of moduli
spaces of certain two-dimensional superconformal field theories [CFG). The struc-
ture of these moduli spaces is desribed as the product of a projective special Kaehler
manifold and a quaternionic Kaehler manifold. Besides these strong physical mo-
tivations there is also a number of rather mathematical reasons to study special
Kaehler manifolds.

o Interesting moduli spaces carry the structure of a special Kaehler ‘manifold, for ex-
ample:

- The (Kuranishi) moduli space My of gauged complex structures associated to
a Calabi-Yau 3-fold X is a special Kaehler manifold of complex signature (1,n),
n = h?(X). This fact can be found in the physical literature, see e.g. []
and references therein. My parametrises pairs (J,vol ), where J is a complex
structure and vol a J-holomorphic volume form on a given compact Calabi-Yau
manifold of complex dimension 3. Let me recall that (from the Riemannian point
of view) a Calabi-Yau n-fold is a Riemannian manifold with holonomy group
SU(n). More generally, the affine cone over any abstract variation of polarized
Hodge structure of weight 3 and with h3%% = 1 is a (conic) special Kaehler
manifold, see [C2]. Such cones can be considered as formal moduli spaces, i.e.
the underlying variation of Hodge structure is not necessarily induced by the
deformation of complex structure of some Kaehler manifold.

- The moduli space of deformations of a compact complex Lagrangian submani-
fold Y in a hyper-Kaehler manifold X is a special Kaehler manifold with positive
definite metric [H1]. A hyper-Kaehler manifold is a Riemannian manifold with
holonomy group in Sp(n). Such a manifold X is automatically Kaehler of com-
plex dimension 2n and carries a holomorphic symplectic structure 2. A complex
submanifold Y C X of complex dimension n is called Lagrangian if :*Q0 = 0,
where ¢ : Y — X is the inclusion map.

o The cotangent bundle of any special Kaehler manifold carries the structure of a
hyper-Kaehler manifold. This corresponds to the dimensional reduction of N =
2 supersymmetric theories from four to three spacetime dimensions [CFG]. This
construction, which is called the c-map in rigid supersymmetry, is discussed, applied
and generalised in the mathematical literature [C2, F, H1, ACD]. For example, it is
used in [C2] to obtain a hyper-Kaehler structure (of complex signature (2,2n)) on
the bundle J — My of intermediate Jacobians over the above moduli space Mx
associated to a Calabi-Yau 3-fold X. The fibre of the holomorphic bundle [ over
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(J,vol ) € Mx is the intermediate Jacobian
H3(X,C)
H3(X,J)+ H¥\(X,J) + H¥(X,Z)

of (X,J).

e There is also a c-map in local supersymmetry, i.e. in supergravity, which to any
projective special Kaehler manifold of (real) dimension 2n associates a quaternionic
Kaehler manifold of dimension 4n + 4 [FS]. It corresponds to the dimensional re-
duction of N = 2 supergravity coupled to vector multiplets from dimension four to
three. For mathematical discussions of this deep construction, see [H3, K].

o The base of any algebraic completely integrable system is a special Kaehler manifold,
see [DW, F]. An algebraic completely integrable system is a holomorphic submersion
m: X = M from a complex symplectic manifold X to a complex manifold M with
compact Lagrangian fibres and a smooth choice of polarisation on the fibres. This
is essentially the inverse construction of the rigid c-map. There should also exist an
inverse construction for the local c-map.

e It was shown in [ACD] that the notion of special Kachler manifold has natural ge-
neralisations in the absence of a metric: “special complex” and “special symplectic”
manifolds. The cotangent bundle of such manifolds carries interesting geometric
structures which generalise the hyper-Kaehler structure on the cotangent bundle of
a special Kaehler manifold. Special complex geometry (in the absence of a metric)
may provide insight in physical theories for which no Lagrangian formulation (and
for that reason no target metric) is available.

o There is a close relation between special Kaehler manifolds and affine differential ge-
ometry discovered in [BC1]. In fact, any simply connected special Kaehler manifold
has a canonical realisation as a parabolic affine hypersphere. This will be explained
in detail in section 3.

Any projective special Kaehler manifold has a canonical (pseudo-) Sasakian circle
bundle which is realised as a proper affine hypersphere [BC3].
It was discovered in [BC2] that special Kaehler manifolds with a flat indefinite
metric have, a nontrivial moduli space, which is closely related to the moduli space
of Abelian simply transitive affine groups of symplectic type.

¢ Homogeneous projective special Kaehler manifolds were classified, under various as-
sumptions in [dWVP2, C1, AC]. Under the c-map they give rise to homogeneous
quaternionic Kaehler manifolds. If one restricts attention to the homogeneous pro-
jective special Kaehler manifolds of semi-simple group, then one finds a list of Her-
mitian symmetric spaces of non-compact type which shows a remarkable coincidence
with the list of irreducible special holonomy groups of torsionfree symplectic con-
nections [MS], as was noticed in [AC]. Finally, the classification [AC] may lead to
the generalisation of recent ideas of Hitchin about special features of geometry in
six dimensions to other dimensions [H2).

2. THE CONSTRUCTION OF SPECIAL KAEHLER MANIFOLDS

In this section we will see that the equations defining special Kaehler manifolds are
completely integrable, in the sense that the general local solution can be obtained
from a free holomorphic potential. The discussion follows [ACD] and is based on the
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extrinsic approach to special Kaehler manifolds developped in [C2]. For a similar
discussion from the bi-Lagrangian point of view see [H1].

The ambient data in the extrinsic approach are the following: The complex symplec-
tic vector space V = T*C" = C* with canonical coordinates (z,... 2", wy,... ,wn).
In these coordinates the symplectic form is

Q=) d2' Adwi.
=1
We denote by 7 : V — V the complex conjugation with respect to V™ = T*R™ = R?",
The algebraic data (V,,7) induce on V the Hermitian form

y 1= V=1Q(, )

of complex signature (n,n).
Let M be a connected complex manifold of complex dimension n. We denote its
complex structure by J.

Definition 2. A holomorphic immersion ¢ : M — V is called Kaehlerian if ¢*y is
nondegenerate and it is called Lagrangian if ¢*Q2 = 0.

A Kaehlerian immersion ¢ : M — V induces on M the pseudo-Riemannian metric
g = Re¢*v such that (M, J, g) is a Kaehler manifold.

Lemma 1. Let ¢ : M — V be a Kaehlerian Lagrangian immersion. Then the Kaehler
formw = g(-,J-) of the Kaehler manifold (M, J,g) is given by

w=2zn:d5;‘/\dg,~,
i=1

where ' := Re ¢*2* and §j; := Re ¢*w;.

Proof. The metric gv := Re~ is a flat Kaehler metric of (real) signature (2n,2n) on
the complex vector space (V, J). Its Kaehler form is

wy = Z(d:vi A dy; + du' A dvy),

where z' := Rez', y; := Rew;, v' := Imz' and v; := Imw;. On the other hand, the
two-form

Ref) = Z(d:c‘ A dy; — du' A dv;)
vanishes on M. This shows that
w=Puy =2 ¢*(da’ Ndy) =2 di' Adii. o

The lemma implies that the functions #!,...,Z",1,... ,¥x define local coordinates
near each point of M. Therefore we can define a flat torsionfree connection V on M
by the condition Vd# = Vdj; =0,i =1,...,n. Now we can formulate the following

fundamental theorem.

Theorem 1. Let ¢ : M — V be a Kaehlerian Lagrangian immersion with induced geo-
metric data (9,V). Then (M, J,9,V) is a special Kaehler manifold. Conversely, any
simply connected special Kaehler manifold (M, J, g, V) admits a Kaehlerian Lagrangian
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immersion ¢ : M — V inducing the data (g,V) on M. The Kaehlerian Lagrangian
immersion ¢ is unique up to an affine transformation of V = C** with linear part in

Sp(R*).

For the proof of that result and its projective version see [ACD], where analogous
extrinsic characterisations are obtained also for special complex and special symplectic
manifolds.

The above theorem may be considered as an extrinsic reformulation of the in-
trinsic Definition 1. The important advantage of the extrinsic characterisation in
terms of Kaehlerian Lagrangian immersions lies in the well known fact that La-
grangian immersions are locally defined by a generating function. More precisely,
any holomorphic Lagrangian immersion into (V, ) is locally defined by a holomor-
phic function F(z!,...,2"), at least after suitable choice of canonical coordinates
(2Y...,2" wy,...,
wy). In fact, such a function defines a Lagrangian local section ¢ = dF of T*C* = V.
It is a Kaehlerian Lagrangian immersion if it satisfies the nondegeneracy condition
det Im@%F # 0. Similarly, projective special Kaehler manifolds are locally defined by
a holomorphic function F' satisfying a nondegeneracy condition and which in addition
is homogeneous of degree 2.

3. SPECIAL KAEHLER MANIFOLDS AS AFFINE HYPERSPHERES

The main object of affine differential geometry are hypersurfaces in affine space
R™t! with its standard connection denoted by V and parallel volume form vol. A
hypersurface is given by an immersion ¢ : M = R™*! of an m-dimensional connected
manifold. We assume that M admits a transversal vector field £ and that m > 1. This
induces on M the volume form v = vol(¢, ... ), a torsionfree connection V, a quadratic
covariant tensor field g, an endomorphism field S (shape tensor) and a one-form 6 such
that

VxY VxY +g(X,Y)¢E,
Vx€ = SX+6(X)E.

We will assume that g is nondegenerate and, hence, is a pseudo-Riemannian metric
on M. This condition does not depend on the choice of €. According to Blaschke [B],
once the orientation of M is fixed, there is a unique choice of transversal vector field ¢
such that v coincides with the metric volume form vol¥ and Vv = 0. This particular
choice of transversal vector field is called the affine normal and the corresponding
geometric data (g, V) are called the Blaschke data. Notice that, for the affine normal,
6 =0 and S is computable from (g, V) (GauB equations). Henceforth we use always
the affine normal as transversal vector field.

Definition 3. The hypersurface ¢ : M — R™*! is called a parabolic (or improper)
hypersphere if the affine normal is parallel, V& = 0. 1t is called a proper hypersphere if
the lines generated by the affine normals intersect in a point p € R™+!, which is called
the centre. For parabolic hyperspheres the centre is at co.

Notice that V€ = 0 & § = 0 & V is flat. For proper hyperspheres S = \Id,
A € R-{0}.
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The main result of [BC1] is the following:

Theorem 2. Let (M,J,g,V) be a simply connected special Kaehler manifold. Then
there exists a parabolic hypersphere ¢ : M — R™+! m = dimg M = 2n, with Blaschke
data (g,V). The immersion ¢ is unique up to a unimodular affine transformation of
R™+1,

The proof of Theorem 2 makes use of the Fundamental Theorem of affine differen-
tial geometry [DNV], which is the generalisation of Radon’s theorem [R] to higher
dimensions:

Theorem 3. Let (M, g,V) be a simply connected oriented pseudo-Riemannian mani-
fold with a torsionfree connection V such that the Riemannian volume form vol® is
V-parallel. Then there ezists an immersion ¢ : M — R™*! with Blaschke data (g,V)
if and only if the g-conjugate connection V is torsionfree and projectively flat. The
immersion is unique up to unimodular affine transformations of R™*!,

Recall that the g-conjugate connection V on M is defined by the equation:
Xg(Y,Z) = g(VxY,Z) + g(Y,VxZ) for all vector fields X,Y,Z.

Proof (of Theorem 2). Let (M, J, g, V) be a simply connected special Kaehler mani-
fold. For any Kaehler manifold we have vol’ = %, n = dim¢ M. This implies the
first integrability condition Vvol’ = 0, since Vw = 0. The conjugate connection is

torsionfree and flat. This will follow from:

Lemma 2. [BC1] Let (M,J,g,V) be a special Kaehler manifold. Then V = ¥V,
where the connection V7 is defined by

V%Y := JVx(J7'Y) = —JVx(JY) = VxY — J(VxJ)Y
for all vector fields X and Y.

From the formula defining V7 we see that a vector field X is V-parallel if and only if
JX is V/-parallel. Therefore, if X;,i=1,...,2n = dimg M, is a parallel local frame
for the flat connection V then JX;, i = 1,...,2n, is a V’/-parallel local frame. This
shows that V = V7 is flat. Similarly the torsionfreedom of V = V7 = V= JV J follows
from that of V and the symmetry of the tensor VJ. So the assumptions of Theorem 3
are satisfied and we conclude the existence of a hypersurface ¢ : M = R™+!, m = 2n.
inducing on M the Blaschke data (g, V). Now the flatness of V implies that ¢ is a
parabolic hypersphere. 0
As applications we obtain:

Corollary 1. Any holomorphic function F on a simply connected open set U C C*
with det Im&%F # 0 defines a parabolic hypersphere of dimension m = 2n.

This is a generalisation of a classical theorem of Blaschke about 2-dimensional par-
abolic spheres. An explicit representation formula for the parabolic hypersphere in
terms of the holomorphic function F was given in [C3].

Corollary 2. Let (M,V,g) be a special Kaehler manifold with (positive) definite met-
ric g. If g is complete then V is the Levi Civita connection and g is flat.
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Proof. This follows by combining Theorem 2 with the following classical theorem of
Calabi and Pogorelov [Ca, P]. D

Theorem 4. If the Blaschke metric § of a parabolic affine hypersphere (M,g,V) is
definite and complete, then M is affinely congruent to the paraboloid z™+! = Y7 (z%)?
in R™*. In particular, V is the Levi Civita connection and g is flat.

Lu [L] proved that any special Kaehler manifold (M, g, J, V) with a definite and com-
plete metric g is flat without making use of Calabi and Pogorelov’s Theorem. Special
Kaehler manifolds (M, J, g, V) with a flat indefinite and geodesically complete metric
g for which V is complete and is not the Levi Civita connection were constructed in
[BC2]. ‘

For projective special Kaehler manifolds M it has been established in [BC3] that a
natural circle bundle S & M can be canonically realised as a proper hypersphere.
Moreover, the metric cone over S is a conic special Kaehler manifold M, which is in
turn realised as a parabolic hypersphere in a compatible way. There are also projective
analogues of Corollaries 1 and 2.
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