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SPECIAL KAEHLER MANIFOLDS: A SURVEY 

VICENTE CORTES 

ABSTRACT. This is a survey of recent contributions to the area of special Kaehler 
geometry. It is based on lectures given at the 21st Winter School on Geometry and 
Physics held in Srni in January 2001. 

1. REMARKABLE FEATURES OF SPECIAL KAEHLER MANIFOLDS 

A (pseudo-) Kaehler manifold (M, J, #) is a differentiable manifold endowed with a 
complex structure J and a (pseudo-) Riemannian metric g such that 
(i) J is orthogonal with respect to the metric g, i.e. J*g = g and 
(ii) J is parallel with respect to the Levi Civita connection D, i.e. DJ = 0. 
In the following we will always allow pseudo-Riemannian, i.e. possibly indefinite met­
rics. The prefix "pseudo" will be generally omitted. The following definition is by now 
standard, see [F]. 

Definition 1. A special Kaehler manifold (M, J, y, V) is a Kaehler manifold (M, J,g) 
together with a flat torsionfree connection V such that 
(i) Va; = 0, where w = #(•, J-) is the Kaehler form and 
(ii) VJ is symmetric, i.e. (VxJ)Y = (VyJ)X for all vector fields X and Y. 

More precisely, one should speak of affine special Kaehler manifolds since there is also 
a projective variant of special Kaehler manifolds. In fact, there is a class of (affine) 
special Kaehler manifolds M, which are called conic special Kaehler manifolds and 
which admit a certain C-action. The quotient of M by that action can be considered 
as projectivisation of M and is called a projective special Kaehler manifold, see [ACD]. 
Originally [dWVPl], in the supergravity literature, by a special Kaehler manifold one 
understood a projective special Kaehler manifold. This terminology was mantained in 
the first mathematical papers on that subject [Cl, C2, AC] and abandoned with the 
publication of [F]. 
Example 1. Let (M, J, g) be a flat Kaehler manifold, i.e. the Levi Civita connection D 
is flat. Then (M,J,#, V = D) is a special Kaehler manifold and VJ = 0. Conversely, 
any special Kaehler manifold (M, J,#,V) such that VJ = 0 satisfies V = D = Levi 
Civita connection of the flat Kaehler metric g. This is the trivial example of a special 
Kaehler manifold. 

The paper is in final form and no version of it will be submitted elsewhere. 



12 V.CORTÉS 

Before giving a general construction of special Kaehler manifolds, which yields plenty 
of non-flat examples, I would like to offer some motivation for that concept. 
• The notion of special Kaehler manifold was introduced by the physicists de Wit and 

Van Proeyen [dWVPl] and has its origin in certain supersymmetric field theories. 
More precisely, affine special Kaehler manifolds are exactly the allowed targets for 
the scalars of the vector multiplets of field theories with N = 2 rigid supersymme-
try on four-dimensional Minkowski spacetime. Projective special Kaehler manifolds 
correspond to such theories with local supersymmetry, which describe N = 2 su-
pergravity coupled to vector multiplets. N = 2 supergravity theories occur as low 
energy limits of type II superstrings and play a prominent role in the study of moduli 
spaces of certain two-dimensional superconformal field theories [CFG]. The struc­
ture of these moduli spaces is desribed as the product of a projective special Kaehler 
manifold and a quaternionic Kaehler manifold. Besides these strong physical mo­
tivations there is also a number of rather mathematical reasons to study special 
Kaehler manifolds. 

t Interesting moduli spaces carry the structure of a special Kaehler manifold, for ex­
ample: 

- The (Kuranishi) moduli space Mx of gauged complex structures associated to 
a Calabi-Yau 3-fold X is a special Kaehler manifold of complex signature (1, n), 
n = h2,1(X). This fact can be found in the physical literature, see e.g. [S] 
and references therein. Mx parametrises pairs (J, vol), where J is a complex 
structure and vol a J-holomorphic volume form on a given compact Calabi-Yau 
manifold of complex dimension 3. Let me recall that (from the Riemannian point 
of view) a Calabi- Yau n-fold is a Riemannian manifold with holonomy group 
SU(n). More generally, the affine cone over any abstract variation of polarized 
Hodge structure of weight 3 and with h3'0 = 1 is a (conic) special Kaehler 
manifold, see [C2]. Such cones can be considered as formal moduli spaces, i.e. 
the underlying variation of Hodge structure is not necessarily induced by the 
deformation of complex structure of some Kaehler manifold. 

- The moduli space of deformations of a compact complex Lagrangian submani-
fold Y in a hyper-Kaehler manifold X is a special Kaehler manifold with positive 
definite metric [HI]. A hyper-Kaehler manifold is a Riemannian manifold with 
holonomy group in Sp(n). Such a manifold X is automatically Kaehler of com­
plex dimension 2n and carries a holomorphic symplectic structure fi. A complex 
submanifold K C - V o f complex dimension n is called Lagrangian if t*Q, = 0, 
where t: Y —r X is the inclusion map. 

• The cotangent bundle of any special Kaehler manifold carries the structure of a 
hyper-Kaehler manifold. This corresponds to the dimensional reduction of N = 
2 supersymmetric theories from four to three spacetime dimensions [CFG]. This 
construction, which is called the c-map in rigid supersymmetry, is discussed, applied 
and generalised in the mathematical literature [C2, F, HI, ACD]. For example, it is 
used in [C2] to obtain a hyper-Kaehler structure (of complex signature (2,2n)) on 
the bundle J —•> Mx of intermediate Jacobians over the above moduli space Mx 
associated to a Calabi-Yau 3-fold X. The fibre of the holomorphic bundle J over 
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(J, vol) Є Mx is the intermediate JacoЫan 

HҢX,C) 

#3'°(X, J) + IP'l(X, J) + H3(X, Z) 

of(X,J). 
• There is also a c-map in local supersymmetry, i.e. in supergravity, which to any 

projective special Kaehler manifold of (real) dimension 2n associates a quaternionic 
Kaehler manifold of dimension An + 4 [FS]. It corresponds to the dimensional re­
duction of N = 2 supergravity coupled to vector multiplets from dimension four to 
three. For mathematical discussions of this deep construction, see [H3, K]. 

• The base of any algebraic completely integrable system is a special Kaehler manifold, 
see [DW, F]. An algebraic completely integrable system is a holomorphic submersion 
7r : X -> M from a complex symplectic manifold X to a complex manifold M with 
compact Lagrangian fibres and a smooth choice of polarisation on the fibres. This 
is essentially the inverse construction of the rigid c-map. There should also exist an 
inverse construction for the local c-map. 

• It was shown in [ACD] that the notion of special Kaehler manifold has natural ge­
neralisations in the absence of a metric: "special complex" and "special symplectic" 
manifolds. The cotangent bundle of such manifolds carries interesting geometric 
structures which generalise the hyper-Kaehler structure on the cotangent bundle of 
a special Kaehler manifold. Special complex geometry (in the absence of a metric) 
may provide insight in physical theories for which no Lagrangian formulation (and 
for that reason no target metric) is available. 

• There is a close relation between special Kaehler manifolds and affine differential ge­
ometry discovered in [BCl]. In fact, any simply connected special Kaehler manifold 
has a canonical realisation as a parabolic affine hypersphere. This will be explained 
in detail in section 3. 
Any projective special Kaehler manifold has a canonical (pseudo-) Sasakian circle 
bundle which is realised as a proper affine hypersphere [BC3]. 
It was discovered in [BC2] that special Kaehler manifolds with a flat indefinite 
metric have, a nontrivial moduli space, which is closely related to the moduli space 
of Abelian simply transitive affine groups of symplectic type. 

• Homogeneous projective special Kaehler manifolds were classified, under various as­
sumptions in [dWVP2, CI, AC]. Under the c-map they give rise to homogeneous 
quaternionic Kaehler manifolds. If one restricts attention to the homogeneous pro­
jective special Kaehler manifolds of semi-simple group, then one finds a list of Her-
mitian symmetric spaces of non-compact type which shows a remarkable coincidence 
with the list of irreducible special holonomy groups of torsionfree symplectic con­
nections [MS], as was noticed in [AC]. Finally, the classification [AC] may lead to 
the generalisation of recent ideas of Hitchin about special features of geometry in 
six dimensions to other dimensions [H2]. 

2. T H E CONSTRUCTION OF SPECIAL KAEHLER MANIFOLDS 

In this section we will see that the equations defining special Kaehler manifolds are 
completely integrable, in the sense that the general local solution can be obtained 
from a free holomorphic potential. The discussion follows [ACD] and is based on the 



14 V. CORTES 

extrinsic approach to special Kaehler manifolds developped in [C2]. For a similar 
discussion from the bi-Lagrangian point of view see [HI]. 

The ambient data in the extrinsic approach are the following: The complex symplec-
tic vector space V = T*^1 = C2n with canonical coordinates (z1,... , zn, Wi,... ,wn). 
In these coordinates the symplectic form is 

n 

ft = 2_. dz% A dwi. 
»=i 

We denote by r : V -> V the complex conjugation with respect to VT = T*Rn = R2n. 
The algebraic data (V,ft,r) induce on V the Hermitian form 

7:=\/=Tn(-,r.) 
of complex signature (n,n). 

Let M be a connected complex manifold of complex dimension n. We denote its 
complex structure by J. 

Definition 2. A holomorphic immersion (f> : M —> V is called Kaehlerian if 0*7 is 
nondegenerate and it is called Lagrangian if 0*ft = 0. 

A Kaehlerian immersion (f> : M -> V induces on M the pseudo-Riemannian metric 
g = Re0*7 such that (M,J,g) is a Kaehler manifold. 

Lemma 1. Let <j) : M -> V be a Kaehlerian Lagrangian immersion. Then the Kaehler 
formuj = g(-,J-) of the Kaehler manifold (M,J,g) is given by 

n 

u = 2 2_\ dxx A dyi, 

where xx := Re4>*z% and y, := Recjfwi. 

Proof. The metric gv := Re7 is a flat Kaehler metric of (real) signature (2n,2n) on 
the complex vector space (V, J). Its Kaehler form is 

LJV •= /^(dx1 A dyi -f dul A dvi), 

where xx := Rezx, yt- := Rewi, ul := Im^' and Vi := Imivt-. On the other hand, the 
two-form 

Reft = V\dx* A dyi — dux A dv{) 

vanishes on M. This shows that 

u> = <j)*u)v = 2 2_\ <l>*(dxx A dyi) = 2 \_] dxx A dyi. • 

The lemma implies that the functions xl,.. .,xn,yi,... ,yn define local coordinates 
near each point of M. Therefore we can define a flat torsionfree connection V on M 
by the condition Vdxx = Vc/y, = 0, 2 = 1, . . . ,n. Now we can formulate the following 
fundamental theorem. 

Theorem 1. Let <t>: M —r V be a Kaehlerian Lagrangian immersion with induced geo­
metric data (<7,V). Then (M,J,g,V) is a special Kaehler manifold. Conversely, any 
simply connected special Kaehler manifold (M, J,g, V) admits a Kaehlerian Lagrangian 
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immersion <f> : M —> V inducing the data (g, V) on M. The Kaehlerian Lagrangian 
immersion <j) is unique up to an affine transformation ofV = C?n with linear part in 
Sp(R2n). 

For the proof of that result and its projective version see [ACD], where analogous 
extrinsic characterisations are obtained also for special complex and special symplectic 
manifolds. 

The above theorem may be considered as an extrinsic reformulation of the in­
trinsic Definition 1. The important advantage of the extrinsic characterisation in 
terms of Kaehlerian Lagrangian immersions lies in the well known fact that La­
grangian immersions are locally defined by a generating function. More precisely, 
any holomorphic Lagrangian immersion into (V, fi) is locally defined by a holomor-
phic function F(z1,... ,zn), at least after suitable choice of canonical coordinates 
(z1,... ,zn,wu... , 
wn). In fact, such a function defines a Lagrangian local section <j> = dF of [PC1 = V. 
It is a Kaehlerian Lagrangian immersion if it satisfies the nondegeneracy condition 
detImd2F ^ 0. Similarly, projective special Kaehler manifolds are locally defined by 
a holomorphic function F satisfying a nondegeneracy condition and which in addition 
is homogeneous of degree 2. 

3. SPECIAL KAEHLER MANIFOLDS AS AFFINE HYPERSPHERES 

The main object of affine differential geometry are hypersurfaces in affine space 
Rm+1 with its standard connection denoted by V and parallel volume form vol. A 
hypersurface is given by an immersion <p : M —• Rm+1 of an m-dimensional connected 
manifold. We assume that M admits a transversal vector field £ and that m > 1. This 
induces on M the volume form v = vol(£,...), a torsionfree connection V, a quadratic 
covariant tensor field g, an endomorphism field S (shape tensor) and a one-form 9 such 
that 

VXY = VxY + g(X,Y)i, 

vrf = sx + o(x)t. 
We will assume that g is nondegenerate and, hence, is a pseudo-Riemannian metric 
on M. This condition does not depend on the choice of (. According to Blaschke [B], 
once the orientation of M is fixed, there is a unique choice of transversal vector field f 
such that v coincides with the metric volume form voF and Vz/ = 0. This particular 
choice of transversal vector field is called the affine normal and the corresponding 
geometric data (g, V) are called the Blaschke data. Notice that, for the affine normal, 
0 = 0 and S is computable from (g, V) (Gaufi equations). Henceforth we use always 
the affine normal as transversal vector field. 

Definition 3. The hypersurface <p : M —•> E m + 1 is called a parabolic (or improper) 
hypersphere if the affine normal is parallel, V£ = 0. It is called a proper hypersphere if 
the lines generated by the affine normals intersect in a point p G Rm+1, which is called 
the centre. For parabolic hyperspheres the centre is at oo. 

Notice that Vf = 0<S>S = 0 « - > V i s flat. For proper hyperspheres S = Aid, 
A € R - { 0 } . 
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The main result of [BC1] is the following: 

Theorem 2. Let (M,J,g,V) be a simply connected special Kaehler manifold. Then 
there exists a parabolic hypersphere tp : M -> Rm+1, m = dimR M = 2n, with Blaschke 
data (g, V). The immersion ip is unique up to a unimodular affine transformation of 
Rm+1. 

The proof of Theorem 2 makes use of the Fundamental Theorem of affine differen­
tial geometry [DNV], which is the generalisation of Radon's theorem [R] to higher 
dimensions: 

Theorem 3. Let (M,#, V) be a simply connected oriented pseudo-Riemannian mani­
fold with a torsionfree connection V such that the Riemannian volume form vol5 is 
V-parallel. Then there exists an immersion <p : M —> Rm+1 with Blaschke data (g, V) 
if and only if the g-conjugate connection V is torsionfree and protectively flat. The 
immersion is unique up to unimodular affine transformations o/Rm+1 . 

Recall that the ^-conjugate connection V on M is defined by the equation: 

Xg(Y,Z)=g(VxY,Z)-rg(Y,VxZ) for all vector fields X,Y,Z. 

Proof (of Theorem 2). Let (M, J,g, V) be a simply connected special Kaehler mani­
fold. For any Kaehler manifold we have vol5 = ^r, n = dime M, This implies the 
first integrability condition Vvol5 = 0, since Vu; = 0. The conjugate connection is 
torsionfree and flat. This will follow from: 

Lemma 2. [BCl] Let (M,J,g,V) be a special Kaehler manifold. Then V = V J , 
where the connection V J is defined by 

VJ
XY := JVx(J~lY) = -JVX(JY) = VXY - J(VXJ)Y 

for all vector fields X and Y. 

From the formula defining V J we see that a vector field X is V-parallel if and only if 
JX is VJ-parallel. Therefore, if X,-, i = 1, . . . ,2n = dimR M, is a parallel local frame 
for the flat ^connection V then JX{, i = 1, . . . ,2n, is a VJ-parallel local frame. This 
shows that V = V J is flat. Similarly the torsionfreedom of V = V J = V — JVJ follows 
from that of V and the symmetry of the tensor VJ. So the assumptions of Theorem 3 
are satisfied and we conclude the existence of a hypersurface tp : M —> Rm+1, m = 2n. 
inducing on M the Blaschke data (g, V). Now the flatness of V implies that <p is a 
parabolic hypersphere. • 
As applications we obtain: 

Corollary 1. Any holomorphic function F on a simply connected open set U C C1 

with detImd2F 7- 0 defines a parabolic hypersphere of dimension m = 2n. 

This is a generalisation of a classical theorem of Blaschke about 2-dimensional par­
abolic spheres. An explicit representation formula for the parabolic hypersphere in 
terms of the holomorphic function F was given in [C3]. 

Corollary 2. Let (M,V,g) be a special Kaehler manifold with (positive) definite met­
ric g. If g is complete then V is the Levi Civita connection and g is flat. 
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Proof. This follows by combining Theorem 2 with the following classical theorem of 
Calabi and Pogorelov [Ca, P], D 

Theorem 4. If the Blaschke metric g of a parabolic affine hypersphere (M,#, V) is 
definite and complete, then M is affinely congruent to the paraboloid x™*1 = YlT=i(xl)2 

in R m + 1 . In particular, V is the Levi Civita connection and g is flat. 

Lu [L] proved that any special Kaehler manifold (M,g, J, V) with a definite and com­
plete metric g is flat without making use of Calabi and Pogorelov's Theorem. Special 
Kaehler manifolds (M, J, <j, V) with a flat indefinite and geodesically complete metric 
g for which V is complete and is not the Levi Civita connection were constructed in 
[BC2]. _ 
For projective special Kaehler manifolds M it has been established in [BC3] that a 
natural circle bundle S -> M can be canonically realised as a proper hypersphere. 
Moreover, the metric cone over 5 is a conic special Kaehler manifold M, which is in 
turn realised as a parabolic hypersphere in a compatible way. There are also projective 
analogues of Corollaries 1 and 2. 
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