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RENDICONTI DEL CIRCOLO MATEMATICO DIPALERMO 
Serie II, Suppl. 69 (2002), pp. 37-59 

EQUIVARIANT DIFFERENTIAL OPERATORS 

H.M. REIMANN 

1. EQUIVARIANT DIFFERENTIAL OPERATORS ON HOMOGENEOUS SPACES 

1.1. Homogeneous vector bundles. We consider homogeneous spaces of the form 
S = G/H where G is a semisimple Lie group with finite center and H a closed 
subgroup. 

If (p,V) is a representation of H, then the homogeneous vector bundle G XH V 
associated with this representation is the quotient space of Gx V under the equivalence 
relation 

(9,v)^(gh1p(h~'1)v). 

The homogeneous vector bundle GXHV is a bundle over G/H. The projection mapping 

p:GxHV—>G/H 

maps the equivalence class of (g, h) to gH. 

Example. The tangent space TS of S = G/H. 
The Lie algebras of G and its subgroup H are denoted by g and h respectively. The 

tangent space of S at the identity coset 0 = eH is identified with g/h. 
To an element X-f-h E g/h there corresponds the equivalence class of curves through 

0 £ S with representative exptX H, t € R. At the point gH G 5, the representative is 

gexp tXH = ghexp tk&(h~l)X H. 

An element in T9H(G/H) is therefore given by ail equivalence class: 

(g,X + h)~(ghM[h-l)X + h). 

The tangent space T(G/H) is thus the homogeneous vector bundle G XH g/h and 
the representation of H on g/h is the adjoint representation on the quotient space 

Adh(X + h) = Ad(h)X + h. 

Lectures given at the Winter School on "Geometry and Physics" in Srni 2001. 
This exposition is based on joint work with A. Koranyi and on a forthcoming paper with K. Johnson 
and A. Koranyi. 

The paper is in final form and no version of it will be submitted elsewhere. 
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Fix a subspace q of g which is complementary to h and denote the projection onto 
q along h by pq. Then pq • Ad is a representation of H on q. 

Special case: Symmetric spaces. 
If G is a semisimple Lie group of the non compact type and K a maximal compact 
subgroup, then one has the Cart an decomposition 

g = k + p 

of the Lie algebra g of G into an orthogonal (under the Killing form) direct product 
of the ±1 eigenspaces of the Cart an involution fl. The subalgebra k is the Lie algebra 
of K and p is a complementary vector subspace. 

In this situation Ad(A?) maps p into itself (for all k G K) and therefore 

T(G/K) = GxKP 

with K acting by Ad on p. 

Given local trivialisations Uo xV around 0 = eH and UgxV around g 0 = g H left 
translation by g induces a mapping (denoted by Tg) from a neighbourhood of {0} x V 
in Uo x V to Ug x V. 
If s : G/H -> G XH V is a section, then its lift / , : G -> V is denned by 

fs(9) = Tg-
1s(gO). 

Replacing g by gh, / iG/7 , this leads to 

f.(gh) = (T9H)-1s(9h0) = T^T;ls(gQ) 

= r^f.(g) 

with Th a representation (p, V) of H on the vector space V. 
The lifts of the C°°-sections make up the space C°°(G xH V) of O°°-functions 

/ : G —•» V satisfying 

f(gh)=p(h-1)f(g) g€G,heH. 

Conversely, to any / G C°°(G x^V) there corresponds a section 5/ 

si(g0) = (g,f(g)). 

Example. Vector fields on real hyperbolic space. 

SO(n,l) = {g e SL(n + l) : (gx,gx) = (x,x) Vx G Rn+1} 

G = 5O0(n, 1) (component in 5O(n, 1) which contains the neutral element), 

K = SO(n). 

The corresponding Lie algebra g of SO(n, 1) decomposes as g = k + p with 
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k = 

P = 

anti-symmetric 

symmetric 

Lie algebra of K 

complementary subspace. 

If ti(X) = — Xtr denotes the Cartan involution on g, then k and p are its +1 and 
—1 eigenspaces respectively. 

Real hyperbolic space is the symmetric space G/K. It can be realized as the unit 
ball 

B = {x e Rn : \x\ < 1} 

with the hyperbolic metric ds = /-.ujawi-i- The group G acts on B as the group of 
conformal transformations. (This is the Poincare model of hyperbolic space.) 

The natural action of the conformal transformations Tg (g G G) on the tangent space 
is given by 

(Tgv)(x) = (Tg)*(g-lx) v(g-lx). 

Set f(g) = (r-'vXO). Then 

fW = (r9k);
lv(gkO) = T^Tg-M90) 

= r?f(g). 

In this case ^ ( 0 ) is simply fc_1, if the standard representation of K = SO(n) by 
its n x n matrix is written as fc (in the following this representation will be denoted 
by *i). 

In this particularly simple case, the representation Ad of K on p is just 6\. This 
representation is self contragradient. 

1.2. The gradient-construction of Stein-Weiss. If S = G/K is a symmetric 
space as in the example above, with 

g = k + p 

and K acting on p by Ad, then for any / 6 C°°(G XK V) the gradient V / can be 
defined as an element in C°°(G XK Hom(p, V)): 

Vf(g)(X):=Xf(g) = 
dt 

f(gexptX). 
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If g is replaced by gk 

Vf(9k)X = £ 

d_ 
dt 

f(gk exp tX) 
> 

f(gexp Ad(k)Xk) 

" >(r'>ï 

t=o 

f(expAd(k)X) 

= p(k-l)(Ad(k)Xf)(g). 

The tensor representation Adv ® p on p* ® V = Hom(p, V) is defined by 

(Adv®/))(A;-1)T = io(fc-1)oroAd(Jfc) TzKom(p,V) 

thus V / is in C°°(o x * p* ® V) with Jf acting by Adv ® p on p* ® V. 

Vf(gk) = (Adv®p)(k-1)Vf(g). 

Adv denotes the contragradient representation: Adv(fc) = Ad* (AT1). In general, the 
representation Adv ® p of K is not irreducible 

Adv ®p = ®tmipt, p* ® V = eVT*' 

with multiplicities m* G N. If pry denotes the projection onto the space Ve
mt, then 

prt o V is a G—equivariant differential operator from C°°(G XK V) to C°°(G xK Vt). 
This gradient construction is due to Stein and Weiss [SW]. 

Example. Real hyperbolic space. 
Here, Adv on p is equivalent to the standard representation Si of K = SO(n). The 

projection operators on Hom(Rn,Rn) = p * © p are determined by 

* ST = i ( T + T t r ) - -(traceT)I 
2 n 

AT = ^(T-Ttr) 

DT = - ( t raceT)/ 
n 

such that T-ST + AT+ DT, for all T € Hom(Rn,Rn). 

In the case of a symmetric space, the gradient operator V is an equivariant op­
erator, and so are the operators prt o V. In the more general situation, when G/H 
is a homogeneous space, it can at best be hoped that prtoV is an equivariant operator. 

Example. The boundary S of real hyperbolic space. 

SO(n, l) = {ge SL(n + 1,R) : (gx,gx) = (x,x) Vx € Rn+1} , 

(*,:-) = £*?-«$ n+l 
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The Klein model of hyperbolic space is obtained by introducing inhomogeneous 
coordinates 

Xi 
Zi = i = l , . . . , n . 

The invariant cone {x G Rn+1 : (x,x) < 0} is mapped onto the unit ball 

B = {\z\<l}CRn 

and its boundary is mapped onto the sphere 

S = dBcRn. 
B is the symmetric space 

G/K = SO0(n,l)/SO(n) 

and S is the homogeneous space 

G/MAN 

with MAN a parabolic subgroup of G = SOo(n,l), which can be taken to be the 
stabilizer subgroup of the point e„ = (0 , . . . , 0,1) G S 

M 2 SO(n-l) 

A =* R* 

N =- R""1. 

The Lie algebra decomposes as 

g = n + a + m + n = n + h 

with h the Lie algebra of MAN. 
In this situation, Ad(h) maps n into n + a + m, for all h G MAN. Furthermore, 

since Ad(m) maps n into itself (for all m G M), the gradient construction is still 
an M—invariant construction, yet starting with a section / of a homogeneous vector 
bundle over MAN,' the result, V / , will not be a section of such a bundle. 

However it turns out, that after taking the projection onto an M—invariant sub-
space, the H—representation can be adjusted such that pr o V is in fact an equivariant 
differential operator. 

This was discovered by Fegan [F]. In his work, Fegan gave the complete classification 
of the conformally equivariant first order differential operators. (The group G acts by 
conformal transformations on the sphere S). 

1.3. Equivariant operators on homogeneous spaces. Left invariant differential 
operators on G are given by the Lie algebra vector fields X G g : 

Xf(9)=± f(gexptX). 
\t=o 

Left translation by a G G is given by g -» ag. The induced transformation on 
functions is 

T*f(g) = f(a-1
9). 

Left invariance means that 

Ta(Xf) = X(TJ) aeG. 
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More general, let U(h) be the universal envelopping algebra of the Lie algebra h (of 
the closed subgroup H C G) and denote Y -» Y' its principal automorphism induced 
by the Lie algebra automorphism Y —• — V. Representations p of H on a vector space 
V induce representations p* of h and of U(h) on V. 

The tensor product of the moduli U(g) and Hom(Vi, V2) over U(h) is the direct 
product modulo the equivalence relation determined by the linear span J of the ele­
ments 

YU®L-U®(LopmY9) 

with U £ W(g), Y £ g, L £ Hom(Vi, V2). This product is written 

W(g)®w(h)Hom(Vi,V2). 

Elements U ® L 6 W(g) ®W(h) Hom(Vi, V2) act on functions / £ C°°(C7 xH Vi) by 

(f/®L)/(5) = L(U/)(^). 

The definition is clearly left invariant, it commutes with rtt, a £ G. 
The action is well defined, since the elements in J act trivially: 

( Y U ® I ) / Ы = Lj (Uf)(gexPtY) 
t=0 

- Ldt 
p(exV-tY)(U(f)(g)) 

= Lp,(Y')(Uf)(g) = (U®Lo p,(Y'))f(g) 

• 
Let q be a subspace of g complementary to h and let {Yi,... , Yq} be a basis of q. 

For a multiindex a = (0:1,... , aq) of natural numbers write Ya for Y*1 . . . Y^9. 

Normal form. 
Every element in U(g) ®^(h) Hom(Vi, V2) can uniquely be written in the normal form 

Of 

with La £ Hom(Vi,V2). 
(For a proof see [KR2], proposition 1.1.) 
The elements in U(g) ®u(h) Hom(Vi, V2) describe all left invariant linear differential 

operators from C°°(G x# Vi) to C°°(G,V2). A further condition is required which 
guarantees that these operators map into C°°(G XJJV2). 

The subgroup H acts on U(g) by the adjoint representation and on Hom(Vi, V2) by 

L —> p2(h) 0L0Pl(h-X) L £ Hom(Vi,V2). 

The tensor product action leaves the subspace J invariant, hence. H acts on the 
tensor product over U(h). The set of H—invariant elements is denoted by 

(W(g)®w(h)HomW.,V2))H. 
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Definition. A G—equivariant differential operator D is a G—left invariant linear 
differential operator between homogeneous vector bundles 

D-.C^GxnV,)—>c°°(oxwV2). 

Proposition 1. [KR2]. The space of G—equivariant differential operators from (GXH 
V\) to (G XH V2) is isomorphic to 

(u(g)®W(h)Hom(Vi,K2)f. 

Various ways of looking at equivariant linear differential operators are known from 
the literature, e.g. N. Wallach: Harmonic analysis on homogeneous space, 1973. The 
present proposition is quite explicit. It is specially designed to suit our purposes. 

The essence of the argument leading to the above proposition is contained in the 
following little calculation: 

For X e g, L £ Hom(Vl5 V2), / G G°°(G xH Vx): 

(X®L)f(gh) = Lj^ 

d 
= LJt 

f(ghexptX) 
t=o 

P^h-^HgexptAd^X) 
lt=o 

= (Ad(h)X®LoPl(h-l))f(g). 
This will be equal to p2(h'l)(X ® L)f(g) for all / € C°°(G xH Vi), g € G and 

h £ H if and only if K ® L is invariant under the action of H (modulo the kernel of 
the action of U ® Hom(Vi, V2)). 

Proposition 2. [KR2] 77ie ,/zrsi order equivariant linear differential operators D fac­
tor through the gradient. 

The operator D : C°°(G ®H Vi) -r C°°(G ®H V2) has a normal form 

j 

with {ij} a basis in q. Under the identification of Hom(Vi, V2) with V{ ® V2 the maps 
Lj take the form 

ii = Sc;®/jjb fjkev2 

with {e*} a basis of Vi and {e£} the dual basis. Define the homomorphism U : 
Hom(q,Vi) -•> V2 by 

U:Y;®ek ->/,-* 

so that 

D = UoV + I 

with 

V = J I 1 ^ - <8) eX <8> (>7 ® e f c). 
jk 
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Warning: In general, V will not be an equivariant operator. 

2. FIRST ORDER EQUIVARIANT DIFFERENTIAL OPERATORS ON BOUNDARIES OF 

SYMMETRIC SPACES 

2.L Parabolic subgroups. Let g = k + p be a Cartan decomposition of the semisim-
ple Lie algebra g of G with Cartan involution tf. Choose a maximal abelian subalgebra 
a C p and an ordering < in the dual a' of a. If E is the set of non vanishing restricted 
roots of g with respect to a then the Lie algebra has the root space decomposition 

g = go + £ S A 

A€E 

gA = {Xeg:[H,X] = \(H)X V H e a } . 

The subspace 
n = E SA 

A€2+ 

(^2 the set of positive roots) is a nilpotent subalgebra of g and the Lie algebra g has 
the Iwasawa decomposition 

g = k + a + n . 

In the root space decomposition the subspace g0 decomposes into a + m with m 
the centralizer of a in k. Upon setting 

A<0 A>0 

the decomposition becomes 

g = n + a + m + n . 

The groups A and N are the analytic subgroups (i.e. the connected Lie subgroups) 
of G with Lie algebra a and n respectively. M is the centralizer of A in K 

M = {keK:kak~1 = a Va G A} . 

Its Lie algebra is m. 
The subgroup MAN is a minimal parabolic subgroup aad S = G/MAN is the 

maximal boundary of the symmetric space G/K. 
Recall the example: Real hyperbolic space and its boundary. 

2.2. Representations of MAN. The equivariant differential operators on 

S = G/MAN 

are linear differential operators mapping sections of a homogeneous vector bundle 
G XMAN V onto sections of another bundle G XMAN W. These bundles are associated 
to representations (/>, V") of the subgroup MAN. 

At this point the restriction is made that the representations of MAN have to be 
irreducible. We will see, that for geometrically relevant representations this is not 
always the case. Up to now we are not able to handle the non irreducible case in full 
generality. 
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An irreducible representation (p, V) of MAN must be trivial when restricted to N 
(this follows e.g. from Lie's theorem) and scalar when restricted to A. It is therefore 
completely described by a character p of A and an irreducible representation S of M. 
We will write 

p(a) = a"I 

where aM stands for expp(H) if a = exp H, p. £ a', and 

p(m) = S(m) m € M. 

For the irreducible representation (p, V) we use the notation (p,S;V) or simply 
(fi,5). 

Of central importance in view of the gradient construction is the fact that Ad(m) 
for each m G M preserves the root space decomposition: 

Ad(m) : ga —• ga Va. 

The representation of M on the complexified space g£ will be denoted by (Ad5o, g£). 

Theorem 1. [KR2], 
If(S,V) is a complex irreducible unitary representation of M, then the tensor product 
(AdgQ ®S, g£ ® V) decomposes with multiplicities one: 

Ad9Q®S = 0 m / ^ 

wftere £/ie multiplicities mt are one. 

2.3. The characterisation of first order equivariant differential operators 
on boundaries of symmetric spaces. Starting with an irreducible representation 
(p,S; V) of MAN we choose a basis {ek} of V and denote the dual basis with {e*k}. 

Also choose an orthonormal basis {Yj} of g-\ with respect to the positive definite 
form 

(.,.) = -Be(.,d.) 

(where Bg is the Killing form). Then {dYj} will be an orthonormal basis in g\. 
The gradient operator, followed by the projection prt onto an irreducible subspace 

Vt in the tensor product decomposition g£ ® V = (BtVt takes the form 

prt o VA = Y^ YJ ® e*k ® pr*(tf^ (g) ejt). 

In order that this operator be equivariant, the characters in the corresponding 
MAN—representations have to be chosen appropriately. 

Observe that VA is a restricted gradient operator in the sense, that it is only the 
gradient with respect to a single root space <?_>• This is the reason for using the su­
perscript A in the notation. 
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For an irreducible unitary M—representation the Casimir operator 

Cs = — Y (̂<$*.Z)2 {Zk} orthonormal basis of m 
k 

acts as a scalar 

Cs = c(S)I. 

Recall that a root A £ E+ is simple, if it is not the sum of two positive roots. 
In the following formula, H\ £ a is determined by Bg(H, H\) = A(H) VH £ a. 
The following theorem, the main result in this lecture, is stated and proved in this 

form in [KR2]. 
Partial results in this direction were obtained by A. Cap, J. Slovak, V. Soucek [CSS] 

(series of papers in the years 1997-2000). Furthermore, in the setting of arbitrary par­
abolic subgroups, such a theorem is given by J. Slovak and V. Soucek: "Invariant 
operators of the first order on manifolds with a given parabolic structure", preprint 
2000 [SS]. The result is also discussed in 0rsted's paper [O]. 

Theorem 2. Assume that A is simple, that (/i,<5; V) is an irreducible complex repre­
sentation of MAN and that (St, Vt) is an irreducible component of the decomposition 
of (AdgA 0 o", gAC ® V) over M. If the representation of MAN on Vt is (fi + A, St) and 
if 

2»(Hx) = c(5) + c(Adlix)-c(6l) 
then prt o VA is a G—equivariant operator C°°(G XMAN V) -*• C"°(G x ^ Vt). Con­
versely, any first order equivariant operator 

D : C°°(G xMAN V) -> C°°(G xMAN W) 

(with irreducible actions of MAN on V and W) is of the form U o pr*VA with U a 
MAN—equivariant mapping Vt -> W and with pr̂ VA determined by the data above. 

2.4. Tensor product decompositions. Assume that M is a connected compact Lie 
group and T a maximal connected abelian subgroup (Cartan subgroup). Denote its 
Lie algebra by h and set 

hR = ih 

he = h + ih = hR + ihR. 

Unitary representations (<$, V) of M induce Lie algebra representations Sm : m —> 
End V. For H £ h 6**H is skew Hermitian and hence diagonalizable with imaginary 
eigenvalues. V decomposes into a sum of the eigenspaces 

V\ = {veV: S*(H)v = X(H)v VH £ hc] . 

The eigenvalues A are in (he)' (dual space) and restricted to h/* they are real. They 
are called the weights of the representation and the spaces V\ are called the weight 
spaces. 

The non vanishing weights of the adjoint representation (of M on m) are the roots 
a £ A. 
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Fix an ordering and denote the positive roots by A+ , the set of simple roots by fj . 
A weight A on he which is real on ha is dominant, if 

^ # > 0 V«€A+ 

it is (algebraically) integral, if 

2(A,Q) 

M2 Є Z Va Є Д . 

Any representation space is the direct sum of its weight spaces. The integral dom­
inant weights a are in one-to-one correspondence with the (equivalence classes of) 
irreducible representations 8a. 

We now refer to a theorem in representation theory which goes back to [PRV]. For 
a direct proof see [JKR]. 

Theorem 3. Consider any finite dimensional complex representation 5 of the com­
pact connected group M. Then the multiplicity of the representation 8^ (with integral 
dominant weight <y) in the decomposition of5®8a cannot exceed the dimension of the 
7 — a weight space of the representation 8. 

In particular, if all weight spaces of the representation 8 are one-dimensional, then 
8 ® Sa decomposes with multiplicities one. 

For minimal parabolic subgroups MAN, the compact group M need not be con­
nected. For the cases where M is connected, theorem 1 follows from this result. It only 
remains to verify that all weight spaces in Ad5a are one dimensional: 

The maximal abelian subalgebra h C m extends to a Cartan algebra h = h + a of 
g. The space g£ is the direct sum of the h—root spaces, say g7 such that 7Ja = ct. 
But these spaces g7 are known to be one-dimensional. The g7 are also the h—weight 
spaces of Ad<-.Q : Each of the g7 must belong to a different weight: 

7 ?- 7' and 7|a = 7 ; |a implies 7|h 7- 7I-1 • 

The argument given here is taken from [JKR]. It extends to the situation of general 
parabolic subgroups. The original proof in [KR2] of the multiplicity one result in the 
context of minimal parabolic subgroups was based on a detailed study of the subgroup 
M (including the cases in which M is not connected). 

2.5. General parabolic subgroups. A parabolic subgroup H of the semisimple Lie 
group of non compact type G is a closed subgroup, which contains a minimal parabolic 
subgroup MAN. 

Example. G= SL(n,R). 
The minimal parabolic subgroup is (conjugate to) the subgroup of upper triangular 

matrices MAN. The (general) parabolic subgroups which contain MAN are the block 
upper triangular subgroups, i.e. 
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(* * \ 
• 

• 

V 0 
* / 

These subgroups H have a decomposition 

H = MaAaNa. 

The group MaAa is the block diagonal part. The members of Ma have determinant 
±1 in each block along the diagonal. The elements of Aa are positive scalar matrices in 
each block along the diagonal, and the elements of N are upper triangular and equal 
to the identity in each diagonal block. 

The parabolic subgroups containing MAN are in one-to-one correspondence with 
the subsets Y\a of the set fj of simple (positive) roots of (g : a). (See e.g. A. Knapp, 
Representation theory of semisimple groups, p. 133.) They are obtained from f ] a as 
follows: 

a , 

Г5

+ 

д, 
n 5 

m 5 

{X 6 a : X(X) = 0 VA € f l J Q a 

{A€S + :A | a < ? áO} = S + \ A . 

{a G S : a|a, = 0} 
EA€r+ S\ 

m + Ea€A, So • 

Aa and N5 are two analytic subgroups with Lie algebra a5 and n5 respectively, and Ma 

is the centralizer of Aa in K. The Lie algebra of Ma is m5. 
For the parabolic subgroups MaAaNa there is a Langlands decomposition 

g = m5 + a5 + n5 + n5 

with n5 = dna. 
The multiplicity one theorem and the characterisation of the first order equivari-

ant differential operators were the main results formulated for the minimal parabolic 
groups. They both carry over verbatim to the general parabolic groups. There are some 
technical changes because e.g. the groups M need not be compact (with consequence 
for the definition of the Casimir operator). But over all the changes in the formulations 
and in the proofs are minor. A complete discussion is presented in [JKR]. 

As already mentioned, in independent work J. Slovak and V. Soucek proved the 
same characterisation theorem for equivariant first order differential operators [SS]. 
Proceeding by a case-by-case-analysis they established the multiplicity one result for 
the classical groups. 

Partial results on equivariant differential operators have also been obtained by 0rs-
tel [0]. In the following chapter we will have an occasion to come back to some related 
results contained in this paper. 
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2.6. Elements of the proof for the main theorem. First order differential oper­
ators have the normal form 

i 

with {Yj} an orthonormal basis of n (which is chosen such that each Yj belongs to 
some g-A). The elements Lj are in Hom(V, W) = V* ® W and can be written as 

I>; = £ 4 ® / ; * fskCW 
k 

where {ek} is a basis in V with dual basis {ej}. Defining U : Hom(n, V) -* W by 

U:4Yj®ek—+fjk 

the operator can be written as 

D = U o V + L0 

with V the gradient: 

V = 53*i®c;®(i»^®Cfc). 

1. Elements a E A act on V, VV as scalars according to the characters \i,v respec­
tively. This is written a* on V, au on W and similarly a"A on g^\: 

a-D = «• J l . e e í e / j . + J / e e l e / o . 
ifc 

= a-»a" Y *-HJ)y ® < ® /ifc + «"^,/ 2 / ® ê  ® /ofc . 
i* 

The operator D — a • D is in normal form and has to vanish. This is possible 

either if v = /i and / j * = 0 unless j = 0. This is the case of a zero 
order operator. It will not be considered any further. 

or if v = fi + A for some root A and fjk = 0 unless X(j) = A. 

This case leads to D = U oV\ with VA the gradient restricted to the root 
space g_A. 

2. Equivariance under the action of m £ M ensures that U : V -> W will be an 
intertwining operator. 

3. Invariance under the action of the subgroup N is equivalent to invariance under 
the induced action of n (since N is connected). On V and on W the action is 
trivial. It remains to verify that for all dY{ in simple root spaces 

(dY{)D = Y, $ > * ' *>] ® c* ® ^ W ® c*) = 0. 
A(i)=A ft 

It can be concluded that A must be a simple root, and thus [SY^ Yj] E a + m 
for all indices i , j which occur in the sum. 
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(dYi) D = Y, E ^ ' Y& ® c* ® UWY* ® e*) 
A(i)=A k 

= E E7 ® pw*Y» YJ\Vk ® * w - ®e*) • 
A(i)=A k 

The invariance condition becomes 

E * ® />* (I**. ̂ ])^ ® * w - ® c*) = o 

wiih summation such that \(i) = X(j) = A (the remaining brackets [tfVJ-, Yj] 
vanish). This tensor product is interpreted as a mapping 

A : gA ® V —* gA ® V 

followed by U. 
A lengthy calculation gives 

A = -fi(Hx)Igx ® Iv + E(^* ® a dgx)(^ ® Zk) 
k 

with {Zk} a basis for m. 
Finally this mapping is expressed in terms of the Casimir operators of the 

representations o~, AdgA and the representations St from the decomposition of 
S ® AdgA = ©<£/. 

The basic proposition is: 
Define E{j G Hom(gA,gA) by X{ -> Xh Xk -> 0 Ar 7- i, ({X,} basis in gA). 
If {Zj} is an orthonormal basis for m, then ^C.^[t?Xt,-^0]®^' = 2 Zk®a,dgxZk. 

The mapping _4 is: 

A = Yp^YuYj]®^®^ 

= Y^ptfYuYjlQEij. 
ij 

For the details, the reader is referred to [KR2] and [JKR]. 

3. THE POISSON TRANSFORM 

Let (//, S; V) be a representation of MAN and (p, W) a representation of K. If t : 
V -» W is an M—equivariant homomorphism: 

p(m) 0 t = to S(m) Vra G M 

then there is a Poisson transform 

P : c°°(o xMAN V) —+ c°°(o x * W). 
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It is defined by the formula 

Pf(g) = JpШ(gh)dk 
K 

this transform is G—equivariant for the G—action by left translation. 

Example. The M—equivariant map L$ defining Poisson transforms of vector fields 
and one-forms will be t = I — d for both n —> p and n —•> p. For X £ g set 

(XBf)(x) = ^-/(exp tX-x) xeB = G/K 
dt 

and similarly Xs on 5 = G/MAN. Then Xs € L7°°(G x M ^ n ) and XB € C°°(G xKp) 
are the projections of the right invariant vector fields to S and B respectively. 

Proposition 3. [KR1]. If B = G/K is irreducible as a symmetric space, with rank r 
and dimension n, then 

P{X
S) = ?—lxB 

n 
for all K E g. 

The symmetric space G/K is irreducible, if the representation Ad of K restricts to 
an irreducible representation on p. The rank is the dimension of a in the decomposition 
g = n + a + m + n. 

This example illustrates the basic feature of the Poisson transform as an intertwining 
operator. ' 

In the remainder of this section we will now use the Poisson transform to interpret 
the equivariant operators Ds on the boundary S = G/MAN as the "boundary differ­
ential operators" of equivariant operators DB on the symmetric space B = G/K. 

Definition. Ds : C°°(G XMAN V) -> C°°(G XMAN V) is the boundary operator for 
DB : C°°(G xK W) - r C°°(G xK W') if there exist Poisson transformations P and P' 
such that the following diagram commutes up to a multiplicative constant 

C°°(G XMAN V) — C°°(G XMAN V) 

C°°(G xK W) — 5 - ^ C°°(G xK W). 

We start with the situation that Ds = pr^VA is an equivariant differential operator 
as described in the main result of chapter 2. Recall that (/i, 5; V) is an irreducible 
representation of MAN and that the representation on the irreducible component Vt 
in gf ® V is given by (// + A, St). 

The operator 

Ds : preV* : c°°(G xMAN V) —> C~(G xMAN Ve) 

is then G—equivariant, given that A is a simple root and that the equation 

2n(Hx) = c(6) + c(AdgA) - c(6t) 



52 H. M. REIMANN 

holds. 

Suppose now that (p, IV) is an irreducible representation of K and 

L:V—+JV 

an M—equivariant homeomorphism with associated Poisson transform P. Then 

i* ® t: gf ® V —• p c (8) VV 
is M—equivariant. We assume now that there exists a K—invariant component {pjWj) 
of (Ad ® />, p c ® W) such that the following diagram commutes 

Ve -n£®V 

Wj -pC(g>KV 

The horizontal arrows are the inclusion maps and i1 is the restriction of L# ® L to V/. 
The Poisson integral obtained from */ will be denoted by P;. 

Theorem 4 (0rsted). With the above ms, Ds is the boundary differential 

operator of 

DB = prj o V 

with V the gradient operator of the symmetric space and prj the projection p c ® W -» 

J 

For a proof we refer to [0]. • 

4. COMPLEX HYPERBOLIC SPACE 

4.1. The boundary of complex hyperbolic space. Complex hyperbolic space is 
the symmetric space G/K with G = SU{n + 1,1) and K = S{U{n + 1) x 1/(1)). As a 
linear group G consists of the linear transformations g 6 SL{n + 2, C) which preserve 
the hermition form 

n 

vC )̂ = ]C c^i - c»+î „+i. 
0 

C acts as a transformation group on 

B = {ze Cn+1 : \z\ < 1} 

and on its boundary S = SB. This action is described by introducing inhomogeneous 
coordinates 

Sn+l 

The invariant cone (C> C) < 0 is mapped onto S, and the boundary of the cone onto 
S = dB. 
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On the Lie algebra level g = k + p is given as 

k = 

P = 

anti heгmitian , 

hermit i an 
0 

The root space decomposition is 

g = g-2a+g-a + a + m + g a + g2a 

= n + a + m + n . 

a is 1—dimensional {G/K is a symmetric space of real rank one) 

1 

with 

and 

a = RH with H = 

1 
Є P 

m = 

' 
(* 

\ 

1 * 1 \ * / 

anti hermitian C k 

g a = span{Yi,... ,y2 n} 

Y = -
2 

/ -eî \ 

e i e i 

\ 
e? / 

Єi = 

/°\ 
1 

\ o / 

, j = 1 , . . . ,71 

Yn+j - õ 

/ eî \ 

e i e i 

\ - e i / 

g2a = RУ2n+l WІtҺ У 2 n + 1 = -
/ 1 1 \ 

V - i 1 / 
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The Cartan involution d on g is 

dX = -X* 

and g = k + p is the decomposition of g into the ±1 eigenspaces for $. 
A'basis for p (orthogonal with respect to the Killing form) is {Xo, •. • ,-̂ 2n-i-i} with 

X0 = H 

Xj = (l-tf)y,- j = l , . . . , 2 n + l . 

At the origin 0 = eK of the symmetric space B = G/K the elements Xj G p can be 
identified with 

*i П%J 
д 

дxj 
j = l,-

Xn+j rч.« 
д 

дyj 
І = l,-

X0 
rv.» 

д 
дx0 

X^n+l »-ч»» 
д 

я.. 

Geometric description of G/K = B C C n + 1 

Take p(z) = ^ ( l - | z | 2 ) , z G C n + 1 as the defining function for the unit ball B C C n + 1 . 
Then 

2 *p(z) 

defines a Kahler form on the tangent space TB to the complex hyperbolic space B. 
The corresponding Kahler metric (Riemannian metric) is 

g(.,.) = -il(.,J.). 

Here, J is the complex structure (multiplication by i): 

J± = ± 
dxk dyk 

J A = -A. 
dyk dxk 

On the boundary S = dB set tf = J dp. The horizontal tangent space HS C TS is 
given by {X eTS: d(X) = 0} and the Levi form on HS is 

flb(.,.) = * » ( . , J . ) . 

Observe that HS is the maximal J invariant subbundle of TS. The contact form d 
determines the Reeb vector field T G TS through the equations 

T?(T) = 1 and T_.di7 = 0. 

The tangent space TS is identified with the bundle G *MAN n and the horizontal 
space HS corresponds to the subbundle G XMAN g-a- On G XMAN n the group MAN 
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acts by pr^ o Ad. It is at this point that the difficulties arise: the action pr-- o Ad is 
not irreducible. In fact, for X G n 

adX : g_a —•> a + m + n, 

but this is no longer true for g-2a- When X G g a , then 

adK : g_2a —> g-a • 

On the other hand, the action of MAN by prg_Q o Ad is an irreducible action on g_a. 
Therefore the horizontal bundle HS ~ G XMAN g-a behaves much better. It is the 
natural space in our setting. 

The bundle of contact forms (i.e. differential 1— forms a on TS with ker a = HS is 
the dual of the factor bundle TS/HS). Its fiber is identified with 

(n /g -a ) ' = g2a • 

This is a real line bundle wich will be denoted by L2a-

4.2. Contact deformations: where an invariant differential operator appears. 
A contact transformation ip : S -> S is a diffeomorphism which preserves the contact 
structure (the horizontal bundle HS): 

<p*HS = HS. 

The group actions are contact transformations: g G G acts on S = G/MAN by left 
translations. The identification of HS with G XMAN g-a shows, that HS is preserved 
under left translations. A contact deformation V is a vector field on 5, which generates 
a flow of contact mappings ipt. It is well known (theorem of P. Lieberman) that contact 
deformations can be obtained from functions p : S —> R by a first order differential 
operator Ds: 

V = Dsp = pT + Jgrad0p 

where T is the Reeb vector field and grad0p the horizontal gradient of p, i.e. the 
horizontal field determined by 

Xp = go(X, grad0p) for all X G HS. 

It turns out that Ds has an interpretation as an equivariant differential operator 

D : C°°(G XMAN L-2Q) —> C°°(G XMAN n ) . 

In particular, the "function" p has to be interpreted as a section in the line bundle 

G XMAN £-2a (dual to G XMAN I^a)-

In our previous notation, the expression for Ds is 
n 

DS = Y,(Yj ® r ® rn+i - rn+i ® r ® Y5) + 1 ® r ® r2n+i. 

Ds is the sum of a first order and a zero order differential operator. The first order 
part of the operator is 

JoVa 

where V° is the gradient operator with respect to g_a, and {Vl,... ,Y2n} is an or­
thogonal basis of g_a. 
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The operator J commutes with the action of M, since M acts on g-o by unitary 
transformations. 

Let us inspect the N—invariance of Ds by looking at the induced action of n: For 

Wen 
n 

(#Yi)-Ds = ] [ > ? y , - , y j ] ® r ® y n + 1 - [ i > y i , y „ + j ] ® i - ® y j ) 

+ I®V®prg_a([di,Y2n+1}). 

We need the following facts: 

[dYi,Yj}em for i ^ j 

(and m acts trivially on L2a). 

[dYi,Yi\ = - i f f (=[^Yn+t,Y i]) and 

tf-r = 2-r. 

[i^,Y2n+1] = Yn+i i = l , . . . , n 

[i?Yn+t-,Y2n+1] = -Yi i = l , . . . , n . 

These facts give for i = 1, . . . , n. 

woD5 = I^a^Y;]^^^ 
= 0 

(and similarly for i = n -f 1, . . . , n). 
Let us again point out that Ds is not one of the operators considered in the second 

chapter, because it maps into C°°(G XMAN**) and the bundle G x MAN n is constructed 
from the representation pr^ o Ad of MAN, which is not an irreducible representation. 

4.3. The Ahlfors operator. On complex hyperbolic space,the operators 

D = J o V C°°(G xK R) —+ C°°(G xK p) 
S = pr(2,0) o V C°°(G xK p) —> C°°(G xK pm) 

are equivariant. The first operator describes taking the symplectic gradient (with re­
spect to the Kahler form fi) and the second operator is the Ahlfors operator (with 
respect to the Kahler metric g). We write p[2>o] for the space of symmetric 2—tensors 
of trace zero and prpfl) for the corresponding projection operator. 

On the boundary S = 9B, the operator 

Ds : C°°(G XMAN L^a) —> C°°(G XMAN n) 

is equivariant. It describes the construction of contact deformations. 
One is tempted to define a variant of the Ahlfors operator acting on C°°(G XMAN**). 

We were not able to construct such an equivariant operator. A main difficulty lies in 
the circumstance, that the representation of M.4N on n is not irreducible. 
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It turns out that instead a second order equivariant operator 

Ts : C°°(G XMAN L-2a) - » C~(G XMAN gl?'°]) 

exists which plays the role of its counterpart T = S o £), on the symmetric space. 

The operator Ts 

Set 

£ 2n 

ejk = (Wj ® m + tf n ® tfv}) ® i - — _ C ^ ® ̂ ® x 

where 1 stands for the number 1 regarded as an element of the fibre R of L-2a. Then 
Ts is given by 

n 

^ = E ( ( n n - K + i y n + 0 ® l * ® ( ^ n + ^ + ^ , n + i ) 

+ (yn+i , Yk + y*yn+j) ® r ® (£«+;>+* - ejk). 

S:C°°(GxMANL-2a) - ^ C°°(GxM^vn) 

- ^ C°°(GXM>W gL2;01) 

£ : C°°(G xK R) A C°°(G x * p) A C°°(G xK pi2-0-). 

The following theorem, the main result from [KR1], says that Ds and T s are the 
boundary differential operators of the equivariant operators D and T on the symmetric 
space G/K. 

Theorem 5. 

DP _ 2 J _ ± 2 ) p ^ 
2n + l 

__p = (n + 2)(n + 3 ) r T 5 

n(n + l) 

The Poisson transform P on the left hand side of these equations is the usual Poisson 
transform. On the right hand side of the first equation P goes with t = I — _J : n —> p 
and P on the right hand side of the second equation is determined by the restriction 
of ( / - t? )®( / - i? ) tog l _ 2 ; 0 1 . 

4.4. Application: Symplecticand quasiconformal extension. If v £ C°°(GXMAN 

n) is a contact deformation, then w = Pv is a Hamiltonian vector field (with respect 
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to the symplectic structure $7). 

« I>s 

p *-v 

p cP 

h >w. 

It turns out that, up to a constant, the vector field v is the boundary value of the 
vector field w on B. This means, that the contact deformation v on the boundary 
S has a continuous extension kw (k constant) to a symplectic transformation: The 
contact flow extends to a ft—symplectic flow. 

Quasiconformal mappings y> : M -> M on a metric space (M,d) are homeomor-
phisms which have bounded distortion: 

H(г,r):= 

max 
d(x,y) = r d(f(x),f(y)) 

min 
d(x,У) = r d(f(x),f(y)) 

There exists a constant K such that 

H(x) := limsupH(x,r) < K for all x G M. 
r-fO 

On complex hyperbolic space B = G/K the metric d is the Riemannian metric 
defined by the invariant (Kahler) metric g. 

On the boundary S = G/MAN d is the Carnot-Caratheodory metric derived from 
the Levi metric on the horizontal space HS. The quasiconformal mappings here are 
generalised contact transforms with a uniform bound on the distortion. 

Quasiconformal deformations are vector fields which generate one-parameter flows of 
quasiconformal mappings. The distortion condition on the vector field is the condition 
that the Ahlfors operator maps it into a bounded quantity. The relevant theorems in 
our context are: 

A vector field w o n a Riemannian manifold generates a flow of quasiconformal 
mappings (ft if 

HStvlloo < C. 

Here, S is the Ahlfors operator. For a proof of this result in the Euclidean case see 
[Rl] and in the general case see [P]. 

A vector field v on S = G/MAN (i.e. on the boundary of complex hyperbolic space) 
generates a flow of quasiconformal mappings fa -f v = Dsp and if 

l i r 5

P | | o o < c 

For a proof see [KR1] (the case of the Heisenberg group) and [R2\ (the case of the 
boundary of a strictly pseudoconvex domain). The constant of quasiconformality K(t) 
for (ft respectively fa is of exponential growth: 

K(t) < e

c o n s t l<l. 
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From the commutativity of the diagram up to a multiplicative constant 

-2 >т»p 

I' 
h—^w = Dh1-+Th 

it can be concluded that Th G L°°(G xK p-2-0-) whenever Tsp G L°°(G XMAN g.;0 1). 
Since we already know that the contact deformation v = Dsp extends to a Hamiltonian 
vector field kw = k Dh (k constant) it can now be concluded that the quasiconformal 
deformation v = Dsp with ||Tp||oo < c extends to a quasiconformal deformation kw 
(with ||.Su;||oo < c') on the complex hyperbolic space. 

Corollary 4. [KR1] Quasiconformal deformations on S extend to symplectic quasi­
conformal deformations in B. 

Since symplectic mappings preserve the volume element, it follows that symplectic 
quasiconformal mappings are quasiisometries (with respect to the Kahler metric g). 
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