WSGP 21

Hans Martin Reimann
Equivariant differential operators

In: Jan Slovak and Martin Cadek (eds.): Proceedings of the 21st Winter School ”Geometry and
Physics”. Circolo Matematico di Palermo, Palermo, 2002. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 69. pp. [37]-59.

Persistent URL: http://dml.cz/dmlcz/701687

Terms of use:

© Circolo Matematico di Palermo, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/701687
http://dml.cz

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie II, Suppl. 69 (2002), pp. 37-59

EQUIVARIANT DIFFERENTIAL OPERATORS

H.M. REIMANN

1. EQUIVARIANT DIFFERENTIAL OPERATORS ON HOMOGENEOUS SPACES

1.1. Homogeneous vector bundles. We consider homogeneous spaces of the form
S = G/H where G is a semisimple Lie group with finite center and H a closed
subgroup.

If (p,V) is a representation of H, then the homogeneous vector bundle G xy V
associated with this representation is the quotient space of G x V under the equivalence

relation
(9,v) ~ (gh,p(h")v) .

The homogeneous vector bundle G x 4V is a bundle over G/ H. The projection mapping
p:GxgV — G/H

maps the equivalence class of (g,k) to gH.

Example. The tangent space TS of S = G/H.

The Lie algebras of G and its subgroup H are denoted by g and h respectively. The
tangent space of S at the identity coset 0 = eH is identified with g/h.

To an element X +h € g/h there corresponds the equivalence class of curves through
0 € S with representative exptX H, t € R. At the point gH € S, the representative is

gexptX H = ghexptAd(h™")X H.
An element in T,x(G/H) is therefore given by an equivalence class:
(9, X +h) ~ (gh,Ad(h™1)X +h).

The tangent space T(G/H) is thus the homogeneous vector bundle G x g g/h and
the representation of H on g/h is the adjoint representation on the quotient space

Adh(X +h) = Ad(h)X +h.

Lectures given at the Winter School on “Geometry and Physics” in Srni 2001.
This exposition is based on joint work with A. Koranyi and on a forthcoming paper with K. Johnson

and A. Koranyi.
The paper is in final form and no version of it will be submitted elsewhere.
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Fix a subspace q of g which is complementary to h and denote the projection onto
q along h by pq. Then pq - Ad is a representation of H on q.

Special case: Symmetric spaces.
If G is a semisimple Lie group of the non compact type and K a maximal compact
subgroup, then one has the Cartan decomposition

of the Lie algebra g of G into an orthogonal (under the Killing form) direct product
of the +1 eigenspaces of the Cartan involution J. The subalgebra k is the Lie algebra
of K and p is a complementary vector subspace.

In this situation Ad(k) maps p into itself (for all k € K) and therefore

T(G/K)=G xkp
with K acting by Ad on p.

Given local trivialisations Uy x V around 0 = eH and Uy x V around g0 = g H left
translation by g induces a mapping (denoted by 7,) from a neighbourhood of {0} x V
inUpgxVitoU, xV.

If s:G/H — G xg V is a section, then its lift f, : G = V is defined by

filg) =1;"5(g0).
Replacing g by gh, h € H, this leads to
fulgh) = (1s4)7's(gh0) = ;7 7, (g 0)
= Th-lfa(g)

with 7, a representation (p, V) of H on the vector space V.
The lifts of the C*°—sections make up the space C®°(G xy V) of C*°—functions
f:G =V satisfying

flgh) =p(h™")f(9) 9g€G,heH.
Conversely, to any f € C*(G xj V) there corresponds a section sy

s5(90) = (9, f(9))-

Example. Vector fields on real hyperbolic space.

S0(n,1) = {g € SL(n+1) : (g9z,9z) = (z,z) Vz € R}
with (z,z) = 37 23 - 22,
G = S0y(n,1) (component in SO(n,1) which contains the neutral element),
K = S0(n).

The corresponding Lie algebra g of SO(n,1) decomposes as g = k + p with
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*
k = { || anti-symmetric Lie algebra of K
0

*
p = {( ___) symmetric} complementary subspace.
*

If 9(X) = —X* denotes the Cartan involution on g, then k and p are its +1 and
—1 eigenspaces respectively.

Real hyperbolic space is the symmetric space G/K. It can be realized as the unit
ball

B={z€R":|z| <1}

with the hyperbolic metric ds = ﬁm. The group G acts on B as the group of
conformal transformations. (This is the Poincaré model of hyperbolic space.)

The natural action of the conformal transformations 7, (g € G) on the tangent space
is given by

(10)(z) = (15)a(97'2) v(g7 ).

Set f(g) = (7,'v)(0). Then

f(gk) = (1) v(gk0) = ril7y v(g0)
= . f(9).

In this case 7,!(0) is simply k7!, if the standard representation of K = SO(n) by

its n X n matrix is written as k (in the following this representation will be denoted
by &;).

In this particularly simple case, the representation Ad of K on p is just §;. This
representation is self contragradient.

1.2. The gradient—construction of Stein-Weiss. If S =-G/K is a symmetric
space as in the example above, with

g=k+p

and K acting on p by Ad, then for any f € C°(G xk V) the gradient Vf can be
defined as an element in C®°(G xx Hom(p, V)):

VH(X) = Xfe)= G| floexptx),
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If g is replaced by gk

VIGhX = 3| flokewtx)
= = ,=0 f(gexp Ad(k)Xk)
= oK) 5| SewAdRx)

= p(k™")(Ad(K)X f)(g).
The tensor representation Ad¥ ® p on p* ® V = Hom(p, V) is defined by
(Ad¥®@p)(k™)T =p(k™")oT o Ad(k) T € Hom(p,V)
thus Vf is in C®(G xk p* ® V) with K acting by AdY® pon p* @ V.
Vi(gk) = (Ad" ® p)(k™")V£(g).

Ad” denotes the contragradient representation: Ad¥(k) = Ad*(k™!). In general, the
representation Ad¥ ® p of K is not irreducible

AdY @ p = @ me py, PRV =0V™

with multiplicities m, € N. If pr, denotes the projection onto the space V,™¢, then
preo V is a G—equivariant differential operator from C®(G x g V) to C®(G x g Vi).
This gradient construction is due to Stein and Weiss [SW].

Example. Real hyperbolic space.
Here, Ad" on p is equivalent to the standard representation é; of K = SO(n). The
projection operators on Hom(R",R") = p* @ p are determined by

* ST = %(T+T")—%(traceT)I
AT = %(T—T")

DT = ;ll-(tra.ce I
such that T = ST + AT + DT, for all T € Hom(R",R").

In the case of a symmetric space, the gradient operator V is an equivariant op-
erator, and so are the operators pry o V. In the more general situation, when G/H
is a homogeneous space, it can at best be hoped that pr,oV is an equivariant operator.

Example. The boundary S of real hyperbolic space.
SO(n,1) = {g € SL(n + ,R) : (gz,g2) = (z,2) Vz R},

n
(z,2) = sz —Thy
1
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The Klein model of hyperbolic space is obtained by introducing inhomogeneous

coordinates
T

z = i=1,...,n.

Tntl
The invariant cone {z € R**! : (z,z) < 0} is mapped onto the unit ball
B={|z| <1} CR"
and its boundary is mapped onto the sphere
S=0BCR".
B is the symmetric space
G/K = S0(n,1)/S0(n)
and S is the homogeneous space
G/MAN

with MAN a parabolic subgroup of G = SOy(n,1), which can be taken to be the
stabilizer subgroup of the point e, = (0,...,0,1) € S

M = SO(n-1)
A = R
N = R

The Lie algebra decomposes as

g=n+a+m+n=n+h
with h the Lie algebra of MAN.

In this situation, Ad(h) maps T into i + a + m, for all A € MAN. Furthermore,
since Ad(m) maps 7 into itself (for all m € M), the gradient construction is still
an M—invariant construction, yet starting with a section f of a homogeneous vector
bundle over MAN, the result, V f, will not be a section of such a bundle.

However it turns out, that after taking the projection onto an M —invariant sub-
space, the H—representation can be adjusted such that proV is in fact an equivariant
differential operator.

This was discovered by Fegan [F]. In his work, Fegan gave the complete classification
of the conformally equivariant first order differential operators. (The group G acts by
conformal transformations on the sphere S).

1.3. Equivariant operators on homogeneous spaces. Left invariant differential
operators on G are given by the Lie algebra vector fields X € g :

d
Xfl9)= 5| flgexptX).
t=0
Left translation by @ € G is given by g — ag. The induced transformation on
functions is

7.f(9) = f(a™'g).

Left invariance means that

Ta(Xf)=X(1f) a€G.
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More general, let 2(h) be the universal envelopping algebra of the Lie algebra h (of
the closed subgroup H C G) and denote Y — Y its principal automorphism induced
by the Lie algebra automorphism Y — —Y. Representations p of H on a vector space
V induce representations p, of h and of U(h) on V.

The tensor product of the moduli #(g) and Hom(V1, V2) over U(h) is the direct

product modulo the equivalence relation determined by the linear span J of the ele-
ments

YURL-U®(Lop.Y')
with U € U(g), Y € g, L € Hom(V}, V). This product is written
U(g) Buw) Hom(V1, V3).
Elements U ® L € U(g) ®un) Hom(V1, V;) act on functions f € C*(G xux W) by
(UeL)f(g) = LUf)g)-

The definition is clearly left invariant, it commutes with 7,, a € G.
The action is well defined, since the elements in J act trivially:
d

La

(YU ® L)f(g) (Uf)(gexptY)

t=0

d
Lz

1

p(exp —tY)(U(f)(9))

t=0

Lp.(Y')(U£)(9) = (U® Lo p.(Y") f(9)

I

) a
Let q be a subspace of g complementary to h and let {Y;,...,Y,} be a basis of q.

For a multiindex a = (o,... , ) of natural numbers write Y for Y, ... Y, .

Normal form.
Every element in U(g) ®um) Hom(V}, V2) can uniquely be written in the normal form

Y Y eL,

with L, € Hom(W, V2).
(For a proof see [KR2], proposition 1.1.)

The elements in U(g) ®u(n) Hom(V1, V;) describe all left invariant linear differential
operators from C®(G xg V1) to C®(G,V;). A further condition is required which
guarantees that these operators map into C®(G x g V2).

The subgroup H acts on U(g) by the adjoint representation and on Hom(W;, V2) by
L —s pay(h)oLopi(h™') L€ Hom(W,Vs).

The tensor product action leaves the subspace J invariant, hence. H acts on the
tensor product over U(h). The set of H—invariant elements is denoted by

(U(8) ®uw) Hom(V3, V)" .
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Definition. A G—equivariant differential operator D is a G—left invariant linear
differential operator between homogeneous vector bundles

D:C>®(G xg V) — C=(G xug Vo).

Proposition 1. [KR2]. The space of G—equivariant differential operators from (G xy
W) to (G xg V2) is isomorphic to

(U(8) Quewy Hom(V, Vo))" .

Various ways of looking at equivariant linear differential operators are known from
the literature, e.g. N. Wallach: Harmonic analysis on homogeneous space, 1973. The
present proposition is quite explicit. It is specially designed to suit our purposes.

The essence of the argument leading to the above proposition is contained in the
following little calculation:

For X € g, L € Hom(W,V2), f € C°(G xug V1) :

(X ® L)f(gh) f(ghexptX)

t=0

LAl p(h ) flgexptAd(h)X)
t=0

(Ad(R)X ® Lo pi(h™"))f(g).

This will be equal to pa(h™*)(X ® L)f(g) for all f € C®(G xyx V1), g € G and
h € H if and only if X ® L is invariant under the action of H (modulo the kernel of
the action of U ® Hom(V}, V2)). '

d
L%

Proposition 2. [KR2] The first order equivariant linear differential operators D fac-
tor through the gradient.

The operator D : C®°(G ®u Vi) = C*(G @y V2) has a normal form
D=)Y;®Li+L

i
with {Y;} a basis in q. Under the identification of Hom(V}, V,) with V}* ® V; the maps

L; take the form
Li=) ci®fu fin€Ve

with {ex} a basis of V; and {e}} the dual basis. Define the homomorphism U :
Hom(q, V1) = V2 by

U:Y'®er — fir
so that
D=UoV+L
with

V=) Y00 @e)-
ik .
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Warning: In general, V will not be an equivariant operator.

2. FIRST ORDER EQUIVARIANT DIFFERENTIAL OPERATORS ON BOUNDARIES OF
SYMMETRIC SPACES

2.1. Parabolic subgroups. Let g = k+p be a Cartan decomposition of the semisim-
ple Lie algebra g of G with Cartan involution Y. Choose a maximal abelian subalgebra
a C p and an ordering < in the dual a’ of a. If ¥ is the set of non vanishing restricted
roots of g with respect to a then the Lie algebra has the root space decomposition

g = 8B+ 8
A€z
{Xeg:[H,X]=MH)X VHE€a}.

n= ng

ezt

The subspace

(F the set of positive roots) is a nilpotent subalgebra of g and the Lie algebra g has
the Iwasawa decomposition

g=k+a+n.

In the root space decomposition the subspace gy decomposes into a + m with m
the centralizer of a in k. Upon setting

n= Zg,\ = 9

A<0 A>0
the decomposition becomes

g=n+a+m-+n.

The groups A and N are the analytic subgroups (i.e. the connected Lie subgroups)
of G with Lie algebra a and n respectively. M is the centralizer of A in A

M={k€K:kak™'=a Vac A}.

Its Lie algebra is m.

The subgroup MAN is a minimal parabolic subgroup a.n.d S = G/MAN is the
maximal boundary of the symmetric space G/ K.

Recall the example: Real hyperbolic space and its boundary.

2.2. Representations of MAN. The equivariant differential operators on
S = G/MAN

are linear differential operators mapping sections of a homogeneous vector bundle
G xpmav V onto sections of another bundle G X pav W. These bundles are associated
to representations (p, V') of the subgroup MAN.

At this point the restriction is made that the representations of MAN have to be
irreducible. We will see, that for geometrically relevant representations this is not
always the case. Up to now we are not able to handle the non irreducible case in full
generality.
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An irreducible representation (p, V) of MAN must be trivial when restricted to N
(this follows e.g. from Lie’s theorem) and scalar when restricted to A. It is therefore
completely described by a character u of A and an irreducible representation é of M.

We will write
pla) = a#I
where a* stands for exp u(H) if a = exp H, p € @', and
p(m)=46m) meM.

For the irreducible representation (p,V) we use the notation (p,d;V’) or simply
(u, 6).

Of central importance in view of the gradient construction is the fact that Ad(m)
for each m € M preserves the root space decomposition:

Ad(m): go — 8a Va.
The representation of M on the complexified space g€ will be denoted by (Ad,,, g).

Theorem 1. [KR2].

If (8,V) is a complez irreducible unitary representation of M, then the tensor product
(Ad,, ® 4, g€ ® V) decomposes with multiplicities one:

Ady,, ®4 = @mz&
4

gg@V = @‘/"m[
¢

where the multiplicities m, are one.

2.3. The characterisation of first order equivariant differential operators
on boundaries of symmetric spaces. Starting with an irreducible representation
(u,8; V) of MAN we choose a basis {ex} of V and denote the dual basis with {e}}.

Also choose an orthonormal basis {Y;} of g_» with respect to the positive definite
form :

(.,.)=—Bg(.,9.)

(where By is the Killing form). Then {9Y;} will be an orthonormal basis in g).
The gradient operator, followed by the projection pr, onto an irreducible subspace
V¢ in the tensor product decomposition gac ®V = @,V, takes the form

1)1'¢OVA = Z)ﬁ@ei@pn(ﬁ)’,-@ek).
ik
In order that this operator be equivariant, the characters in the corresponding
MAN —representations have to be chosen appropriately.
Observe that V* is a restricted gradient operator in the sense, that it is only the

gradient with respect to a single root space g_». This is the reason for using the su-
perscript A in the notation.
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For an irreducible unitary M —representation the Casimir operator

Cs = - Z(J.Z ) {Z.} orthonormal basis of m
k

acts as a scalar
Cs=c(9)I.

Recall that a root A € X, is simple, if it is not the sum of two positive roots.

In the following formula, H) € a is determined by Bg(H, H)) = A(H) VH € a.

The following theorem, the main result in this lecture, is stated and proved in this
form in [KR2].

Partial results in this direction were obtained by A. Cap, J. Slovak, V. Soucek [CSS)
(series of papers in the years 1997-2000). Furthermore, in the setting of arbitrary par-
abolic subgroups, such a theorem is given by J. Slovdk and V. Souéek: ”"Invariant
operators of the first order on manifolds with a given parabolic structure”, preprint
2000 [SS]. The result is also discussed in @rsted’s paper [O].

Theorem 2. Assume that A is simple, that (u,6;V) is an irreducible complez repre-
sentation of MAN and that (6, Vi) is an irreducible component of the decomposition
of (Adg, ®4, £°® V') over M. If the representation of MAN on V, is (u+ A, 8,) and

if
2u(H) = c(6) + o(Adg,) — (&)
then pry o V* is a G—equivariant operator C®(G Xpan V) = C®(G X pan V;). Con-
versely, any first order equivariant operator
D: C°°(G X MAN V) - Coo(G X MAN W)

(with irreducible actions of MAN on V and W) is of the form U o pryV* with U a
MAN —equivariant mapping V; = W and with pr,V> determined by the data above.

2.4. Tensor product decompositions. Assume that M is a connected compact Lie
group and T a maximal connected abelian subgroup (Cartan subgroup). Denote its
Lie algebra by h and set

hg = ¢h
hec = h+4+ih=hg+hz.

Unitary representations (6,V) of M induce Lie algebra representations 4. : m —
EndV. For H € h é.H is skew Hermitian and hence diagonalizable with imaginary
eigenvalues. V decomposes into a sum of the eigenspaces

W={veV:aHwv=MNHv VHEhc}.

The eigenvalues ) are in (h¢)’ (dual space) and restricted to hg they are real. They
are called the weights of the representation and the spaces V) are called the weight
spaces.

The non vanishing weights of the adjoint representation (of M on m) are the roots
a € A.
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Fix an ordering and denote the positive roots by A*, the set of simple roots by [].
A weight X on h¢ which is real on hp is dominant, if
2(\, a)
|o?

>0 VaeA*?

it is (algebraically) integral, if
2(\ a)

———€Z VaceA.
|of?
Any representation space is the direct sum of its weight spaces. The integral dom-
inant weights o are in one-to-one correspondence with the (equivalence classes of)
irreducible representations J,.
We now refer to a theorem in representation theory which goes back to [PRV]. For
a direct proof see [JKR].

Theorem 3. Consider any finite dimensional complex representation & of the com-
pact connected group M. Then the multiplicity of the representation 6. (with integral
dominant weight v) in the decomposition of § ® 6, cannot ezceed the dimension of the
v — a weight space of the representation 6.

In particular, if all weight spaces of the representation § are one-dimensional, then
0 ® 8, decomposes with multiplicities one.

For minimal parabolic subgroups MAN, the compact group M need not be con-
nected. For the cases where M is connected, theorem 1 follows from this result. It only
remains to verify that all weight spaces in Ad,, are one dimensional:

The maximal abelian subalgebra h C m extends to a Cartan algebra h=h+aof
g. The space g€ is the direct sum of the h—root spaces, say g, such that 7| = a.
But these spaces g, are known to be one-dimensional. The g, are also the h—weight
spaces of Ady, : Each of the g, must belong to a different weight:

'

7# 7" and qla =7l implies 7|n # ¥'In-

The argument given here is taken from [JKR]. It extends to the situation of general
parabolic subgroups. The original proof in [KR2] of the multiplicity one result in the
context of minimal parabolic subgroups was based on a detailed study of the subgroup
M (including the cases in which M is not connected).

2.5. General parabolic subgroups. A parabolic subgroup H of the semisimple Lie

group of non compact type G is a closed subgroup, which contains a minimal parabolic
subgroup MAN.

Example. G = SL(n,R).

The minimal parabolic subgroup is (conjugate to) the subgroup of upper triangular
matrices MAN. The (general) parabolic subgroups which contain MAN are the block
upper triangular subgroups, i.e.
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0 *

These subgroups H have a decomposition
H = M,A,N,.

The group M, A, is the block diagonal part. The members of M, have determinant
+1 in each block along the diagonal. The elements of A, are positive scalar matrices in

each block along the diagonal, and the elements of N are upper triangular and equal
to the identity in each diagonal block.

The parabolic subgroups containing MAN are in one-to-one correspondence with
the subsets [], of the set ] of simple (positive) roots of (g : a). (See e.g. A. Knapp,

Representation theory of semisimple groups, p. 133.) They are obtained from [], as
follows:

a, {Xea: A(X)=0V)e]],}Ca
r¥ {AexTt: A, #0} =St \A,

I

A, = {a€X:al., =0}
n, = Ujeri 8
m, = m+ Yea, Ba-

A, and N, are two analytic subgroups with Lie algebra a, and n, respectively, and M,
is the centralizer of A, in K. The Lie algebra of M, is m,.
For the parabolic subgroups M,A,N, there is a Langlands decomposition

g=ms+aa+na+ﬁa

with i, = Jn,. :

The multiplicity one theorem and the characterisation of the first order equivari-
ant differential operators were the main results formulated for the minimal parabolic
groups. They both carry over verbatim to the general parabolic groups. There are some
technical changes because e.g. the groups M need not be compact (with consequence
for the definition of the Casimir operator). But over all the changes in the formulations
and in the proofs are minor. A complete discussion is presented in [JKR].

As already mentioned, in independent work J. Slovak and V. Soucek proved the
same characterisation theorem for equivariant first order differential operators [SS].
Proceeding by a case-by-case-analysis they established the multiplicity one result for
the classical groups.

Partial results on equivariant differential operators have also been obtained by Qrs-
tel [O]. In the following chapter we will have an occasion to come back to some related
results contained in this paper.
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2.6. Elements of the proof for the main theorem. First order differential oper-
ators have the normal form

D=)Y;®Lj+Lo

J

with {Y;} an orthonormal basis of @ (which is chosen such that each Y; belongs to
some g-»). The elements L; are in Hom(V, W) = V* ® W and can be written as

Li=) e®fix fuCW
k

where {ex} is a basis in V with dual basis {e}}. Defining U : Hom(@, V) = W by
U:9Y;®@ex — fix
the operator can be written as
D=UoV+Lg
with V the gradient:

V=) Y8e¢®0Y;®e).
ik
1. Elements a € A act on V, W as scalars according to the characters p,v respec-
tively. This is written a* on V, @” on W and similarly a=* on g_»:

a- (ZYj®e;®f,~k+ZI®e;®f0k)
ik k

aba Z a Y @ €} @ fix +a"*a” Z I® e ® for-
ik

a-D

The operator D — a - D is in normal form and has to vanish. This is possible

either  if v = p and fjx = 0 unless j = 0. This is the case of a zero
order operator. It will not be considered any further.

or if v = p + ) for some root A and f;x = 0 unless A(5) = A.

This case leads to D = U o V) with V), the gradient restricted to the root
space g-».
2. Equivariance under the action of m € M ensures that U : V — W will be an
intertwining operator.
3. Invariance under the action of the subgroup N is equivalent to invariance under
the induced action of n (since N is connected). On V and on W the action is
trivial. It remains to verify that for all 9Y; in simple root spaces

@YD= ) > [¥Y,Y|®@e@UWY;®e) =0.
A)=X &

It can be concluded that A must be a simple root, and thus [9Y;,Y;] € a+ m
for all indices 7, j which occur in the sum.
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(¥Y;)- D

3 Y Y, Yl @6 e UWY; @ e)

AG)=r K

= Y ) I19p(BY;,Y]))ei @ UMWY, ®ex).

AG)=A K
The invariance condition becomes
DY@ pl([PY;, V;))ei @ U(WY; @ ex) = 0
ijk
with summation such that A(i) = A(J) = A (the remaining brackets [9Y;,Y;]
vanish). This tensor product is interpreted as a mapping

A: 82V — gV

followed by U.
A lengthy calculation gives

A=—p(H\)lg ® Iy + ) (6. ® adg,)(Zk ® Z)
k

with {Z} a basis for m.
Finally this mapping is expressed in terms of the Casimir operators of the

representations 4, Adg, and the representations J; from the decomposition of
f® Adg‘\ = @®y.
The basic proposition is:

Define E;; € Hom(gy,gx) by Xi = X;, Xix = 0 k #4, ({X;} basis in g)).
If {Z;} is an orthonormal basis for m, then 3. .[9X;, X;]Q Eij = 3° Zx@adg, Z;.

The mapping A is:
A

> 9, Y] @ Vi@ 9Y;

ij
Y n 9%, Y1 © By

ij
For the details, the reader is referred to [KR2] and [JKR].

3. THE POISSON TRANSFORM

Let (u,8;V) be a representation of MAN and (p, W) a representation of K. If ¢ :
V — W is an M —equivariant homomorphism:

p(m)ot=1t0dé(m) VmeM

then there is a Poisson transform

P : C®(G xpav V) — C(G xx W).
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It is defined by the formula

P1(9) = [ o(ks(gh)d
K
this transform is G—equivariant for the G—action by left translation.

Example. The M —equivariant map ¢y defining Poisson transforms of vector fields
and one-forms will be ¢ = I — 9 for both T — p and n — p. For X € g set

(XBf)(m)=%f(exth~a:) t€B=G/K

and similarly X on $ = G/MAN. Then X5 € C*(G xmav 1) and XB € C*(G xk p)
are the projections of the right invariant vector fields to S and B respectively.

Proposition 3. [KR1]. If B= G/K is irreducible as a symmetric space, with rank r
and dimension n, then
n—r

P(X%) = X8

n
forall X €g.

The symmetric space G/K is irreducible, if the representation Ad of K restricts to
an irreducible representation on p. The rank is the dimension of a in the decomposition
g=n+a+m-+n.

This example illustrates the basic feature of the Poisson transform as an intertwining
operator. !

In the remainder of this section we will now use the Poisson transform to interpret
the equivariant operators D° on the boundary S = G/MAN as the “boundary differ-
ential operators” of equivariant operators D? on the symmetric space B = G/K.

Definition. D5 : C®(G xpav V) = C®(G xpan V') is the boundary operator for
DB : C®(G xg W) = C®(G x g W') if there exist Poisson transformations P and P’
such that the following diagram commutes up to a multiplicative constant

C=(G xpav V) 2> C=(G xpav V')

|7 |»

C(G xx W) =225 C=(G xx W).

We start with the situation that DS = pr,V?* is an equivariant differential operator
as described in the main result of chapter 2. Recall that (p,d;V) is an irreducible
representation of MAN and that the representation on the irreducible component V,
in g¥ @ V is given by (1 + A, &).

The operator

DS : prV* : C°(G xpav V) — C%(G xpan Vo)
is then G—equivariant, given that ) is a simple root and that the equation

2u(H,) = c(6) + c(Adga) — c(de)
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holds.
Suppose now that (p, W) is an irreducible representation of K and

e:V—Ww
an M—equivariant homeomorphism with associated Poisson transform P. Then
gtV —pCew

is M —equivariant. We assume now that there exists a K —invariant component (p;W;)
of (Ad ® p, p€ ® W) such that the following diagram commutes

Vi—>n{QV

lL' l'-o@t

W; —pCoew

The horizontal arrows are the inclusion maps and ¢’ is the restriction of 1y ® ¢ to V.
The Poisson integral obtained from ¢’ will be denoted by P’.

Theorem 4 (Qrsted). With the above ons, DS is the boundary differential
operator of
DB =pr;oV
with V the gradient operator of the symmetric space and pr; the projection pc @ W —
W;.
J
For a proof we refer to [O]. a

4, COMPLEX HYPERBOLIC SPACE

4.1. The boundary of complex hyperbolic space. Complex hyperbolic space is
the symmetric space G/K with G = SU(n+1,1) and K = S(U(n+1) x U(1)). Asa
linear group G consists of the linear transformations g € SL(n + 2,C) which preserve
the hermition form

n
(Cm) = Z G = Cnt1Tnyr -
.o
¢ acts as a transformation group on

B={zeC":|z| <1}

and on its boundary £ = dB. This action is described by introducing inhomogeneous
coordinates

_4
Cn+1

The invariant cone (¢,{) < 0 is mapped onto B, and the boundary of the cone onto

S =0B.

z; 0<j<n.
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On the Lie algebra level g = k + p is given as

*
k = | anti hermitian
*
0 |=*
p = | hermitian
* |0

The root space decomposition is

g = g—2a+g—a+a+m+ga+gza

= n+a+m+n.
a is 1—dimensional (G/K is a symmetric space of real rank one)
1
a = RH withH= cp
1
*
m = * anti hermitian } C k

8a = Spm{Yl’--th}

with
_e; \ 0
1 )
Y, = - €j €; &= 1
G | :
€} \
1 e;: e
Yoy = 5 7] i)
- | )
and
i 1 1
82a = Rnn-ﬂ with Y2n+l =3
2\
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The Cartan involution 9 on g is
X =-X*
and g = k + p is the decomposition of g into the +1 eigenspaces for 9.
A’basis for p (orthogonal with respect to the Killing form) is {Xo,... , X2n+1} with
Xoe = H
X; = 1-9)Y; j=1,...2n+1.
At the origin 0 = eK of the symmetric space B = G/K the elements X; € p can be
identified with

0 .
Xj ~ a_IL‘J ]=1,...,n
Xony;i ~ —
+i ayj
Xo ~ —

X2n+l ~ 3

Geometric description of G/K = B C C*!

Take p(z) = 3(1—|z|?), z € C**! as the defining function for the unit ball B C C**1.
Then
- 1
N =—--00log—
o2 & o(2)
defines a Kahler form on the tangent space T'B to the complex hyperbolic space B.
The corresponding Kahler metric (Riemannian metric) is

g(.,.)==-9(.,J.).
Here, J is the complex structure (multiplication by 1):

0 0
Ton = o

0 0
Ja;': = —55.

On the boundary S = 0B set ¢ = Jdp. The horizontal tangent space HS C TS is
given by {X € T'S : 9(X) = 0} and the Levi form on HS is

gol.,.)=dd(.,J.).

Observe that HS is the maximal J invariant subbundle of T'S. The contact form 9
determines the Reeb vector field T € T'S through the equations

Jd(T)=1 and Tadd=0.

The tangent space TS is identified with the bundle G Xpav T and the horizontal
space HS corresponds to the subbundle G X mav §-o. On G X pan T the group MAN
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acts by prz o Ad. It is at this point that the difficulties arise: the action prz o Ad is
not irreducible. In fact, for X € n

adX : g —a+m+n,
but this is no longer true for g-2,. When X € g,, then
adX : g_20 — 8-a -
On the other hand, the action of MAN by prg_, o Ad is an irreducible action on g_,.

Therefore the horizontal bundle HS ~ G Xuman g-o behaves much better. It is the

natural space in our setting. .
The bundle of contact forms (i.e. differential 1— forms « on T'S with kera = HS is
the dual of the factor bundle T'S/H.S). Its fiber is identified with

(H/g-a)l = 82a -
This is a real line bundle wich will be denoted by L.

4.2. Contact deformations: where an invariant differential operator appears.
A contact transformation ¢ : § = S is a diffeomorphism which preserves the contact
structure (the horizontal bundle HS):

e HS =HS.

The group actions are contact transformations: ¢ € G acts on S = G/MAN by left
translations. The identification of HS with G Xpav g-o shows, that HS is preserved
under left translations. A contact deformation V is a vector field on S, which generates
a flow of contact mappings ;. It is well known (theorem of P. Lieberman) that contact
deformations can be obtained from functions p : S — R by a first order differential
operator D5:

V = D%p = pT + Jgradyp
where T is the Reeb vector field and grad,p the horizontal gradient of p, i.e. the
horizontal field determined by _
Xp = go(X,gradgp) forall X € HS.
It turns out that DS has an interpretation as an equivariant differential operator
DS: C°°(G XMaN L_2a) — C°(G X pan 1) .

In particular, the “function” p has to be interpreted as a section in the line bundle
G Xman L_24 (dual to G xpan Laa).
In our previous notation, the expression for D is

D= (V;®@1"®Ynyj = Yo ®1"QY;) + [ Q1" @ Vans1 -
J=1
D5 is the sum of a first order and a zero order differential operator. The first order
part of the operator is
JoV*

where V* is the gradient operator with respect to g_qo, and {Yj,...,Ys2,} is an or-
thogonal basis of g_.
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The operator J commutes with the action of M, since M acts on g_, by unitary
transformations.

Let us inspect the N—invariance of DS by looking at the induced action of n: For
JY; €n

n

@Y)-D5 = S (WY, Y]@1° @ Yoy — (9%, Yars] @ 1" ® V)

i=1
+ I®1*Q® prg_.([9:, Yans1)).
We need the following facts:

[¥Y;,Y;] €m fori#j
(and m acts trivially on Lyq,).

[9Y;,Y] = —%H (= [9Yasi, Y5]) and
H-1* = 2-1*.

[ﬂ},n }/2ﬂ+l]
['BYn+ia Y2n+l]

Yn+.' i=1,...,n
-Y; 1=1,...,n.

These facts give for ¢ =1,...,n.

(¥9Y:)D®

I® ([9Y;,Yi] 1" ® Yoy + 17 @ pr_a([9Y;, Yans1]))
=0

(and similarly for i = n +1,... ,n).
Let us again point out that DS is not one of the operators considered in the second

chapter, because it maps into C®(G X pav 1) and the bundle G X pav 11 is constructed
from the representation prg o Ad of MAN, which is not an irreducible representation.

4.3. The Ahlfors operator. On complex hyperbolic space,the operators

D=JoV C®(G xk R) — C*°(G xk p)
S=pregnoV  C%(G xkp) — C®(G xk Pp,0)

are equivariant. The first operator describes taking the symplectic gradient (with re-
spect to the Kahler form Q) and the second operator is the Ahlfors operator (with
respect to the Kahler metric g). We write pp,) for the space of symmetric 2—tensors
of trace zero and pr(;,0) for the corresponding projection operator.

On the boundary S = 3B, the operator

DS C°°(G X MAN L..g,,) — C*°(G xpman 1)

is equivariant. It describes the construction of contact deformations.

One is tempted to define a variant of the Ahlfors operator acting on C®(G X pan ).
We were not able to construct such an equivariant operator. A main difficulty lies in
the circumstance, that the representation of MAN on T is not irreducible.
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It turns out that instead a second order equivariant operator

TS : C®(G Xaan L-20) — C°(G xpav g)

-

exists which plays the role of its counterpart T'= S o D, on the symmetric space.

The operator TS

Set

e = (OY; @ 9V + 9%, ®9Y;) @ 1 — %’iiﬂn@m@l
i=1
where 1 stands for the number 1 regarded as an element of the fibre R of L_3,. Then
TS is given by
TS = i ((YsYe = YorjYork) ® 17 @ (€jntk + Eknsj)
j k=1
+ ](Yn+jy Yi + YiYoyi) ® 1" ® (Entimsk —€jk) -

S:C®(G xpman L-za) > C®(G xpav 1)

L S PP COO(G XMAN g[2’0])

B:C=(GxkR) —= C=(Gxxp) - C=(Gxxp?).

The following theorem, the main result from [KR1], says that DS and T are the

boundary differential operators of the equivariant operators D and T on the symmetric
space G/K.

Theorem 5.

DP = MPDS
2n+1 ,
(n+2)(n+3)

s
n(n + 1) PT

TP =

The Poisson transform P on the left hand side of these equations is the usual Poisson

transform. On the right hand side of the first equation P goes with: =I—9: 71— p

and P on the right hand side of the second equation is determined by the restriction
of (I =9)® (I —¥) to g7,

-

4.4. Application: Symplectic and quasiconformal extension. If v € C®°(Gx pan
) is a contact deformation, then w = Pv is a Hamiltonian vector field (with respect
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to the symplectic structure ).

DS

— v

e

h—— w.

It turns out that, up to a constant, the vector field v is the boundary value of the
vector field w on B. This means, that the contact deformation v on the boundary
S has a continuous extension kw (k constant) to a symplectic transformation: The
contact flow extends to a —symplectic flow.

Quasiconformal mappings ¢ : M — M on a metric space (M,d) are homeomor-
phisms which have bounded distortion:

Hla,r) = d(i’?):’ d(f(2), f(¥))

dmy)=r  d(f(2),f(¥))

There exists a constant K such that

H(z) :=limsup H(z,r) < K for all z € M.
r—0

On complex hyperbolic space B = G/K the metric d is the Riemannian metric
defined by the invariant (K&hler) metric g.

On the boundary S = G/MAN d is the Carnot-Caratheodory metric derived from
the Levi metric on the horizontal space HS. The quasiconformal mappings here are
generalised contact transforms with a uniform bound on the distortion.

Quasiconformal deformations are vector fields which generate one-parameter flows of
quasiconformal mappings. The distortion condition on the vector field is the condition
that the Ahlfors operator maps it into a bounded quantity. The relevant theorems in
our context are:

A vector field w on a Riemannian manifold generates a flow of quasiconformal
mappings ¢y if

Swlles < c.

Here, S is the Ahlfors operator. For a proof of this result in the Euclidean case see
[R1] and in the general case see [P].

A vector field v on S = G/MAN (i.e. on the boundary of complex hyperbolic space)
generates a flow of quasiconformal mappings ¥ if v = DSp and if

"TSP"oo <c

For a proof see [KR1] (the case of the Heisenberg group) and [R2] (the case of the
boundary of a strictly pseudoconvex domain). The constant of quasiconformality K'(t)
for ¢, respectively ¥, is of exponential growth:

R’(t) < econst 1] .



EQUIVARIANT DIFFERENTIAL OPERATORS 59

’

From the commutativity of the diagram up to a multiplicative constant

S
p z TSp

L

h—2w=Dh2—>Th

it can be concluded that Th € L®(G xx p*%) whenever T5p € L®(G X pan g 0])
Since we already know that the contact deformation v = DSp extends to a Hamiltonian
vector field kw = k Dh (k constant) it can now be concluded that the quasiconformal
deformation v = DSp with ||Tp|le < c extends to a quasiconformal deformation kw
(with ||Sw]le < ¢) on the complex hyperbolic space.

Corollary 4. [KR1] Quasiconformal deformations on S extend to symplectic quasi-
conformal deformations in B.

Since symplectic mappings preserve the volume element, it follows that symplectic
quasiconformal mappings are quasiisometries (with respect to the Kahler metric g).
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