WSGP 22

Toshiyuki Kobayashi

Conformal geometry and global solutions to the Yamabe equations on classical
pseudo-Riemannian manifolds

In: Jarolim BureS (ed.): Proceedings of the 22nd Winter School “Geometry and Physics”. Circolo
Matematico di Palermo, Palermo, 2003. Rendiconti del Circolo Matematico di Palermo, Serie II,
Supplemento No. 71. pp. [15]-40.

Persistent URL: http://dml.cz/dmlcz/701704

Terms of use:

© Circolo Matematico di Palermo, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/701704
http://dml.cz

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie II, Suppl. 71 (2003), pp. 15-40

CONFORMAL GEOMETRY AND GLOBAL SOLUTIONS TO THE
YAMABE EQUATIONS ON CLASSICAL PSEUDO-RIEMANNIAN
MANIFOLDS

TOSHIYUKI KOBAYASHI

§0. INTRODUCTION

This article is based on three lectures “Conformal geometry and analysis on minimal
representations ” delivered at the 22nd Winter School, GEOMETRY AND PHYSICS,
Czech Republic, Sumava Mountains, January 12-19, 2002.

We shall illustrate a recent progress on the interaction of conformal geometry with
unitary representations of Lie groups and global analysis of ultra-hyperbolic differential
equations.

The lectures are organized as follows:

Lecture 1 (§1 and §2). For any pseudo-Riemannian manifold (M, gar), we construct
naturally a representation @ of the conformal group G := Conf(M, gar) on the solution
space Ker Aps of the Yamabe equation (see Theorem 1.7). Let H := Isom(M, gp)
be the group of isometries. Then H is naturally a subgroup of G. A new line of
investigation about the representation (w, Ker Ayy) is initiated by raising the following
Problems A ~ D (see §1.8):

Problem A (non-vanishing). When is Ker Ay # {0} ?
Problem B (irreducibility). Is (w, Ker Ap) irreducible as a representation of G ?

(
Problem C (unitarization). Find a G-invariant inner product on Ker Ay (if exists).
Problem D (branching law). Decompose the representation w into irreducibles of H.

Then, we examine these problems in a special case (see Theorem 2.4):

M~ 5" x 89,
gu is the standard pseudo-Riemannian metric of signature (p, q),
Conf(M, gm) ~O(p+ 1,9+ 1).

Materials in §1 and §2 are taken from [20].

The paper is in final form and no version of it will be submitted elsewhere.
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Lecture 2 (§3). Our object of the second lecture is the space of global solutions of
the ultra-hyperbolic operator

0? 0? 0? 0?
pg = —= ces — e e — et — —_— Rp+q’
(3 = +ot 323 " oy ) on

which equals the Yamabe operator on the flat pseudo-Riemannian manifold RP9. Moti-
vated by recent results on “minimal” unitary representations of semisimple Lie groups,
we construct in a natural way a “Hilbert space” of global solutions on RP*? such that
the (meromorphic) conformal group O(p + 1,¢ + 1) acts as a unitary representation
under the assumption that p + ¢ > 2 is even and p,q > 1. Main results of the sec-
ond lecture are Theorems 3.4 and 3.6, which present explicitly the inner product.
The interesting property about this inner product is its large invariance group; even
translational invariance amounts to a remarkable “conservation law” in the case of the
Minkowski space (p = 1). By heuristic argument based on Sato’s hyperfunctions as
boundary values of holomorphic functions, we try to explain key ingredients of the
inner product such as an explicit form of the Green kernel and an integral expression
over non-characteristic hyperplanes. This treatment will play a complementary role
to [22], where we gave a proof of Theorems 3.4 and 3.6 in a rigorous and rather different
way.

Lecture 3 (84 and §5). The third lecture focuses on branching laws, especially, from
the conformal group to the isometry subgroup. A key observation here is that if
(M, gm,), (Ma, gns,), - -+ are conformally equivalent pseudo-Riemannian manifolds,
then the distinguished representations of the (mutually isomorphic) conformal groups
are isomorphic to one another. On the other hand, they are realized in different geo-
metric models, and moreover, the subgroups of isometries vary. Thus, the branching
laws to various isometry subgroups give a clue to understand the distinguished repre-
sentation of the conformal group. We review a general framework of branching laws
with emphasis on discretely decomposable cases, and then examine some concrete ex-
amples arising from pseudo-hyperbolic spaces. Materials of §4 are taken from [13],
[14], [15], [17]. Main results of §5 are proved in (or readily deduced from) [21]. The
presentation of §5 differs from [21] in the point that we put more emphasis here on
Problems A ~ D for the solution space Ker A X,,, on the pseudo-hyperbolic spaces X, 4
(see Theorem 5.4), so that the readers can have an overview on the current status of
Problems A ~ D for the classical pseudo-Riemannian manifolds S? x §9, RP? and X, 4,
respectively in §2, §3 and §5 in this exposition.

Acknowledgment: The author expresses his sincere gratitude to the organizers for
the warm hospitality and the opportunity to participate in the Winter School. He also
thanks the participants for their patience and active feed-back during the School.

§1. CONFORMAL GEOMETRY AND DISTINGUISHED REPRESENTATIONS

1.1. Let (M, gu) be a pseudo-Riemannian manifold, and Conf(M, gr) denote the
group of conformal transformations of (M, gpr). The aim of this section is to construct
a distinguished representation @ of the group Conf(M,gpy) on the solution space
Ker /:SM of the Yamabe equation, and to pin down some fundamental questions on
Ker A from a view point of representation theory.
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1.2. Let (M,gum) and (N, gn) be pseudo-Riemannian manifolds.

Definition 1.2. A local diffeomorphism ® : M — N is called conformal if there
exists a positive function € C*°(M) such that

(1.2.1) ®*(gN0(2) = z)’gm. forany z € M.

We note that ® is an isometry if and only if 2 = 1.
1.3. For a pseudo-Riemannian manifold (M, gy), we write

Ay : the Laplace-Beltram operator,
Ky : the scalar curvature of M,

Z&M =Apm— Ky : the Yamabe operator.

n-—2
4(n—-1)

Here, the scalar curvature K)s is a smooth function on M by definition, and it also
acts on C*°(M) as a multiplication in the Yamabe operator.

Example 1.3. We equip R" and S™ with standard Riemannian metrics. Then
1) For R™; KRnEOandZR,. =ai:¥+---+‘,,i:,.
2) For S™; Ks» =n(n—1) and Agn = Agn — in(n-2).
Similar formulas will be given in (3.1.1) and (5.1.1) for pseudo-Riemannian manifolds
RP4 and X, 4, of constant sectional curvature, respectively.

1.4. Suppose & : M — N is a smooth map. We write ®* : C*°(N) — C®(M) for
its pull-back. It is easy to see that if ¢ is an isometry then

(1.4.1) ®* o Ay = Apr o ®*.
A generalization of (1.4.1) is given in [25] for a conformal map ®, namely,
(1.4.2) Q0% 0 Ay = Ay 0 QT D",

Here Q* is regarded as a multiplication operator on C*°(M). In particular, we have

Corollary 1.4. Suppose ® is surjective and conformal. Then, for f € C*(N),
Anf=0 & Ay(Q°T(2'f)) =0.

In the case n = 2, we have ZM = Ay and ZN = Apn. Then Corollary 1.4 means:
Anf=0 & AM(‘I)*f) =0.

This corresponds to a well-known fact on complex analysis of one variable: if f is
harmonic and ® is holomorphic, then the composition f o ® is harmonic.

1.6. Suppose a group G acts conformally on a pseudo-Riemannian manifold (M, gs).
This means that there exists a positive-valued function 2 on the direct product ma-
nifold G X M such that

Li(9m1,z) = Qh,z)%gr. for any z € M and h € G,

where we write the action of h as Ly, : M — M.
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Fix A € C, and we define a linear map wx(h™!) : C®(M) — C=(M) by
(@r(h™)f)(z) = R, @) f(Ls - 2).

Since L : G — Diffeo(M) is a group homomorphism, the conformal factor  satisfies
a cocycle condition

Q(hyhe, ) = Q(h1, Lhyz) QUh2,z) (h1,he € Hyz € M),
and in turn, the map @) : G — GL(C*®(M)) becomes a group homomorphism. Hence,
we have formed a family of representations (wy, C*°(M)) of G with parameter A € C.

Remark. If G acts on M as isometries, then Q = 1 and consequently the represen-
tation wy does not depend on the complex parameter A.

Now, the formula (1.4.2) is interpreted in terms of representation theory as follows:

Lemma 1.6. The Yamabe operator Ay : C°(M) — C®(M) intertwines @Was2 and
Way2. Namely, we have

(1.6.1) w%z(h) oAy =Apyowna(h) forany heG.

2

1.7. Lemma 1.6 leads us to construct a representation of G on the space of solutions:

Theorem 1.7 (see [20, Theorem 2.5]). Ker Ay is a representation of G via Wasa.

We shall write ~(w,Ker EM) for this representation. As we shall see in §2, it can
happen that Ker Ay is infinite dimensional even if M is compact in the case where
the metric gy is indefinite. The point of Theorem 1.7 is that our construction relies
only on the conformal structure of a pseudo-Riemannian manifold.

For a pseudo-Riemannian manifold (M, gpr), we write

G := Conf(M, gu), the conformal group,
H :=Isom(M, gp), the isometry group.
Naturally we have H C G. Then, we ask:
Problem 1.8. Understand Ker Ay, by means of the groups G and H.

In particular, we focus on the following questions:

Problem A (non-vanishing). When is Ker Au # {0} ?
Problem B (irreducibility). Is (w, Ker Ayy) irreducible as a representation of G ?

Problem C (unitarization). Find a G-invariant inner product on Ker Ay (if exists).
Problem D (branching law). Decompose the representation w into irreducibles of H.

Problems A ~ C depend only on the conformal structure, while Problem D involves
the pseudo-Riemannian structure of M as well. As we shall see in §2 and §5, the
knowledge on branching laws (Problem D) is sometimes useful in solving Problems A
and B. Conversely, if Ker Ay is non-zero and irreducible (Problems A and B), then
an invariant inner product (Problem C) is unique up to a scalar multiple by Schur’s
lemma. It seems a challenging problem to find such an inner product in an intrin-
sic way of conformal geometry if it exists. We also mention that the description of
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the inner product (Problem C) according to the branching law (Problem D) gives a
Parseval-Plancherel type theorem.

So far, we have been able to find the invariant inner products explicitly only for some
classical pseudo-Riemannian manifolds such as S? x S9, RP?, and pseudo-Riemannian
hyperbolic spaces X, 4 or their product manifolds with S” (see §2, §3 and §5).

§2. MINIMAL UNITARY REPRESENTATION OF O(p+1,¢+ 1)

2.1. This section gives an answer to Problems A ~ D for the direct product manifold
M = 5P x S7 endowed with a pseudo-Riemannian metric gps of signature (p, q).

2.2. We set up some notation. Let
RP1L9+1 .= the Euclidean space R#*D+@+)  equipped with
the pseudo-Riemannian metric ds® = dz? + -+ + d:cf, —dy} - = dyg,
= = {(z,y) € R+ : g = jy| 20},
M = {(z,y) € REHEHD : g = [y = 1) = 5P x 5%,
Then we have natural embeddings:
M C E C RrHlatl

with each codimension one. Induced from RP+14+1 we have a pseudo-Riemanniam
metric

gm = gse @ (—9gsa)
on M ~ S? x S9 with signature (p, q). We define a positive-valued function by
v:E—=R, (z,y)+~ |z|
We note that the multiplicative group Rso acts on = by dilations, and the corre-
sponding quotient space Z/Rs is naturally diffeomorphic to M. Since the indefinite
orthogonal group O(p + 1,q + 1) acts linearly on RP+19+! and stabilizes Z, it also
acts on the quotient space Z/Rso ~ M. This action will be denoted by L. Then, for
heO(+1,q+1), we have
h-z

v(h-2)

An elementary computation shows

Ly-z= for z=(z,y) € M.

. 1
Ly(9m,Ly-2) = mgM,, (z e M).

Hence, O(p+1, ¢+ 1) acts conformally on M ~ S? x S9. It is known (see for example
(11, Chapter IV]) that any conformal transformation on (M, gy) is given in this form,
namely, we have

(2.2.1) G := Conf(M, gy) ~ O(p+1,g+1).
Then, the group of isometries of M is given by
(2.2.2) K :=Isom(M,gm) = O(p+1) x O(g +1).

We note that K is a maximal compact subgroup of G.
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2.3. (Spherical harmonics).

We review classical results on spherical harmonics. At the end of this subsection,
we introduce a pseudo-differential operator (% - As»)% on the sphere S™.

We recall from Example 1.3 (2) that

an = ASn - %n(n - 2)

is the Yamabe operator on S™. For each | € N, we define the space of spherical
harmonics of degree [ by

H(R™) = {f € C®(S") : Agnf = =l(l+n—-1)f}

1 n-—1

={f €C™(8"): (7~ Bsn)f = (L+ —57)’f}-

Then O(n + 1) acts irreducibly on H!(R™*!) for each I/, and we have a direct sum
decomposition of Hilbert spaces:

oo @
L2(Sm) ~ Z H'(Rn+l).
=0
It follows that } — Agn is a non-negative self-adjoint operator on L?*(S™). Hence, we
can define a non-negative self-adjoint operator
1 ~ .2
D, = (= — Agn)t
( 3 Ds )

on L?(S™) with the domain of definition

[e <] [><] n— 1
Dom(D,):={F=) F:Y (I+ 5 IFilIZ2(sny) < 00}
=0 1=0

2.4. We return our setting M ~ S? x S9. We note that C*°(M) contains

@ He®) @ HER)

a,beN
as a dense subspace. On the other hand, the Yamabe operator A M has a decomposition
formula:
(2.4.1) Ay =Dgr — Age
(this is easy but non-trivial). Therefore, for F' € C*°(M), the following three condi-
tions are equivalent:

FeKerAy & AgpF=AgF & D,F =D,F.

In particular, for a,b € N, we have
(2.4.2) HeRP) @ H(RI) C Ker By & o+ 22 LR 5 L
This observation solves Problems A and D as below. We note that the right-hand side

of (2.4.2) holds only if p + g is even. Here, we collect the answers to Problems A ~ D
for the pseudo-Riemannian manifold S? x S
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Theorem 2.4 (Kostant [23], Binegar-Zierau (1], Kobayashi-@rsted [20]). Let M =
SP x S9 be endowed with the pseudo-Riemannian metric gs» @ (—9gsq). Supposep,q > 1
andp+q > 2. _

1) (non-vanishing) The solution space Ker Ay # 0 if and only if p + q is even.
From now, we shall assume that p + ¢ is even.

2) (irreducibility) Ker Aps is an irreducible representation of Conf(M, gpr).

3) (unitarization) We introduce an inner product (, )a on Ker Ay with the norm
Il I given by

(24.3) | F|la := |1DpFll2ray (= |1 DgFllL2(any)-
Then, this inner product is invariant under the conformal group Conf(M, gp).
4) (branching law; Conf(M, gp) | Isom(M, gar)) Ker Aps contains

(2.4.4) @ HO(RPH) @ HP(R?!)  (an algebraic direct sum)
a+é§ﬂ-g;—l

as a dense subspace.

2.5. Here are some few comments on Theorem 2.4.

It follows from Theorem 2.4(2) and (3) that we can extend the representation
(w, Ker ZSM) to an irreducible unitar)"v representation of G = Conf(M, gu) on the
completion of the pre-Hilbert space (Ker Apy, (, )ar). The resulting irreducible unitary
representation of the group G ~ O(p + 1, ¢ + 1) will be denoted by w?P+19+1,

As we shall review a general theory in §4.3, the algebraic direct sum (2.4.4) has a
structure of a (g, K)-module, for which we write (w?*19+1), . . = Here, g is the Lie
algebra of G. Since the isometry group K ~ O(p+ 1) x O(q + 1) acts irreducibly on
each summand of (2.4.4), Theorem 2.4 (4) may be regarded as a branching law from
G = Conf(M, gu) to K = Isom(M, gu).

As for the relations of Theorem 2.4 (3) and (4), it is useful to write the inner product
(, )m according to the branching law: if F = ), Fop € Ker Ay then the formula
(2.4.3) is equivalent to the following Parseval-Plancherel type theorem:

g—1
(2.5.1) IFI = > O+ 5 FaslZagn,
a,beN,
arEobisg!
This formula will be generalized in Theorem 5.6 in the case where isometry groups are
not necessarily compact.

2.6. Let us mention briefly the ideas of the proof of Theorem 2.4.

As we have already discussed, our approach to the branching law (Problem D) relies
on the decomposition formula (2.4.1) of the Yamabe operator. Then the non-vanishing
condition (Problem A) is an immediate corollary.

The irreducibility (Problem B) is more difficult. In §5, we shall find other branching
laws of the same representation wP*+19+! to various non-compact subgroups (Theorem
5.6). They are discretely decomposable, and informative enough to conclude that
the original representation w?+14+1 ig irreducible. This is an idea adopted in [21,
Theorem 7.6]. Another proof for the irreducibility given in [1] is based on a careful
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computation of the action of the Lie algebra g on (w?*t9+l), . . (see also [7], [27]
for similar computations in a closely related setting).

For the unitarization, there are two proofs known (see [1], [20]), but we do not
mention here even the ideas. Instead, we shall discuss more details on the unitarization
problem for the solution space on the flat space R”? in §3.

2.7.  The representation @wP*19+! is so called a minimal unitary representation of
O(p+1,q+1) for p+ g > 4, and is interesting by its own right in representation
theory of semisimple Lie groups. The Weil representation (sometimes called the os-
cillator representation or the Segal-Shale-Weil representation) yields another example
of minimal unitary representations. There has been a very extensive literature on the
Weil representation, while our representation w?+19+! has been paid attention only
quite recently since Kostant’s work on SO(4, 4) [23]. Our approach to the representa-
tion wP*19+1 j5 based on conformal geometry. There are also other (more algebraic)
approaches (e.g. [1], [8], [7], [23]) to the same representation wP*19+!  This rep-
resentation will be constructed also in §3 and §5 on locally conformally equivalent
pseudo-Riemannian manifolds whose isometry groups are non-compact.

§3 CANONICAL HILBERT SPACE OF ULTRA-HYPERBOLIC SOLUTIONS

3.1. In this section, we consider the following ultra-hyperbolic operator:

32 32 32 62
(3.1.1) DR"”—55?+"’+a_:g_a_yf ..... 5

on R™ = RP*7 (p,q > 1). It coincides with the Yamabe operator Age.a on RP9, because

the curvature tensor vanishes on R4,
For RP, the conformal group is not larger than the isometry group, namely,

Conf(RP?) = Isom(R™?) ~ O(p, ) xRP9.
As we shall see in §3.7, we have a conformal compactification:
(3.1.2) RPY s (SP x S9)/Z,

through which O(p + 1,¢ + 1) acts meromorphically and conformally on RP?. In-
stead of Conf(RP?), our analysis on KerOgee will be studied by the larger group,
Conf™(RP9), of meromorphic conformal transformations. Our main concern in this
section is with Problem C in this sense, namely,

Question 3.1. Find an O(p + 1,¢ + 1)-invariant inner product on KerOgs.q (if
exists).
There are two points here, in comparison to the case S? x S? treated in §2:

1) In Theorem 2.4, the unitarization of Ker A M was given by the use of the pseudo-
differential operator ( % - Zsp)%. However, since a pseudo-differential operator
is not a local operator, it is another problem to find its counterpart on RP¢
even though there is a conformal embedding R»? — S? x §9.

2) We have seen in Theorem 1.7 that the kernel of the Yamabe operator is pre-
served by the conformal group. However, this is not the case if we allow the
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transformation to be meromorphic. A price to pay is to replace Ker Ogeq by
its suitable subspace in Theorem 1.7 (and in Question 3.1).

With these points in mind, we shall give answers to Question 3.1 in two (apparently,
very different) ways: by the use of the Green function (Theorem 3.4), and by an
integration over a non-characteristic hyperplane (Theorem 3.6).

Throughout this section, we shall assume that

n=p+gq

is even and > 2 and that p,q > 1.

3.2. (Hyperfunction of one variable).

This subsection presents a quick review on Sato’s hyperfunctions of one variable
from [26]. The underlying idea becomes a hint to find the Green function (§3.4) and
also an “intrinsic” inner product (§3.6).

First of all, we recall Cauchy’s integral formula

1 1
— [ =dz=1,
2mi Jo 2
where C is a contour around the origin 0. We divide C into two parts C = —y; +v_
as below (here a < 0 < b).

Y-
Letting 74 be close to the real axis, we have
1 - 1

2.1 — —_— =
(32.1) 27ri/a(1+i0+z—i0)dx L
where we define 1 as a limit in the sense of Schwartz’s distributions S'(R):

L lim 1
z+£i0 " yoztiy’

Conversely, one may regard that the distribution z—dl:fﬁ “extends” holomorphically to

the half plane {z€ C : £Imz > 0}. Its singularity at z = 0 is canceled by the

multiplication of z:

z 1 __
T+i0

1
z+10

(3.2.2)

1 inS'(R).

More precisely, the difference of

Lemma 3.2 (Dirac’s delta).

and —L is given by the following formula:

1 -1 1
3.2.3 8(z) = —
(3.2.3) @) =0mern T 7o

).
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Proof of Lemma 3.2. It is enough to show, for any test function ¢ € C°(R),

1 -1 1
(3.2.4) 51 ), <p(:c)(x+i0+z_i0)dz—tp(0).

The equation (3.2.4) holds for a constant function ¢ because of Cauchy’s integral
formula (3.2.1). It follows from (3.2.2) that the equation (3.2.4) also holds if ¢(z) is
of the form ¢(z) = z9(z) (¥ € CP(R)). Hence (3.2.4) holds for any ¢ € C§°(R), in
view of the expression

o(z) = p(0) + z9(z), P(z):=

Thus, Lemma 3.2 is proved.

olz) = 9(0)
T
a

For any compactly supported distribution f € £'(R), we define distributions fs by

1 71
fei=omzEn
Then fi(z) extends holomorphically on a half-plane {z € C: £Im z > 0} and we have
(3.2.5) f=0%f=fi+f

by Lemma 3.2. Hence, f has an expression as the sum of “boundary values” of holo-
morphic functions. Likewise, any distribution f (possibly, with non-compact support)
is expressed by the boundary values of holomorphic functions ([26]).

3.3. (Fundamental solution and Green function of Oge.c).
In this subsection, we explain a heuristic idea to find the invariant inner product

(given in Theorem 3.4 below).
We recall from §3.2, the following two equations of distributions of one variable:

1, -1 1

(3:3.1) 8(z) = ﬁ(x+z’0 x—iO)’
1

(3.3.2) — =1
Then the “substitution” of the quadratic form

QEm) =+t ==
into (3.3.1) and (3.3.2) would result in the following equations in S'(R™):

1 o oy

(3:33) 5(Q) = 5= (~(Q+i0) +(Q - i0)™)
(3.3.4) Q-(Q-i0)=1

Here, following (3], we have defined distributions (@ = i0)* as a meromorphic contin-
uation of

lim(Q + ieR)*,

€l0
where R is a positive definite quadratic form. We note that the limit does not depend
on the choice of R. In the left-hand side of (3.3.3), we define 6(Q) to be the measure
dp supported on the cone

C:={¢eR":Q(() =0}
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such that
deﬂ = dEI cee d€pdn1 cee dnq
We write down the measure dp on C explicitly by

1 (o<}
/ ddp = = / / ¢ (sw, sn)sPH 1 3dsdwdn
c 2Jo JspJsa

for a test function ¢. Then §(Q) becomes a distribution on R™ if n =p + ¢ > 2. (We
note that a general theory by using the wave front set is not enough to justify the
“substitution” of @ into (z).)

Now, we take the Fourier inverse 7! of (3.3.3) and (3.3.4) to obtain two equations
in §'(R"):

(3.3.5) Ey= -2%@ - E)
(3.3.6) Oge E = 6(z)
where we put
(3.3.7) Ey = F1(6(Q))
E:=-F(@Q-1i0)™")
(3.3.8) =M(x§+-~-+z§—y3—---—y§+i0)1-%.

4r2
Then (3.3.6) means that F is a fundamental solution of the ultra-hyperbolic equa-
tion Ogeqf = 0. An explicit formula of Ey (the Green function) can be written by
using (3.3.5) and (3.3.8) (see also a recent paper [6] of Hérmander on the Green func-
tion Ep).

3.4. (Integral expression of ultra-hyperbolic solutions).
It follows from the formulas (3.3.5) and (3.3.6) that
1 — 1
(341) OgreeEg = %(—Dm}'.qE-}- DRp,qE) = 2—7”(—5(2) + 6(1‘)) =0.
Then, Ej * ¢ solves the ultra-hyperbolic equation for any ¢ € C§°(R") because
DRP-v(Eo * (,0) = (Dmp,qu) *xp=0.
Therefore, if we define the integral transformation against the Green kernel Ey:
S:C[R") » C*(R"), ¢ Eoxop,

then its image constructs global solutions on R”".
On the image of S, denoted by Image S, we define a sesqui-linear form (, )s by

(3.4.2) (fu f)s = /IR ) /IR Eolz — y)er(2)palg)dedy

for f; = S(y;) € ImageS (i = 1,2). The integral (3.4.2) converges because ¢; €
C§°(R™), and do not depend on the choice of ¢; but only on f;.

Theorem 3.4 (Unitarization of ultrahyperbolic solutions; [22, Theorem 4.7]).

1) Image S C Ker Oge..
2) (, )s is positive definite on Image S. ’
3) O(p+1,q+1) acts unitarily on the completion of the pre-Hilbert space Image S.
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Sketch of Proof: We have already explained the proof of (1).

(2) corresponds to the positivity of the measure 6(Q) = F(E,) on R™ (see (3.3.7)). In
fact, the inner product (, )s is proved to be equivalent (up to scalar) to the L2-inner
product of functions on the cone C via the Fourier transform F ([22, Theorem 4.9]).
(3) corresponds to the intertwining property (cf. (1.6.1)):

(3.4.3) waz2(h)oS=S5o szLZ(h) (h € G).
(We have written (3.4.3) with a little abuse of notation. In fact, neither C§°(R™) nor
C*(R™) is preserved under w), because the action of O(p +1,¢ + 1) on R* = RP*7 is

meromorphic.) We shall explain briefly why the intertwining property (3.4.3) leads to
the conformal invariance of the inner product (, )s, namely,

(3.4.4) (W% (h—l)fl, Waz2 (h_l)fz)s =(f1,f2)s forany he H

in the following subsection. O

3.5. Suppose we are given a general pseudo-Riemannian manifold M of dimension n
and an abstract self-adjoint operator S on L?*(M) satisfying (3.4.3). On Image S, we
define a sesqui-linear form (, )s by
(f1, f2)s = (fr, p2) L2y = (01, f2)L2(M)
for f; = S(¢:) (¢ = 1,2). Here, the second equation follows from S = S*. Then,
the left-hand side of (3.4.4) =(w# (r" Y f1, Swn_;,_z(h‘l)gag)s

= /M Q(h, )" f1(Laz)Qh, 2)*F 0o (Lpz)dz
- [ Al tide)

=/M fi(z)pa(z)dz
=the right-hand side of (3.4.4).

This explains that (3.4.3) formally implies (3.4.4), namely, the conformal invariance
of the inner product.

Remark 3.5. In [22], we used the naive ideas of §3.3 and §3.5 just as a guiding
principle to Theorem 3.4(2) and (3), and took a different approach for an actual proof
(with a little aid of representation theory) in order to avoid some technical difficulties.

3.6. (Intrinsic inner product).

The inner product in Theorem 3.4 gives an answer to Question 3.1, but it relies
on the integral expression of ultra-hyperbolic solutions. In this subsection, we ask
furthermore:

Question. Write the invariant inner product on the solution space directly without
the integral expression of solutions.

An idea for this is to use the Cauchy data (or its variant) of the solution on & non-
characteristic hyperplane, say z; = 0, as follows: Let f € Ker Ogpe. We regard f as a
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hyperfunction of the first variable, and as in (3.2.5) we write

(361) f(xlwzi’» e »yq) = f+(xl)z2a ot ’yq) + f—(xls Ty - ;yq))

where fi(z1,22, * ,Zp, Y1, * ,Yq) extend holomorphically with respect to z; in some
regions of +Im2; > 0. We define a sesqui-linear form (, )w as the polarization of the
following quadratic form:

-1 Ofe _ ;O
(362) (f, Hw = \/_—1 Rn_l(f+ o1, f- a1,

It is easy to see that the right-hand side of (3.6.2) is independent of the decomposition
(3.6.1). Surprisingly, the following equation holds:

(3.6.3) an(, w=0(,)s on ImageS.

) z1=0dZ2 - + - dzpdy; - - - dy,.

Hence, we have:

Theorem 3.6 ([22, Theorem 6.2]). The sesqui-linear form (, )w is positive definite
on Image S and invariant under the meromorphic and conformal actions of O(p +
1,g+1).

If we replace the hyperplane z; = 0 by another one y; = 0 in (3.6.2), then the
resulting inner product is still the same. Since any non-characteristic hyperplane in
RP9 is conjugate to either z; = 0 or y; = 0 by the isometry group Isom(RP9) ~
O(p, q)xRP?, Theorem 3.6 implies that the right-hand side of (3.6.2) does not change
for any non-characteristic hyperplane. Thus, even the isometry invariance of (, )w
is not trivial. Furthermore, a special case of the translation invariance amounts to a
remarkable “conservation law” in the Minkowski space for the wave equation (namely,
the case p = 1) (see [28], [22, §6.7]). It is interesting that the inner product enjoys
the invariance of Conf™(RP?), which is much larger than Conf(RP9) = Isom(RP9) =~
O(p, q)xRP*9,

3.7. (Stereographic projection and conformal embedding).
For the convenience of the readers, we shall compare the results of §2 (the case
SP x §7) and §3 (the case RP9) in §3.7 and §3.8.

1) Riemannian case
First, we recall a usual stereographic projection, which gives a conformal dif-
feomorphism between an open dense subset of the standard Riemannian sphere
S™ and the flat Riemannian manifold R™:

ﬁw — (wo,w)
" m (=1,0,+40) —
R* =~ S°\{(=1,0,-,0)} pl
w w

1
z

= = e (1-5e)
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2) General case (pseudo-Riemannian case)
Next, we generalize the above map to an embedding of the flat pseudo-Rie-
mannian manifold RP? into the pseudo-Riemannian manifold S? x S? as follows:

T: RPY o SP x 59,

1 (L_MP—WP MP—WP)
7(z,y) 4 4 ’

Here, SP x S9 is regarded as a submanifold of R!*?*9+1 and we put

r(z,9) = \J (1+ (M)z) <1+ ('”' - '”) )

Then, V¥ is a conformal map in view of the formula:

(I’y)H )z)y)1+

) 1
v gsrxss = )29R g

7(z,y
The image of ¥ is roughly a half of SP x S9, namely, {(u,v) € SP x §7 :
ug + vg > 0}. We write (SP x S9)/Z, for the quotient manifold of SP x S?
with respect to the equivalgnce relation in SP x S%:

(u,v) ~ (—u, —v).
Then V¥ induces a conformal compactification:

RPY — (SP x 89)/Z,.

Then the group O(p + 1, ¢+ 1) acts meromorphically on RP? as an open dense
subset of (S x $9)/Z,. We note that —I = diag(—1,---,—1) € O(p+1,q+1)
acts identically on (SP x §9)/Z,. Thus, the quotient group O(p+1,q+1)/{£I}
acts effectively on RP?, and in fact we have

Conf™(RP?) ~ O(p+ 1,9+ 1)/{z£I}.

3.8. Let us compare the results of §2 and §3. First, we summarize conformal groups,
isometry groups and Yamabe operators on RP? and SP x S9, respectively:

(83) (§2)

RP4 S M=5P xS
conformal

- 3 ~ (P+q-2)(p—9q)
Ogee = .'—1 Z ayJ Ay = Agp — Asa — 1
Conf™(RP?) =~ O(p+ 1,q+1)/{xI} O(p+1,g+1) =~ Conf(M)

) U U U
Isom(RP9) ~ O(p, ) xRP*¢ % 0(p+1) x O(g+ 1) ~ Isom(M).

We define the twisted pull-back of the conformal map ¥ by
T*: C®°(M) —» C°(RP*),  F i T et 10 o}
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Then T* sends Ker Ay into Ker Ogee by Corollary 1.4. In the following diagram
C=(M) Loc=(RP*)
U U
Ker A — Ker Ogpa < C(RPY9),
we can prove
Image S C U*(Ker Ay).

In other words, if ¢ € C§°(RP9) then S(p) € C°°(RP*?) extends to a smooth solution
on SP x S9. The inner products (, ) in §2, (, )s and (, )w in §3 have the following
relations:

Theorem 3.8. In the above setting, if
fi = Si(s) = U'(F;) (€ Ker Oea),
for o; € CP(RPH9), F; € Ker Ay (i = 1,2), then we have
2Py, )y = 4n(fu, fa)w = (f1, fa)s.

The proof of Theorem 3.8 is given in [22, §4 and §6].

§4. (DISCRETELY DECOMPOSABLE) BRANCHING LAWS

This section gives a short survey of general results on branching laws of unitary
representations with emphasis on discretely decomposable cases (see [4, 12, 13, 14, 15,
16, 17, 18, 24] for some of recent results). In §5, we shall find discretely decomposable
branching laws from the conformal group to various isometry subgroups.

4.1. We consider a general setting:
G' c G5 GLc(H),
where G is a group, G’ is its subgroup and (m,H) is a unitary representation of G.

The restriction of 7 to G’ is no more irreducible in general. By a branching law,
we mean the irreducible decomposition of the restriction 7|

@
WIGIZ/’G" M (7)Tdu(r)

defined on a direct integral of Hilbert spaces against a measure du on the unitary
dual G'. Here,

ms: G — NU {00}
is a measurable function, which stands for the multiplicity. Such an irreducible de-

composition is unique if G’ is a reductive Lie group (more generally, if G’ is of type I
in the sense of von-Neumann algebras).

4.2. In this subsection, we give a simple example of branching laws of unitary
representations. Let G = SL(2,R) and H = L?(R). We define a unitary representation
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m on H by . )
az +

7(g) : L2(R) - L*(R), f(z)~ lex + d|f(cz + d)

forg7t= (Z S) € G. We consider three subgroups N, A and K.

.
1z
N.—{(O 1).2‘ER} ~ R,
GDG’::JA:={(T) ei):xe]R} ~R,
cosf) —sind
= : R ~ St
‘K {<sin0 cos9) 6 € R/2nZ} S

Then the unitary dual of N, A and K is parameterized by R, R and Z, respectively,
as usual.

Exercise: Find branching laws of the restrictions 7|y, 7|4 and 7|k.
Answers: There exist unitary equivalent maps:

®
(4.2.1) TN =~ / e™d¢  (no discrete spectrum),
R
e :
(4.2.2) a4 / 2¢%d¢  (no discrete spectrum),
R
(4.2.3) |k :Zeei"o (discretely decomposable).
ne2Z

Sketch of Proof:

1) The restriction 7|y is nothing but the regular representation of the abelian Lie
group R on L%(R). Therefore, the branching law (4.2.1) is obtained by means
of the Fourier transform.

2) Correspondingly to the decomposition R = R5oU {0} UR<o, the Hilbert space
L?(R) splits as

(4.2.4) L2 (R) ~ L% (R>o) ® L*(R<o).

Each component is unitarily equivalent to the regular representation of the
abelian Lie group A ~ R. Hence, we have the branching law (4.2.2), especially,
the multiplicity of e*¢ is two.

3) By using the isomorphism (up to scalar) between Hilbert spaces:

| f(tan %)
|cos%| ’

L*(R) ~ L*(SY), f(z)w~

the branching law (4.2.3) reduces to the Fourier series expansion of L?(S?).

4.3. (K-finite vectors and (g, K)-modules).
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Generalizing the feature of Theorem 2.4 (4) or the branching law (4.2.3) of the last
case, we introduce the following notion:

Definition 4.3.1 ([13, §1]). In the setting of §4.1, we say the restriction 7| is
G'-admissible if it decomposes discretely and the multiplicity m,(7) is finite for any
TEG.

Let G be a real reductive linear Lie group, and K a maximal compact subgroup of G.
Here is Harish-Chandra’s fundamental result on admissible restrictions to maximal
compact subgroups.

Theorem 4.3.2 ([5)). For any 7 € G, the restriction |k is K-admissible.

For the proof, we refer also to [30, Theorem 3.4.1].

We return the previous example of G = SL(2,R). In (4.2.3), instead of the Hilbert
space

L*(8Y) = Ze,Ce""e (discrete sum of Hilbert spaces),
nez

on which the group G = SL(2,R) acts continuously, one may consider its dense sub-
space

L*(S") g niee = EPD Ce™  (algebraic direct sum),
nel

on which both the Lie algebra g = sI(2,R) and a maximal compact subgroup K =
SO(2) act in a compatible way (so called a (g, K)-module). Here, we note that
L?*(S") is not preserved by the differential action of the Lie algebra g. Neither does
L?(S") k fimite DY the group G.

More generally, let m be a continuous representation of G defined on a Fréchet
space H. We assume that 7 has the following property (cf. Definition 4.3.1):

my(7) = dim Homg(7,7|x) < 00 for any 7 € K.
Then one can define a differential action of the Lie algebra g on a dense subspace of H,
Hi-finite := {v € H : dim¢ C-span{n(k)v: k € K} < o0},

so that the (g, K)-module structure, denoted by 7k_gnite, i naturally defined on
HK finite-
The notion of (g, K)-modules has been a powerful algebraic tool of unitary repre-
sentation theory of real reductive Lie groups. The point here is:
1) No topology is specified.
2) Representation theoretic properties (e.g. composition series) are not lost in
passing from G-modules to (g, K)-modules.

We refer to [10], [30], and references therein for the theory of (g, K)-modules, which
is built on the K-admissibility of the restriction 7|k.

4.4. For a non-compact subgroup G’ and for a unitary representation 7w of G, we
ask:

Problem ([13]). When does the restriction 7|¢' become G’-admissible ?
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The branching law of the restriction 7|¢» sometimes contains continuous spectrum
as in the examples (4.2.1) and (4.2.2), and consequently is not G’-admissible. Here is
a sufficient condition for the restriction 7|g to be G’-admissible:

Theorem 4.4 ([14, Theorem 2.9]). Let G O G' be a pair of reductive linear Lie
groups, and 7 € G. If

(4.4.1) Cone(G’) N ASk(m) = {0},
then m|g is G'-admissible.

Here, Cone(G’) and ASk(w) are closed cone in R' determined respectively by G’
and 7, where [ is the rank of K. We refer to [16], Definition 4.2 for the definition of
Cone(G'"); and (14, §2.7] for that of the asymptotic K-support ASk () which was
introduced by Kashiwara and Vergne [9]. A main tool for Theorem 4.4 is the micro-
local study of characters by using the wave front set (or the singularity spectrum).

The following very special cases may help us to understand Theorem 4.4.

(4.4.2) Cone(G')={0} & G'DK.
(4.4.3) ASk(m) = {0} & dim7 < oo.

In particular, if G’ = K then the assumption (4.4.1) is automatically fulfilled. The

conclusion of Theorem 4.4 in this case corresponds to Harish-Chandra’s theorem (The-
orem 4.3.2).

4.5. The criterion in Theorem 4.4 works in many important cases, as is illustrated
by the following:

Example 4.5 ([13], see also [16, Proposition 4.3.2 and Theorem 4.10]).
1) Cone(G’) is a linear subspace (modulo the Weyl group) if (G, G') is a symmetric
pair.
2) ASk(m) is computable if 7 is a discrete series representation, etc.

Here, we say that (G, G') is a symmetric pair if there is an involutive automorphism
o of the group G such that G’ is an open subgroup of G° := {g € G : g = g}. For
example, (GL(n,R),O(p,n — p)) is a symmetric pair. (To see this, we put o(g) :=
Ipn-p'g™ Iy n—p, where I, = diag(1,---,1,-1,---,—1) € GL(n,R).)
4.6. Suppose that there is a G-invariant measure on a homogeneous space G/G'. Let
L?*(G/G') be the Hilbert space consisting of square integrable functions on G/G'. Then

we can define naturally a unitary representation of G on L%(G/G') by the pull-back
of functions,

Let m € G. We say that 7 is a discrete series representation for G/G' if
Homg(m, L*(G/G")) # {0}.

In relation to Theorem 4.4, we have the following exclusive law of discrete spectrum
for the restriction and the induction:

Theorem 4.6 ([15]). Let G be a non-compact real reductive linear Lie group, (G, G')
a symmetric pair, andw € G. If Cone(G')NASk(m) = {0}, then Home(w, L*(G/G')) =
{0}, namely, © is not a discrete series representation for G/G'.
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4.7. (Applications of discretely decomposable restrictions).

Let (m,’H) be an irreducible unitary representation of G, and G’ a subgroup of G.
As the K-admissibility theorem of Harish-Chandra (Theorem 4.3.2) has given a foun-
dation of algebraic representation theory of (g, K)-modules, we expect new methods
and objects may arise from the G’-admissibility of the restrictions m with respect to
non-compact subgroups G’. Here is some listing of related topics:

Representation theory

(1) Study of representations of a subgroup G’ as irreducible summands of 7|¢:.
a) (m: Weil representation). Construction of highest weight modules by the
theta correspondence (Howe, Kashiwara-Vergne, Adams - --).
b) (m: other “minimal” representations). Construction of “small” representa-
tions (Gross, Wallach, - - -).

(2) Study of representations of G by means of the restrictions to subgroups G'.
a) (G": compact). Theory of (g, K)-modules (Lepowsky, Harish-Chandra,

b) (G": non-compact). Study of algebraic properties of “small” representa-
tions (Kobayashi, @rsted, Li, Lee, Loke, - --).
(3) Branching laws of their own right.

Non-commutative Harmonic Analysis

(4) Construction of (new) discrete series representations for (non-symmetric and
non-Riemannian) homogeneous spaces G/H.

Number Theory

(5) Topology of modular varieties in Clifford-Klein forms of Riemannian symmetric
spaces.

Let us mention briefly the role of discrete decomposability in (1) ~ (3). Discrete
decomposability (or more strongly, the G'-admissibility) of the restriction 7|gr makes
the construction easier in (1), gives a useful clue to (2), and enables us to approach
(3) by purely algebraic methods. We refer to [16] for a short survey on this.

As a simple example of (4), the complete classification of discrete series representa-
tions for non-symmetric homogeneous spaces such as G3(R)/SL(3,R) and
G2(R)/SU(2,1) is given by the branching laws SO(4,3) | Ga(R) (see [13, Theo-
rem 6.4]).

We refer to [17] for more details on (4) and (5) and references therein.

4.8. As one may see from the criterion in Theorem 4.4, the restriction 7| tends
to be discretely decomposable if ASk(w) is “small”. Loosely, this is the case if the
(infinite dimensional) representation 7 is “small”. It turns out that the representations
of conformal groups constructed in §1 are often “small”. In fact, the following inclusive
relations

KerAy C C®(M) and Conf(M) D Isom(M)
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may give a feeling on the “size” of representation spaces compared to groups:

. Ker Ay . C*(M)
20 oM £ 2\
size of Conf(M) < size o Isom(M)’

namely, the representation space Ker A M with respect to the group Conf(M) is much
“smaller” if we compare a usual representation of Isom(M) on C*°(M). For example,
ASg(m) is one dimensional if 7 is the representation constructed in §2. More precisely,
we have:

Example 4.8 (cf. [14, Example 3.4]). Let p + ¢ be even, and p,q > 2.

1) There is a vector v such that ASg(w??) = R - v. (Clearly, this is a non-zero
minimal cone.)

2) Let G' = O(p',¢') x O(p", ¢") be a natural subgroup of G with p' +p” = p and
¢ +¢" =q. Then

ASk(w??) N Cone(G') = {0} & min(p,p",¢,¢") =0.

In particular, the restriction @”9|o(,q)x0(e”) is discretely decomposable, and
Theorem 4.6 says that the representation @w?? cannot be captured as discrete
spectrum in L*(O(p, q)/(O(p,¢') x O(¢"))) for any ¢’ and ¢” with ¢’ +¢" = q.

“Small” representations are currently one of the most mysterious part of unitary rep-
resentation theory of reductive Lie groups. Theorem 4.4 suggests that such representa-
tions fit well into the framework of admissible restrictions to non-compact subgroups.

§5. YAMABE OPERATOR ON PSEUDO-HYPERBOLIC SPACES

5.1. So far, we have been examined the solution space of the Yamabe operator on
SP x S% and RP9. As a third example, we consider the pseudo-hyperbolic space:

Xpq:={(z,9) eRP*: |z]* - |y|* = 1} ~ O(p,9)/O(p — 1,9).

Here is an example for the case p+ ¢ = 3:

X3p0 X, X1,2

The pseudo-Riemannian metric on X, ; induced from R is of signature (p — 1, q).
With this pseudo-Riemannian metric, X, , has a constant sectional curvature 1, and
the Yamabe operator amounts to:

~ 1
(5.1.1) Dxyq = Bxpq = 7(P+a=1)p+¢-3).
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Let L%(X,,,) be the Hilbert space of square integrable functions on X, , with respect
to the natural volume element. For A € C, we put

~ 1
VP = {f € L*(Xpq) : Ax, . f = (7- A9 £}
Since V? = VP{, we may and do assume Re) > 0 without loss of generality. The
classification of discrete series representations for the pseudo-hyperbolic space X, 4 ~
O(p,q)/O(p — 1, q) is well-known:
Proposition 5.1 (cf. [2], [27]).
1) (p=1) VP?*={0} for any A € C.
2) (p#1) VP14 {0} & )\ € BH +2Z and A # 0.
Furthermore, the isometry group Isom(X,, ) ~ O(p, q) acts irreducibly on each
VP4, for X € 852+ 2Z. This representation will be denoted by e

There exist also irreducible unitary representations 75’4 (p + g:even) and ﬂi’:’_ 3 (p+

g:odd) of O(p, ¢) which are not realized in L%(X,, ) but enjoy similar algebraic prop-

erties (see [21, §5.4] for a rigorous definition).
Likewise, one can define irreducible unitary representations, denoted by 7P ”"A, of

O(p, q) realized on a pseudo-hyperbolic space
X, ={(z,y) e RP**: |z]* — |y|* = -1} ~ O(p,q)/O(p,q - 1)

for/\EL;‘l+2Zifq>1.

5.2. Let us consider Problems A ~ D in §1.8 for the solution space Ker A X, ON the
pseudo-hyperbolic space X,,. An interesting case is where P+gisoddandp > 1,
which we shall explain here. Then, we note that Vi = Ker Ax, N L*(X,,,) # {0}.

2

On Ker A X,,> there is not only the action Isom(X,4) =~ O(p,q), but also the in-
finitesimal action of o(p, ¢ + 1), which is the Lie algebra of the group Conf™(X,,q) of

meromorphic conformal transformations. We shall treat Ker Ay, = as a module of
the pair (o(p, ¢ + 1), O(p, q)), corresponding to the Lie groups:

Conf™(X,,4) D Conf(X,,,) = Isom(X,,).

5.3. We put K = O(p) x O(g) and define a subspace of C*°(X,, ;) by

WP .= (Ker ZXI,'Q)K_ﬁnite = {f € KerAx,, : dimc C-span{k- f : k € K} < co}.
Then W?4 is dense in Ker A X,.o- The Lie algebra o(p, g+ 1) acts linearly on W79, and
so does its complexified Lie algebra o(p + ¢+ 1,C).
Theorem 5.3 ([21, Proposition D]). Let m be odd. Then there ezists a long ezact
sequence of o(m + 1, C)-modules:
(5.3.1) 0 — Whmot L, pp2m-z B, Iyl
such that we have isomorphisms as o(m + 1, C)-modules:
(5.3.2) Ker g, = (@"™) g _finite

(533) Coker Pp—1 = (w”“’q)K_ﬁm-u
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for any (p,q) with p+ g =m. Here, we recall §2.4 for the notation of the right-hand
sides of (5.3.2) and (5.3.3).

One can regard Theorem 5.3 as another (new) construction of the “minimal” rep-
resentations @®® of indefinite orthogonal groups O(a,b) with a +b = m + 1. An
interesting feature of Theorem 5.3 is that there is no conformal local diffeomorphism
among pseudo-hyperbolic spaces X, of different signature, however, there exist Lie

algebra homomorphisms among the solution spaces Ker Ay, ,.

5.4. Let p+ g be odd, and p,q > 1. It follows from Theorem 5.3 that Problem B
has a negative answer, namely, the irreducibility fails. This is so, even if we allow
meromorphic transformations. Nevertheless, WP9 is nearly irreducible, and its socle
filtration is not very complicated. Here is a precise statement on the module structure

of WP9 = (Ker Zixp,,,) K-finite’

Theorem 5.4.

~ ~ wPtla i
(Ker Ax,,q) k- inite ((wp,qm%mﬁmte as o(p+ ¢ + 1,C)-modules,
K-finite
g P.g
= (’n{’%)K-ﬁnit.e © (W_'_%)K—ﬁnite as 0(p+q, C)-mOdules'
(Mo la) )
»— 2 K-finite '2 K-finite

We give some few comments on Theorem 5.4:

1) The first formula in Theorem 5.4 means that (wP?+!), . . (respectively,
(wPt19), o o) is isomorphic to the unique submodule (respectively, quotient)

of (Ker Ax, )k snie 25 0(P + ¢+ 1,C)-modules. Thus, we have a non-splitting
exact sequence

(5.4.1) 0— (wp,q+1)K-ﬁnite — (Ker AXp,q)K.ﬁnice - (wp+l’q)K-ﬁnite —0

of o(p + ¢ + 1,C)-modules. In particular, the above socle filtration gives even
a finer structure than what we have asked in Problem B.

2) The solution space Ker Ay, , (or its dense subspace) is not unitarizable as a
representation of the group Conf™(X),) because the exact sequence (5.4.1)
does not split. This gives a negative answer to Problem C (unitarizability),
too. On the other hand, the isomorphism (5.3.2) implies that roughly a half of
the solution space Ker Zx,,.,, namely, the submodule Ker ¢, is unitarizable as
a representation of Conf™(X),,).

3) The second formula in Theorem 5.4 is regarded as branching laws with respect
to:

Conf™(Xp,4) D Isom(X,).
Thus, Theorem 5.4 contains answers (and even more) to Problems A ~ D for
Xp,q With p + q odd. 5
4) In view of the second formula in Theorem 5.4, V"7 = Ker Ay, , N L*(X,,)

2
corresponds to only one piece (nf;ql )K oo B0NE four irreducible subquotients
*2 K-finite

of (Ker Zxﬂvq)l(-ﬁnite as o(p + ¢,C)-modules. Since Kerp, ~ (wP?1), ..
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decomposes into the direct sum

(m ® (1)

+1=3” K-finite +2” K-finite

as o(p, g)-modules, the O(p, g + 1)-invariant inner product on Ker ¢, must be
a scalar multiple of the L?-inner product on X, ; when restricted to the second

factor (7r” a2 )K o , namely, (V¥ ’q)K . The inner product when restricted to
finit 2 -finite
the first factor (7r” e 1 ) is not the L?-inner product and is more mysterious.

K-finite

We shall consider the branchmg law in a more general setting in §5.5 and §5.6.

5.5. (Conformal compactification).
Let ¢ = ¢’ + ¢" (the previous case will correspond to ¢” = 1). We define a map ®

by:
(5.5.1) B Xpy x ST o P x 897 ((2,9),y")

(= (v, y”))
=" =]
Then @ is injective with open dense image. We induce pseudo-Riemannian structures
on
(5.5.2) Yi=X,q x ST
M = 5P71 x §9-1
from R?? x R%" and RP4, respectively. Then, M is a special case of Y by putting

q' = 0. It follows from
gy = =
gM - |xlzgy

that @ is a comformal map. In particular, if we define a twisted pull-back 3
C*=(M) — C>(M) by

T _ptg—4

(@ f)(z) :=z|77 = f(®(x))
then ®* sends Ker Ay injectively into Ker Ay. We shall explain it by means of the
isometry group Y below. Since Ker Aps extends to an irreducible unitary represen-

tation of O(p,q) (see §2), we are curious about its counterpart for Ker Ay. Let us
explain it by means of the irometry group of Y below.

5.6. We summarize the settings for Y and M:
Conf™(Y) =~ O(p,q) ~ Conf(M)
U U U
Conf(Y) = Isom(Y) =~O(p,¢)x0(¢") # Isom(M)
(¢'#0) (¢'#0)

Theorem 5.6. Let p+g (> 4) be even, ¢ =¢' +¢", and p,q > 2. Then the twisted
pull-back ®* of the conformal embedding ® : Y — M induces the following:
1) (Discrete branching law; Conf™(Y’) | Isom(Y)).
oo ®
(5.6.1) @ o(p,g)x0(g") = Z 7r" 'ql 4,9 H'(RY)  (discrete direct sum)
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2) (Parseval-Plancherel theorem). For F' € Ker Ay, we decompose ®*F as SR
according to (5.6.1). Then we have:

[>o]

qll
(5.6.2) IFIRe =D+ 5 = DIFiliEa)
1=0

Here || ||a is the norm corresponding to the invariant inner product (, )um
defined in §2.

Remark.

1) There are a few cases where ! + 92:—’ —1 < 0. Then we can give a suitable
interpretation of (I + 9;—, - 1)||Fl“§,2(y) that justifies (5.6.2) by using analytic
continuation.

2) In the case ¢’ = 0, we have Y =~ SP~! x S9-! and the above theorem coincides
with Theorem 2.4 (3) and (4) (here, we need to change from (p, ) to (p+1,q+
1)).

3) In the case ¢" = 1, we have Y ~ X, .1 X S° namely, Y consists of two copies

of X, 4-1. Then Theorem 5.6 asserts that
@Yo (pg-1) = 7rp,q 19 ,,rp -1

because H'(R!) = 0 for [ > 2. This is the case treated in Theorem 5.4 (here,
we need to change from ¢ to ¢+ 1).

5.7. (Open problems).
We end this section with some open problems for interested readers.
Let us consider a generalization of the setting (5.5.2) by putting

Y = Xpl,ql X Xq“,p”7
where p' + p"” = p and ¢’ + ¢” = q. Then we have a conformal embedding
v:Y— M

The setting of §5.1 corresponds to the case where p” = 0 and p’ = p. Then, the twisted
pull-back T* is similarly defined, and sends Ker A M injectively into Ker Ay

Open problem 5.7.

1) Find explicitly branching laws of the representation w?? of O(p,q) when re-
stricted to

Isom(Y) ~ O(p',q') x O(p",¢").

2) Find explicitly the inner product on (a subspace of) Ker Ay which is O(p, q)-
invariant.

As was stated in Theorem 5.6, this has been solved when min(p',¢’,p",¢") = 0. For
general p’,p", ¢’ and ¢”, the branching law from Conf™(Y’) to Isom(Y) must contain
continuous spectrum (cf. Example 4.7(2)) and involve more analytic aspects.
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