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ON THREE-DIMENSIONAL HYPERSURFACES WITH TYPE
NUMBER TWO IN H' AND §* TREATED IN INTRINSIC WAY

V. HAJKOVA*, 0. KOWALSKI* AND M. SEKIZAWA!

ABSTRACT. The analogous problem for R* was treated in [2, Chapter 10], under the
key-words “local rigidity problems”. In the present paper we consider three-dimen-
sional Riemannian manifolds of c-conullity two as in [12] with their natural classifi-
cation according to the number of asymptotic foliations. We limit ourselves to the
case ¢ < 0, and we study the isometric immersions of the corresponding classes of
manifolds in H!. We show how the maximal number of nontrivial isometric deforma-
tions of the immersed manifold corresponds to its number of asymptotic foliations.
The case ¢ > 0 (corresponding to S*) is very similar and not treated explicitly. The
original study of isometric deformations of the hypersurfaces in title using the purely
extrinsic methods can be traced back to V. Sbrana and E. Cartan.

INTRODUCTION

The Riemannian manifolds of constant conullity two are of special interest. These
are manifolds (M, g) such that the tangent space T, M at any point z € M admits an
orthogonal decomposition

T,M=T:M+TM,
where dimT!M = 2 and T?M is the nullity space of the curvature tensor R,.

First, it is known that all Riemannian manifolds of conullity two are semi-symmetric
spaces, i.e., R(X,Y): R =0 holds for every two vector fields X and Y, where the dot
denotes the derivation on the algebra of all tensor fields on M. Because the nullity
distribution {T?M} ¢ determines a totally geodesic and locally Euclidean foliation,
we call these spaces foliated semi-symmetric spaces. (Other types of semi-symmetric
spaces are locally symmetric spaces, two-dimensional surfaces and the “Szabé cones"—
see the fundamental papers by Z. Szab6 [18], [19], [20].) The foliated semi-symmetric
spaces have been studied deeper and in a much more explicit form by the second
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author [9], later by E. Boeckx [1] and finally, the basic results have been summarized
in [2].

The second interesting feature is the following one: a classical result (known already
by W. Killing) says that a hypersurface M C R**! (n > 3) with type number ¢(p) > 3
everywhere is locally rigid (cf. [8, Chapter VII]). The same result holds if one replaces
R™*! by any space of constant curvature ¢. Now, the complete connected hypersurfaces
of R**! with type number zero are hyperplanes and those with type number one are
generalized cylinders. They are always isometrically deformable (in a continuous way).
On the other hand, the local metric properties of hypersurfaces with type number two
were studied thoroughly by E. Cartan [3]. He proved (by purely extrinsic methods)
that just the following three possibilities can occur:

a) M is locally isometrically deformable (in a continuous way),
b) M is locally rigid,
¢) M is locally deformable in a unique way: to every sufficiently small domain
¥ C M there is, up to rigid motions and reflections, exactly one hypersurface
¥ ¢ R**! which is isometric to £ and not congruent to it.
In the doctoral Thesis by the first author [6] (see also [2, Chapter 10]) a different
approach was used to construct new classes of examples satisfying a), b) or c). The
method is based on the explicit description of three-dimensional Riemannian manifolds
with conullity two as studied in [9]. Later in the same year, Dajczer, Florit and
Tojeiro [4] have given a revised version of the Cartan’s paper (with the generalization
to arbitrary space forms) and they also constructed examples of hypersurfaces of space
forms with the property c) using purely extrinsic methods.

Now, the natural extension of [6] is the intrinsic study of hypersurfaces with type
number two in general space forms. The induced metrics of such hypersurfaces make
them Riemannian manifolds of ¢-conullity two (see Definition A in the next section).
The subject of extensive research of the present authors was the study of three-dimen-
sional Riemannian manifolds of é-conullity two with respect to some nonzero constant
¢ € R. This class is, of course, much broader than that coming from immersed hyper-
surfaces with type number two in four-dimensional space forms of constant curvature
¢. It can be also characterized by the property that two principal Ricci curvatures
p1 and p; are equal, and may depend on the point, and the last one is equal to the
constant 2¢. (All these spaces belong to a broader class of so-called pseudo-symmetric
spaces.) The second and the third authors have calculated explicit formulas for these
metrics in the cases of so-called nonelliptic types (see [12]-[16]).

The aim of the present paper is to use these formulas and the Cauchy-Kowalewski
Theorem for deriving existence theorems concerning the number of hypersurfaces of
type number two in four-dimensional space forms. Here the different types a), b) and
¢) from the Cartan’s classification occur explicitly.

As we will repeatedly apply the Cauchy-Kowalewski Theorem for partial differential
equations in the present paper, we will always consider the real analytic case.

The third author would like to thank to the Faculty of Mathematics and Physics,
Charles University in Prague for the kind hospitality during his research stay there.
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1. CLASSICAL RESULTS

We start by recalling some fundamental results on hypersurfaces in spaces of con-
stant curvature. .
Let M™*1(¢) = (M™1,§) be a (n + 1)-dimensional Riemannian space of constant

curvature ¢, and V the Levi-Civita connection of M"+!(¢). Then the Riemannian
curvature tensor R of M™1(¢) satisfies

R(X,Y)Z = &{§(Y, 2)X - §(X, Z)Y}

for all vector fields X, Y and Z on M™*!, i
Now let (M, g) be a connected hypersurface of M™*!(¢) with the Riemannian metric
g induced from g, and U a local unit normal vector field of (M, g) in M™*'(¢). Then
the shape operator S of M derived from U is a linear operator of the tangent bundle
TM defined by
SX =-VxU
for all X € TM. 1t is a local tensor field of type (1,1) on M (determined uniquely up
to a sign), which is symmetric with respect to the metric g. We denote by V and R the
Levi-Civita connection and the Riemannian curvature tensor of (M, g), respectively.
The shape operator S satisfies the Gauss equation

R(X,Y)Z =¢{g(Y,2)X - g(X,2)Y}

(1.1)
+9(SY, Z)SX — g(SX, 2)SY

and the Codazzi equation
(1.2) (VxS)Y = (VyS)X

for all X,Y,Z € TM. Conversely, prescribing a local tensor field S satisfying (1.1)
and (1.2) on an n-dimensional Riemannian manifold (M, g) defines locally an isometric
embedding of (M, g) into an (n+1)-dimensional Riemannian space M™+1(¢) of constant
curvature é. Such an embedding is unique up to an isometry of M™*'(). See [8,
Chapter VII] for more details.

Given a Riemannian manifold (M, g), it is natural to ask in how many different
(i.e., non-congruent) ways it can be locally embedded as a hypersurface in M™+!(g).

Definition A. Let (M, g) and (M', ') be two hypersurfaces embedded in M™+!(¢).
An isometry ¢ of (M, g) to (M, ¢') is an isometric deformation of (M, g) if there is
no isometry ® of M™*(¢) onto itself such that @, = . The hypersurface (M, g) is a
(locally) rigid hypersurface of M™*1(¢) if there are no (local) deformations of (M, g).

Definition B. For any Riemannian manifold (M, g) and any constant ¢ define a tensor
R; by the formula

Re(X,Y)Z = &{g(Y, 2)X - g(X, Z)Y},

where X,Y,Z € TM. Then, for any Riemannian manifold (M, g), we shall define the
¢-nullity space at p € M (with respect to ¢ € R) as the linear subspace

T,:M = {X € T,M|(R-Ry)(X,Y)Z=0 forall Y,ZeT,M}.
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(Recall that R — R = 0 if and only if (M, g) is a space of constant curvature ¢).
Then the dimension v¢(p) of T, :M will be called the é-nullity of (M, g) at p, and the
number dim M — vg(p) the ¢é-conullity of (M, g) at p.

The type number ¢(p) at a point p of an embedded hypersurface (M, g) C M™*1(¢)
is the rank of the shape operator S,. Clearly, the type number does not depend on
the choice of the local unit normal vector field and thus it is uniquely determined at
each point of M.

"It is easy to prove the following

Theorem C. Let (M, g_) be a hypersurface with the metric g induced from the metric
of a space M™*1(¢) = (M™*1,§) of constant curvature ¢. Then for any point p € M,

(1) t(p) = 0 or 1 if and only if (M, g) has constant curvature ¢ at p.
(2) If t(p) > 2, then t(p) = n — vz(p) = be the é-conullity at p.

In particular, this implies that at each point in M where R is different from R;, the
type number is the same for every local isometric embedding of (M, g) into M™*1(¢).

2. FUNDAMENTAL EQUATIONS

Let (M, g) be a three-dimensional Riemannian manifold of ¢-conullity two, ¢ # 0,
which is called a pseudo-symmetric space of constant type with constant €. Then its
Ricci tensor R has eigenvalues p; = py # ps, p3 = 26. Now let {E\,E3,E3} be a
local orthonormal moving frame such that the Ricci tensor R is expressed in the form
Ri; = pibij, 4,7 = 1,2,3, where §;; is the Kronecker’s delta and let {w!,w?,w?} be the
coframe dual to { E1, Ey, E3}. Then, in a normal neighborhood U of any point p € M,
there exists a local coordinate system (w, z,y) such that

W' = fdw,
(2.1) w? = Adz + Cdw,
Ww=dy+ Hdw,

where f, A and C are smooth functions of the variables w, z and y, fA # 0, and H
is a smooth function of the variables w and z ([14] and [13]). The frame {E}, E;, E;}
is given in terms of the local coordinates (w, z,y) by

10 Co HO

B TAm T Tay
1
(2:2) E2=Za—x,

E; 9

=%,
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and the covariant differentiation is given by

4 I !
Ve E = fA —aE;, VgE= }‘_ZEI —cE3,
VEzEl = aEz - bE3 ) VE2E2 = —aEl - 6E3 ’
(2.3) \ Vg,Es =aE, +cEs, Vi, Es = bE, + €E,,
VE3E1 = —bEz y VE_.,EQ = bEl ,
L Ve, Es =0,
where
(2.4) = TIK(A' ~HA),
(2.5) g = 2fA(H' + AC, - C4A)),
fy h A
(2.6) a=F, b=f, c=f-7y, e="
with h = H.
For the eigenvalue pl we have
! f; ! ! !
2.7) =7 ((A ), + (X ~Cao+ Hﬂ)z +(Af) + AC’ﬂ)y) .

The last formula in (2.3) implies that the trajectories of the unit vector field E;
are geodesics of (M, g). We call them principal geodesics of (M, g). A smooth surface
N C M is called an asymptotic leaf if it is generated by the principal geodesics
and its tangent planes are parallel along these principal geodesics with respect to the
Levi-Civita connection V of (M, g). In a neighbourhood of each asymptotic leaf one
has an “asymptotic foliation”. The corresponding tangent “asymptotic distribution” is
determined by the following quadratic Pfaffian equation (see [11]-[16] for more details):

(2.8) c(w')? + (e — a)w'w? — b(w?)? =0.

Consider the discriminant A = (e — a)? + 4bc of (2.8). We see that there are just
four possibilities: A < 0, A > 0, A = 0 and (2.8) is nonvanishing, and finally, (2.8)
vanishes identically, i.e., e —a = b = ¢ = 0. Hence there are four possibilities for a
fixed point in M:

(E) There is no asymptotic leaf through this point.

(H) There are exactly two asymptotic leaves through this point.
(P) There is exactly one asymptotic leaf through this point.
(P£€) There are infinitely many asymptotic leaves through this point.

We call these points elliptic, hyperbolic, parabolic and planar ones, respectively. In
the following we are occupied only with the Riemannian manifolds of the “pure” type,
i.e., with the same kind of points. We call them manifolds of type (E), (H), (P) and
(P#) accordingly. The non-elliptic manifolds are also called “asymptotically foliated”.

On each manifold of types (H) and (P), there exists a local coordinate system in the
form (2.1) annihilating the function g ([15, Theorem 3.6] or [16, Theorem 4.8]). As
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concerns the type (P£), we have § = 0 by definition. Thus for every foliated pseudo-
symmetric space of constant type we can assume § = 0. On every such space, at
least one of the asymptotic foliations is totally geodesic if & = 0 ([15, Proposition 3.8]
or [16, Proposition 4.10]). We call a metric generic if @ # 0 and singular if a = 0.
Finally, if h = 0, then our space is of type (H), (P) or (P£). On a space of type (H),
h = 0 means that the asymptotic foliations are mutually orthogonal ([15, Proposition
3.7] or [16, Proposition 4.7]).

Since the conformal curvature tensor of type (1,3) vanishes identically on any three-
dimensional Riemannian manifold, the Riemannian curvature tensor R of (M, g) sat-
isfies

R(X,Y)Z = R(Y,2)X — R(X, 2)Y +g(Y, 2)QX - g(X,Z)QY

(2.9) Se

-3 41y, 2)x - g%, 2)7)
for all X,Y,Z € TM, where R, Q and Sc(g) denote the Ricci form, the Ricci operator
and the scalar curvature, respectively. Since

(210) QE, = p,'E,', 1= 1, 2, 3,

hold, the scalar curvature Sc(g) of (M, g) is given by Sc(g) = 2p; + p3 = 2p, + 2.

Now, suppose that (M, g) is embedded as a hypersurface in a four-dimensional space
M?*(€) of constant curvature & # 0 and let S be the shape operator of the embedding
(determined by a local unit normal vector field). Then, by (2.9), the Gauss equation
(1.1) takes on the form

R(Y,2)X - R(X, 2)Y + g(Y, 2)QX - g(X, Z)QY

11 - (%49 4 8) (o(r, 2)x - 5%, 2)7)

— 9(SY, Z)SX + g(SX,2)SY =0

for all X,Y,Z € TM. As the é-nullity of (M, g) equals to one, the type number of
(M, g) in M*(¢) is two and hence the kernel of S is one-dimensional.

Let X be a unit vector field of eigenvectors of the shape operator S corresponding
to the eigenvalue 0. Then from (2.11) we get

R(Y,Z)X - R(X,2)Y +g(Y, 2)QX — g(X, Z)QY
(2.12) Sc(g)
- (B2 +e)ls, 2)x - 9(x, 2)v} = 0.

Putting Y = E; and Z = E; in (2.12), we obtain (p; — p3)g9(X, Ey) = 0, which
implies that X is perpendicular to E) because p, # p3. Similarly we show that X
is also perpendicular to E;. Hence X = F; up to a sign and Ej is a vector field of
eigenvectors of S corresponding to the eigenvalue 0. Thus, taking into account that S
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is a symmetric endomorphism of rank two on each tangent space, we can write
SE, =LE, + ME;,,
(213) SE2 = ME1 + NE2 )
SE; =0,
where L = L(w, z,y), M = M(w, z,y) and N = N(w, z, y) are functions of the variables
w, z and y satisfying LN — M2 # 0.
Putting X = E;, Y = E; and Z = E; in (2.11), and using (2.10) and (2.13), we see
that
(2.14) Sc(g) — 6¢ = 2(LN — M?).

Conversely, one can see easily that (2.14) is equivalent to the fulfilling of the Gauss
equation in general.

Next, we express the Codazzi equation (1.2) on the basis of (2.13), using the local
orthonormal frame { E\, E,, E3}. We get the system of six partial differential equations
for the components L, M and N of the shape operator S:

/ h —_
(215)  (fL), + (38— -ﬁ) M=o,

(2.16) (AM), + BAN =0,

(2.17) (AN), — BAM =0,

(2.18) (fL); — AM, + CM, + AHM;, — 20fAM — fiN =0,

(2.19) (fM); — AN,, + CN; + AHN, + of AL + ffM—afAN =0,

] ' h _
(220)  BFAL+(fA, - fLAM - fA(ﬁ - f—A)N =0.

In reality, we receive one more equation:

' v h \n =
M, = BL+ M+ (2- H)N_O.
Yet, this is a consequence of (2.16) and (2.20).

Conversely, if L, M and N are functions of the variables w, z and y satisfying the
partial differential equations (2.15)-(2.20) together with the algebraic equation (2.14),
then the tensor field S of type (1,1) defined by (2.13) is symmetric and satisfies the
Gauss and Codazzi equations. Hence, it defines a unique (local) embedding of (M, g)

into M 4(€) of constant curvature ¢ (up to an isometry of the ambient space).

3. RESULTS AND THEIR PROOFS

The formulas and arguments in this section are often the same as those by V. Hajkova
[6] and therefore some more delicate technical details of the proofs will be omitted.
The reader is advised to see [2, Chapter 10].

We shall present the proofs of the main theorems in the hyperbolic case ¢ < 0 only.
For the elliptic case ¢ > 0 we need only slight modifications of these proofs. In the
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following formulas the symbol A will always denote the positive number such that
A2 = —¢ in the hyperbolic case and A\? = ¢ in the elliptic case.

3.1. Orthogonally foliated spaces of type (H). The metrics of three-dimensional
orthogonally foliated generic spaces of type (H) are locally determined, in the hyper-
bolic case, by an orthonormal coframe

w' = [tcosh(\y) + usinh(Ay)] dw,
(31) - w? = [pcosh(\y) + gsinh(\y)] dz
W =dy,
and, in the elliptic case, by an orthonormal coframe
w' = [tcos(Ay) + usin(Ay)] dw,
(3.2) w? = [pcos(Ay) + gsin(Ay)] dz
w® =dy,

where t = t(w,z), u = u(w,z), p = p(w,z) and ¢ = g(w, z) are functions of the
variables w and z such that

upl, —tg, =0,
(3.3) pug — qt; =0,
pu—qt#0.

(The system (3.3) can bé solved in the form where the functions ¢ and u are explicitly
expressed through p and g, see [15] or [16]).

Theorem 3.1. The three-dimensional orthogonally foliated generic spaces of type (H)
which can be locally realized as hypersurfaces in a space M* (¢) of constant curvature
¢ # 0 depend on one arbitrary function of two variables, siz arbitrary functions of
one variable and five real parameters. For the proper choice of the involved functions
(which still remain “arbitrary”), these spaces can be realized as hypersurfaces in M*(¢)
in ezactly two qualitative different ways (up to an isometry of M 4(©))-

Proof. We have
f = tcosh(\y) + usinh(Ay),
A = pcosh(Ay) + gsinh(Ny)

and a = A} /(fA), B=H=C=0.
Condition (2.20) is reduced to (fA, — Af;)M = 0. But we know that fA, — Af, =
Mgt — pu) # 0, so it follows

(34)

(3.5) M=0.

Then (2.16) is satisfied identically. Conditions (2.15) and (2.17) imply
L N

(3.6) L—}—, N_X’

where L = L(w, ) and N = N(w, z) are functions of the variables w and z.
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Next, we substitute from (3.5) and (3.6) in (2.18) to obtain A(L), = f!N. Sub-
stituting for f and A the expression from (3.4), and comparing the corresponding
coefficients, we find

(3.7) pL,=t.N,
(3.8) gL, =u,N.

These two equations are linearly dependent because of (3.3);. Substitution from (3.5)
and (3.6) in (2.19) gives fN,, = A L, or equivalently,

59) ) = gL,
(3.10) uN,, =¢q,L.

Again, these equations are dependent because of (3.3);.

Finally, using expressions (2.7), we write the Gauss equation (2.14) in the form

R VN T

. == — 2 - 222 4 A\(pt — qu).
(3.11) IN=2G+ T 4+ (pt - qu)

Because the requirement a # 0 is equivalent to pg), — gp), # 0, we have p/, # 0 or
¢\, # 0. Now we suppose p}, # 0. (We can treat the case g}, # 0 similarly.) By (3.3),,
we obtain

/
(3.12) u=o
Py
Since the function ¢ satisfies the equality ¢ = (pu — qt)p),/(pq, — gp),) and pu — gt # 0,
we get ¢ # 0. Substituting (3.12) into (3.3),, we obtain
tl pll t, pl
(3.13) gt (= - Pz ) g, - L2g =0.
=\ T T
So, if we choose arbitrary non-zero (real analytic) functions p and t of the variables w
and z such that p), # 0, then g is a solution of (3.13) and u is determined by (3.12).
Now, we turn again to condition (3.11). We substitute from (3.4), using also ¢/, =
up),/t and u), = gt /p (which are coming from (3.3)) to obtain

- D t
(3.14) PILN = Spit, + Et'zp’z = PPy — ttgz + X (pt — qu)pt,

= = t!

(ot LN = (gt + ) + 2, + 1) - anl il

(3.15) — utl, — tul, + N (pt — qu)(gt + pu),

T N u
(3.16) quLN = %p(uu; + Eq’zt’z ~ Q0 — Uz + N (pt — qu)qu.
Using the identities

Uy Dy + UPlpy, — tyy 0y — by, =0,

Piul, + PUg, — gyt — gty =0,
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which are obtained by differentiation of (3.3), we see easily that equations (3.14)-
(3.16) are dependent. Thus, we are left with the equations (3.7), (3.9) and (3.14) i.e.,
the basic system of partial differential equations is given by

(3.17) pLl =t N,

3.18 tN! =plL,
w w

(3.19) LN =F,

where we have put, for simplicity of notation,
FoPute | Gl Pow _fu
12 p? t
Note that only the functions p and ¢ occur explicitly in the system because the functions

¢ and u can be calculated from p and ¢ by (3.13) and (3.12).
From (3.19), we express N as N = F/L and substitute in (3.17) and (3.18). In this

way, we obtain

- tLF
(3.20) @), =2,
/ !
7oy _ _oPuwi4 Fy 72
(3.21) (L*),, = 2——FtL +2 7 L*.

The integrability condition for this system of partial differential equations is given by
s FL o\ tLF\!
(—&Ll;‘*'—sz) =(z ) )

Ft F z D /w
which is written (using (3.20)) as
(322) Glfzd + G2Z2 + Gs =0
with functions Gy, G2 and G3 defined by
A
G = (Ft)
pr t F'\/
—g4fw’zs _ (‘w
G2 pt ( F )z,
F't Ft' \?
G3=—2 wz+(_£) .
p pP/w

The roots of the quadratic equation (3.22) in L? are of the form
1_12 _ —Gg + \/G22 - 4GIG3 )
2G,

Now we can see that, in a neighborhood of a fixed point (wo, T, %), the functions
p and t can be chosen in such a way that

GiG3>0, GG2<0, G22—4G1G3>0, Fpt#0.

Moreover, the function p still remains “general” and the function ¢ can be calculated as
a general solution of a fifth order partial differential equation. We refer to pp. 201-205

(3.23)
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of [2] for more formal (and a bit complicated) details. Hence, we can calculate two dif-
ferent branches for the function L? from (3.23), and hence two different solutions for L
which are not just opposite. The function N is then given by N = F/L. So, from (2.13)
we get just two essentially distinct shape operators S and the corresponding metrics

are locally realizable as hypersurfaces of M 4(=)?) in exactly two non-equivalent ways.
O

The metrics of three-dimensional orthogonally foliated singular spaces of type (H)
belong to the following two classes ([15, Theorem 4.9] or [16, Theorem 5.9]):

Class 1. The orthonormal coframe is given, in the hyperbolic case, by
w' = [t cosh(\y) + usinh(Ay)] dw,
(3.24) w? = [cosh(\y) + ¢gsinh(\y)] dz,
wd =dy,
and, in the elliptic case, by
w!' = [tcos(My) + usin(Ay)] dw,
(3.25) w? = [cos(My) + gsin(My))] dz,
wd=dy,
where t = t(w, z), u = u(w, ) and ¢ = ¢(z) are arbitrary functions such that
(3.26) u, —qt. =0,
Class II. The orthonormal coframe is given, in the hyperbolic case, by
w' = [cosh(\y) + usinh(Ay)] dw,
(3.27) w? = sinh(\y) dz,
W =dy,
and, in the elliptic case, by
w' = [cos(Ay) + usin(Ay)] dw,
(3.28) w? =sin(\y)dz,
WP =dy,
where u = u(w, z) is an arbitrary function of the variables w and z.

Theorem 3.2. (1) The three-dimensional orthogonally foliated singular spaces in the
class 1 of type (H) which can be locally realized as hypersurfaces in a space M4(¢) of
constant curvature ¢ # 0 depend on siz arbitrary functions of one variable and five real
parameters. For every such realization, the corresponding hypersurface is locally rigid.
(2) The three-dimensional orthogonally foliated singular spaces in the class II of type
(H) which can be locally realized as hypersurfaces in a space M*(€) of constant curva-
ture ¢ # 0 depend on four arbitrary functions of one variable and five real parameters.
For every such realization, the corresponding hypersurface is locally rigid.
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Proof. (1) In the class I, we have

f = tcosh(\y) + usinh(Ay),
(3.29)

A = cosh()y) + ¢sinh(\y)

anda=f=h=H=C=0.
Conditions (3.5)-(3.10) and (3.14) are reduced to

L N
3.30 M= L==, N=—
( ) 07 f ) A )
(3.31) L =tN, N,=0,
(3.32) LN =~ + )(t - qu).

We denote F = —t_+ A?%(t — qu) and we substitute N = F/L into (3.31). This yields
(L), = 2Ft,,
- 2F! _
(17, = 2.
The integrability condition for this system of partial differential equations is written
as
_ Ft” — FI tl
(3.33) 2=z _uz
(Fo/F)s

Condition (3.33) implies that the function L is determined (up to the sign) by the
metric g. The function N is given by N = F/L. So, the shape operator (2.13) is
determined up to a sign and a realizable metric can be locally embedded in M*(—\?)
by a unique way (up to an isometry of M*(—A?)). The rest of the proof is same as
that in p. 206 of [2].

(2) In the class II, we have

f = cosh(\y) + usinh(Ay),
(3.34)
A = sinh()y)

anda=f=h=H=C=0.
Conditions (3.5)—(3.10) and (3.14) are reduced to

The rest of the proof is the same as above. a
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3.2. Spaces of type (P). The metrics of three-dimensional foliated generic spaces
of type (P) are given, in the hyperbolic case, by an orthonormal coframe

w' = ¢[pcosh(Ay) + gsinh(\y)] dw,
w? = [pcosh(\y) + gsinh(Ay)] dz

+ [r cosh(Ay) + ssinh(Ay)] dw,
Ww=dy+zdw,

(3.35)

and, in the elliptic case, by an orthonormal coframe

w' = E[pcos(Ay) + gsin(Ay)] dw,
(336) w® = [peos(Ay) + gsin(My)] dz
' + [r cos(Ay) + ssin(Ay)] dw,
WwP=dy+zdw,
where p = p(w,z) and ¢ = gq(w,z) are arbitrary functions of the variables w and z
such that gp,, — pq. # 0, and

P, — pE ¢ —gE [piu—ré—/\qz]m
= E=|7"—— ,
, pD

(3:37) D = A(pzq - raz),
E = Xpq, — puq + Mep® +¢")z], € =sgn().
(See [15, Theorem 4.10] or [16, Theorem 5.10].)

Theorem 3.3. The three-dimensional foliated generic spaces of type (P) which can be
locally realized as hypersurfaces in a space M 4(€) of constant curvature ¢ # 0 depend
on one arbitrary function of two variables and siz arbitrary functions of one variable.
For each such realization, the corresponding hypersurface is locally rigid, i.e., it cannot
be (locally) isometrically deformed.

Proof. For the metrics of foliated generic spaces of type (P), we have
f = &[pcosh(Ay) + gsinh(Ay)],

(3.38) A = pcosh(\y) + gsinh(Ay),
C = rcosh(\y) + ssinh(Ay),

where £ depends only on w and z.
Since we have fyA — A, f = 0 and h = H; = 1, condition (2.20) reduces to

N=0.

Then (2.17) is satisfied identically and from (2.16) we see that M can be written in
the form

(3.39) M=
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where M = M (w, z) is a function of the variables w and z. Because f = £A, where ¢
does not depend on y, the equation (2.15) can be written as

M
From here the function L can be calculated by an elementary procedure (after replacing
A by its expression from (3.38)) in the form
L 1cosh(\y)M

3.4 L=—- - -9/ 7

(3:40) A X gAr ]
where L = L(w, z) is a function of the variables w and z.

Next we look at remaining equations (2.18) and (2.19). Using the formuilas
_ Decosh(Ay) + Esinh(\y)

f=¢4, h=1, a= o ,

where
D=p,—1.—Nz, E€==D,

(see [15, Proposition 4.2] or [16, Proposition 5.2]), and substituting for L and M from
(3.39) and (3.40) in equation (2.18), we obtain

AN, — AA,M — CAM, + CALM — AALcM

9sesy 1 Acosh(My) -, 1 Ag, cosh(\y) -
= -3 = M
AEL), - 5 M+ 3=
' 2
+ 14; cosh(/\y)M _ 2DA i
Aogq P

Substituting here explicit expressions for A and C from (3.38) and comparing coeffi-
cients of sinh?(\y), cosh(Ay) sinh(Ay) and cosh?(\y), we obtain three equalities:

pe*(EL), = pg® M, — pgsM,, + 2¢°p, M — pqq), M

(3.41) _ _ _
+ psquM — 2¢°r, M — \q(2¢* — p*)zM.
2 T\ 2 gl 1 Vi 2.1 a4
2pq (EL)1‘= 2pg°M,, — q(ps +gqr— X) M; +3¢°p,M
_ _ 2 _
(342) + gsp, M — pgd, 11 + (ar - X)Q’EM
- 4q2r;1\7f - /\q(3q2 - pQ)xM,
2 2(¢T\! 2 2xq! 1 Vi 2 Y
P (L), =p'T'M, —pq(qr - X)M’ - pg’(p - 2)p,,M
(3.43)

N, - 1 .- } _
+ q(qr - X)p';M - qu;M - 2pg°r, M — Apg’zM .

Now, if we substitute the expression for (§L). from (3.41) into (3.42) and (3.43) and if
we use the formulas A(qr —ps) = 1 and E = A(rg;, — sp;) (which are easy consequences
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of (3.37)), we see that these last two equations are satisfied identically. Thus we are
left with the single equation (3.41). In a similar way, we treat the equation (2.19).
This can be expressed in the form

ApgA(€2M)., = cosh(\y)DM — MqADL — M?pgALM .

Substituting here the explicit expression for A from (3.38), and comparing coefficients
of sinh(\y) and cosh(\y), we now obtain the following two equalities:

(3.44) Apq(€2M); = —MqDL — M’pg; M,

(3.45) Mp*q(6°M), = DM — XpgDL — A*pgp, M .

Multiplying (3.44) by p and then subtracting both equations, we get
(\’p(p.q ~ pd,) - D)M = 0.

This is satisfied identically due to (3.37)4 and due to the formula D = ¢2pD, which is
only rewritten formula (3.37);. Thus, we are left with only one equation (3.44).
Finally, we turn to the Gauss equation (2.14). This can be rewritten in the form

M2 = -%(A2 Sc(g) + 612 42),

which implies that M is uniquely determined, up to a sign, by the metric g. Further,
(3.44) implies that L is completely determined by M. So, the shape operator S is
uniquely determined up to a sign by the given metric.

For the rest of the proof we refer pp. 192-194 of [2]. Every realizable metric can be
locally embedded in M*(—A2) by a unique way up to an isometry of M4(—X2). O

The metrics of three-dimensional foliated singular spaces of type (P) are given, in
the hyperbolic case, by an orthonormal coframe :

w' = épcosh(\y) dw,
(3.46) w? = pcosh(Ay) dz + [r cosh(Ay) + ssinh(\y)] dw,
W =dy+zdw
or
w' = €gsinh(Ay) dw,
(3.47) w? = gsinh(\y) dz + [r cosh(Ay) + ssinh(\y)] dw,
W =dy+zdw,
and, in the elliptic case, by an orthonormal coframe
w!' = épcos(y) dw,
(3.48) w? = pcos(\y) dz + [rcos(\y) + ssin(Ay)] dw,
w=dy +zdw,
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where § = £{(w, 1), p = p(w,z), ¢ = g(w,z), r = r(w, ) and s = s(w, z) are non-zero
functions of the variables w and z, such that, in cases (3.46) and (3.48),
¢

sp, = —edp’z, €=sgn(é),

(3.49) T =Dlus
Aps = -1,
and in case (3.47),
g, = M’z,
(3.50) Sz =)
Agr=1.

(See [15, Theorem 4.11] or [16, Theorem 5.11].)
Theorem 3.4. A three-dimensional foliated singular space of type (P) and of the form

(3.46), (3.47) or (3.48) can be realized as a hypersurface in a space M*(€) of constant
curvature ¢ # 0 if and only if the non-zero function € = £(w, z) of the variables w and

z 1s given by the formula

1 1 z
3.51 62 = —-(ulzz — Uo— + 2”3_)
(351 P P p/’
where p; = p;(w), 1 = 1,2,3, are arbitrary functions of the variable w satisfying
the inequalities u; > 0 and pypy + us? < 0. These metrics depend on five arbitrary
functions of one variable. The corresponding hypersurface can be locally isometrically
deformed in a continuous way.

Proof. The metric (3.46) in the hyperbolic case satisfies a = f =D =€ =D =0.
As in the case of the generic spaces, we deduce from (2.20) and (2.15)-(2.17) that
M L L N 1sinh(Ay) M
A CTATY pear
where L = L(w,z) and M = M(w, z) are functions of the variables w and z.

After we substitute in (2.18) the expression (3.52) for N, M and L, we perform
analogous computations as before and we find the single equation

(3.52) N=0, M=

!
3.53 Ly, =-_m + - (Z) 1.
(353) (€0), =~ + 01, = ()
We treat similarly the condition (2.19) and we obtain
(3.54) (p€2M), =0.
Finally, the Gauss equation (2.14) is equivalent to

Y ) | &) 2.2

3.55 M?= (=) 40222 _\p?

which implies that M is determined, up to a sign, by the metric g. The function L
can be calculated from the differential equation (3.53). So the shape operator S for a
realizable metric depends on one arbitrary function of one variable.
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The rest of the proof is a minor modification of the procedure in pp. 196-197 of
[2]. The associated hypersurface can be locally isometrically deformed in a continuous
way. O

Remark. Three of the five arbitrary functions in Theorem 3.4 are p;, po and ps.

3.3. Spaces of type (P£). The metrics of three-dimensional foliated spaces of type
(P¢) are locally determined, in the hyperbolic case, by an orthonormal coframe

w! = €sinh(\y) dw,
(3.56) w? = sinh(\y) dz,
WwI=dy
or
w' = &cosh(y) dw,
(3.57) w? = cosh(\y) dz,
w®=dy,
and, in the elliptic case, by an orthonormal coframe
w' = ¢&sin(\y) dw,
(3.58) w? =sin(\y)dz,
w? =dy,
where £ = ¢(w, z) is a non-zero function of the variables w and z. (See [15, Theorem
4.12] or [16, Theorem 5.12].)
Remark. There are no three-dimensional foliated singular spaces of type (P¢).

We have the following existence theorem:

Theorem 3.5. Every three-dimensional foliated space of type (P£) can be (locally)
isometrically embedded as a hypersurface in a space M* (€) of constant curvature ¢ # 0.
The corresponding hypersurface is (locally) isometrically deformable in a continuous
way.

Proof. We consider the metric (3.56) in the hyperbolic case (we can treat the other
cases similarly). We have

f = &sinh(\y),

(3.59)
A = sinh(Ay)
anda=g@=h=H=C=0.
According (2.15)-(2.17) we see that
(3.60) L=_L M N

Y M=—2 =
sinh(\y)’ sinh(\y) ’ N sinh(Ay) ’

where L = L(w,z), M = M(w,z) and N = N(w,z) are functions of the variables w
and z. Then equation (2.20) is identically satisfied because of (f/A), =
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Next, the equations (2.18) and (2.19) are reduced to
Mt’u = (fl_;)'z - &:N:
(3.61) _ ) _
N, = (€M), + &M .
Finally, the Gauss equation (2.14) is written as

"

(3.62) _? -~ M =LN-M.
In the following we distinguish two cases: N # 0 and N = 0.

Case 1. Here we assume NN different from 0, and hence
"

(3.63) I= -I%]_—(M" a2 —?) .

Suppose that the function £ = §(w, z) is a fixed non-zero real analytic function. Then
we can apply the Cauchy-Kowalewski theorem for the system (3.61), after substitutions
from (3.63) for L. For the given function &, the solutions of (3.61) for M and N depend
on the choice of two arbitrary functions of one variable. Thus the shape operator S
depends on two arbitrary functions of one variable. This implies that the hypersurface
in M*(—=)?) can be locally isometrically deformed in a continuous way. a

Case II. Let the embedding admit a shape operator S of the form (2.13) such that
N = 0 holds identically. This happens if and only if the second fundamental form
vanishes on the distribution span{E,, E3}, i.e., on the asymptotic foliation defined by
w = constant.

Proposition 3.6. If a three-dimensional foliated space of type (P£) of the form (3.56),
(3.57) or (3.58) admits locally an isometric embedding in a space M*(€) of constant
curvature ¢ # 0 for which the second fundamental form vanishes along the asymptotic
foliation defined by w = constant, then the function £ = £(w,z) can be given in the
form

(3.64) £=+/cos(2Az+0)+7v, y=7(w)>1,

or £ = 1. Conversely, a metric of the form (3.56), (3.57) or (3.58) with a function
£ of form (3.64) can be realized on a hypersurface in M*(&) such that the second
fundamental form vanishes along the asymptotic foliation defined by w = constant.

Proof. We see from (3.62) that N = 0 implies

"

(3.65) % + 2% = M?
and (3.63) implies
v d

where ¢ = p(w) is a positive function of the variable w. Substituting (3.66) in (3.65),
we obtain

(3.67) g+ 0% = 523.
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Now we suppose that £, # 0 and multiply (3.67) by 2£.. Then, by the usual
integration procedure, we obtain the general solution in the form

€ = (/cos(2\z + 0) + v,

where ¢ = {(w), 8 = 8(w) and y = y(w) are arbitrary functions of the variable w. An
easy calculation shows that ¢? = A2(*(y? — 1) and hence v > 1 because v < —1 is
impossible. By a change of the coordinate w to @ satisfying dw/dw = ¢, we can make
¢ = 1. Thus £ is given by the final form (3.64).

Next if £ = 0 in the given domain, we obtain the singular solution of equation
(3.67) in the form & = &(w). Again, after making a change of the coordinate w if
necessary, we may suppose that £ = 1.

The converse statement follows easily. O
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