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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 72 (2004), pp. 177-191 

HIGHER MONOGENICITY AND RESIDUE THEOREM FOR 
RARITA-SCHWINGER OPERATOR 

PETR SOMBERG 

ABSTRACT. We define the notion of higher Spin-monogenic functions and prove 
Stokes and residue theorems for them. 

1 . INTRODUCTION 

In this article we investigate various properties of higher spin analogy of Clifford 
analysis, see the monograph [1], 

In particular, we employ representation theory (Littlewood-Richardson rule) to get 
decompositions on irreducibles of various tensor-spinor Spin-modules. Based on these 
results we define Rarita-Schwinger operator, which is higher spin analogy of Dirac 
operator in Clifford analysis. We then proceed to define higher spin (i.e. Rarita-
Schwinger) monogenic functions. This notion is consequently used in the construction 
of Stokes and residue theorems for Rarita-Schwinger monogenic functions. 

It is worth to emphasize that similar (Clifford like) analysis can be done for any 
other spinor like module, the only problem being connected with explicit construc­
tion of projectors on this module realized inside tensor-spinor tensor products of Spin-
representations. This is just the place where Clifford analysis enters the game. Because 
we consider operators of the first order, the previous computations are in fact equiva­
lent to the constructions of their symbols. 

In this article we shall consider only the closest higher Spin-module beyond spinor 
module, i.e. the Rarita-Schwinger module. In fact, everything can be extended to any 
(spinor like) Spin-module. Likewise everything can be generalized towards higher (than 
one) degree forms valued in Rarita-Schwinger module (instead of zero and one forms 
as in this article). But note that potential complications coming from irreducibles of 
higher multiplicity could appear. 
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2. ALGEBRAIC PRELIMINARIES - TENSOR PRODUCT DECOMPOSITIONS 

The aim of this section is to decompose the tensor products of the Spin(n) rep­
resentation with the highest weight (1,0,... ,0,1) (we call the corresponding repre­
sentation higher spinor representation) with fundamental vector representation with 
highest weight (1,0, . . . , 0). To carry out the computation, we shall employ so called 
Littlewood-Richardson rule based on the notion of a "standard Young tableau" (see 
[3])-

2.1. Spin-standard Young tableaux. 

Definition 2.1. Let p = (pi,... ,pm) be a partition of a natural number n, that is 
Pi > • '• > Pm > 0 are integers and n = Y'iLiPi- With p we associate its Young 
diagram, a figure consisting of m left justified rows of boxes, pi boxes in the z-th 
row from the top. By a Young tableau T of shape p we mean a filling of the boxes 
with positive integers. A Young tableau is standard if the numbers in the boxes are 
non-decreasing in the rows and strictly increasing in the columns from the top to the 
bottom. 

Remark 2.2. Note, that we use the convention introduced in [4], which is opposite 
to the one in [3] in the sense that the roles of columns and rows are exchanged. 

If we omit any column from a standard Young tableau T, we get a standard Young 
tableau again. Let us number columns of Young tableau from the right hand side. It 
will be convenient to denote by T(k, I) the Young tableau consisting of the /-th up 
to the k-th columns of a Young tableau T, and by T(k) the tableau T(k, 1). If i 
is a positive integer, we define cj(i) to be the number of boxes in T containing the 
number i. 

To the dominant weight JJ, of a representation V^ of a Lie algebra g we associate a 
partition p(p) = (pi,... ,pm). The exact relation depends on the type of g, here we 
shall restrict ourselves only to the formulas for Lie algebras of type Bm and Dm. The 
formulas for other types of Lie algebras can be found in Appendix of [3]. 

Definition 2.3. Let Ui be the z-th fundamental weight of a Lie algebra g, and let 
\x = YA=.\ a»a;» t>e the decomposition of the dominant weight /x of a representation V̂  
of g. Then we associate to \x the partition p(p) = (pi,... ,pm) with pi = YljZi 2flj+Om 
for g of type Bm, and pi = Y'j'Ji* ^aj + °m-i + am for g of type Dm (the void sums 
give 0). 

Definition 2.4. Let h be a column of a standard Young tableau such that it does not 
contain numbers i and 2m + 1 — i together. For i = 1 , . . . , m we denote by Sj(h) the 
columns defined in the following way: 

If i < m and both i +1 and 2m 4-1 - i are entries of the column h, then 
Si(h) is the column obtained from h by replacing the entry i -f 1 by i 
and 2m + 1 - i by 2m - i. If i = m, g is of type Bm and h contains 
an entry with value m + 1, then si(ti) is the column obtained from h by 
replacing m + 1 by m. If i = m, g is of type Dm and both m + 1 and 
m -f 2 are entries of the column h, then 5t(h) is the column obtained 
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from h by replacing m + 1 by m — 1 and m + 2 by m. In all other cases 
we set Si(h) = h. 

We say that a pair of columns (h, h') is admissible, if there exists a sequence of different 
columns (ho,. . . , h*), k > 0, such that 

h = h 0 , h' = hjfc, 

Si^hj-i) = hj for j = 1, . . . , k and some integers 1 < ij < m. 

Definition 2.5. Let T be a Young tableau of shape p(/i) that contains only positive 
integers smaller or equal to 2m and that does not contain integers i and 2m+l—i in the 
same column together. Denote P\=P\- am for g of type Bm, and P\=Pi-am- am_i 
for g of type Dm. T is called Spin-standard if all of the following conditions hold: 

• If g is of type Bm then T is standard. If g is of type Dm then we divide T into 
three tableaux: 71 := T(pi), T2 := T(pi -a m ,p i + l), and 7-$ := T(P i ,P i -a m +l) . 
Then each of the tableaux 71, 7_, 75 is standard. 

• Let ti be the z-th column of T. The pair of columns (t2i_i, t2i) is admissible for 
every i = l . . . . , f t / 2 . 

For g of type Dm there must be two further conditions satisfied: 

• In Ti (resp. %) the number of integers in a column greater than m is odd (resp. 
even). The condition for 7i looks as follows: let 1 < i < pi/2 — 1 and let the 
(2i)-th column t2i of 71 consists of entries (hi,..., hk) and the (2i + l)-st column 
t2i+i of (j i , . . .,ji), k < l. For any sequence of integers 1 < i\ < • • • < iq < k 
such that 

™> + 1 - Q < ha < * • • < hiq < m + q 
m + 1 - g < ji. < • • • < ji, < m + a 

there holds /itl H h hiq = #, H h jiq mod 2. 
• This last condition is needed only if either am_i > 0 and am > 0, or X.i_72 a» > ® 

and am_i + am > 0. Let (k i , . . . , ks) be the entries of the most left column of 71-
Denote by 1Z the set {k\,..., k3, l\,..., /m_a_i, x} with the following properties: 

2m > h > • • • > -"m-5-i > m , lm-s-i > x , lm-s-i > 2m + 1 -
x , U 7- kj and x 7- kj for all 1 < i < m — s — 1, 1 < j < 
5, and if r E TZ = > 2 m + l - r ^ 7 ? , . If the number of integers 
strictly greater than m in % \ {x} is odd, then x > m else x < m 
(R, is uniquely determined by these properties). 

Denote by Ti the tableau obtained from 72 by adding one column of length 
m to the right of 72 and filling the boxes of this column with the elements of 
{2m + 1 - x] U1Z \ {x} in increasing order. Then the tableau T{ defined above 
is standard. 

Denote by 7? the tableau obtained from % by adding (am_i + 1) columns 
of length m to the left of 75, with filling of the columns defined inductively as 
follows. The boxes of the most left added column of 7? are filled with integers 1Z 
in increasing order. Assume now that (i — l)-st column has already been filled, 
2 < i < am-i + 1. Let (ju..., jm) be the (i - l)-st row of 72- For 1 < / < m 
let 1Z\ denote the m-tuple ( i i , . . . , im) such that i\ < • • • < im and {i-.,..., im} = 
{ j i , . . . , 2m+l - ji,..., j m } . Note that TZU..., lZm are lexicographically ordered; 
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the i-th row of TJ is equal to Umax, where Umax is maximal among those 7̂ -s for 
which T$(i) with 7lmax the most left column is standard. Then the tableau Tl 
defined above is standard. 

2.2. The Littlewood-Richardson Rules. 

Definition 2.6. Let \i be a dominant weight of a representation of g and let T be a 
Spin-standard Young tableau of shape p(//) = (pi,... ,p m ). Define the weight of the 
tableau T as 

(i) v{T) := - [ (c r ( l ) - crЏmУlЄг + ••• + (cT(m) - cT(m + l))єm] 

where (ei, . . . , em) is the standard weight basis of g. 

Remark 2.7. We suppose that the relation between the fundamental and the stan­
dard weight basis is the following. In the case of Bm we have e\ = LJI, 6{ = a;,- — cjj_i 
for i = 2,.. . , m - 1 and em = 2^m - cc;m-i. In the case of Dm we have ex = CJI, 
Ei = cjj - 6Jj_! for i = 2,..., m - 2, m and em_! = um + <x>m_i - cjm_2. 

For 1 < I < pi denote by vi{T) the weight 2v{T(l)). If A is a dominant weight for 
g, then a Spin-standard Young tableau T of shape p(/x) is called X-dominant if all the 
weights 2A + vx ( T ) , . . . , 2A + vpi (T) are contained in the dominant Weyl chamber of g. 

Theorem 2.8. The decomposition of the tensor product V\ <8) V^ into a sum of irre­
ducible representations of $ is given by the formula 

(2) ^ ® ^ = 0 V A + „ ( r ) 

T 

where T runs over all X-dominant Spin-standard Young tableaux of shape p(/x). 

2.3. Tensor product [1,0..., 0,1] 0 [1,0..., 0]. 

2.3.1. The case of odd spin group Bm = Spin(2m + 1). According to the notation 
and rules discussed before Th.2.8, we define A = [1,0,..., 0], /i = [1,0,..., 0,1]. The 
conditions have in the case of Spin(2m + 1) (m > 1) the following content: 

• The standard Young tableau 

ťl Һ Һ 

»a 

»'з 
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is filled with integers from the set { 1 , . . . , 2m}, such that for all i, 1 < i < 2m, 
the couple {i, 2m + 1 - i} is not in the first column. 

• The condition of admissibility of the second and third column (i.e. the second and 
third box from the left in the first row) implies, that there are two complementary 
possibilities (see the previous Young tableau): 

- 3\ = . ?2e{ l , \ . . , 2m} , 
- 3\ = m,J2 = m + 1. 

The last possibility, j i = m,j2 = m + 1, is excluded because the weight 2A + 
2v(T(l)) = (2,0, . . . , 0, -1) is not dominant. From the same reason are excluded the 
possibilities ji = j2 G {3 , . . . , 2m — 1}. The only non-trivial contributions come from 
the cases j i = j2 € {1,2,2m}: 

1 1 1 

2 

3 

1 2m 2m 

2 

3 

m — 1 

1 2 2 

2 

3 

1 2 2 

3 

4 

2m - 1 

They correspond to the weights [2,0,.. . , 0,1] (ji = j2 = 1), [0 , . . . , 0,1] (ji = j 2 = 
2m), [0,1,0,. . . , 0,1] (ji = j 2 = 2) and [1,0,. . . , 0,1] (ji = j - = 2). 

In the basis of fundamental weights the decomposition reads 

[1,0,... ,0,1]® [1 ,0 , . . . , 0 ]~ [2,0,...,0,1] ©[1,0,. . . ,0,1] 

©[0,1,0,. . . ,0 .1]©[0. . . . ,0,1]. (3) 
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2.3.2. The case of even spin group Dm = Spin(2m). We shall start with Young 
tableaux attached to the weight [1,0,..., 0,1]. Because pi = 3,p2 = 1, • • • ,Pm = 1, we 
have the following rules: 

• (2.5) The standard Young tableaux 

Іi І2 Гi=Г(1,2) = Г(2) Гз = Г(3,3) 

t m - l 

where the tableau T(2)={0} is trivial (=empty). Moreover, if i, 1 < i < 2m, is 
the entry of the first column, the number 2m + 1 — i is not the entry of the first 
column. The number of integers greater than m in % is even. 

• (2.5) The condition of admissibility of the second and third columns (i.e. the 
second and third boxes from the left in the first row) implies, that there is only 
one possibility (see the previous Young tableau) - ji = j 2 G {1,2,2m}. 

• (2.5) This condition is non-trivial because Y^2* a» > 0 A am_i + am > 0 is 
fulfilled. Let (ji) be the value in the left column (=box) of 71 (ji E {1,2,2m}). 
The set H = {ji, /i, •. •, -m-2,x}, \R\ = m, has properties: 

2m > /i > • • • > lm-2 > m , lm-2 > x , lm-2 > 2m + 1 - x , U / 
ji and x 7- j i for all 1 < i < m-2, and if r E H =!> 2 m + l - r ^ 
H . If the number of integers strictly greater than m in 11 \ {x} is 
odd, then x > m else x < m (K is uniquely determined by these 
properties). 

The tableau T2 is trivial, and so there is no condition on its modification. However 
the tableau T% is restricted by the following condition: denote by 7J the tableau 
obtained from Tz by adding one column to the right, i.e. the left column of 
T3' contains integers {ii,..., im} and right columns contains integers (ordered in 
increasing order) K. Then the tableau T3' is standard. 

j l = j 2 = l; l £ H ==> 2m ^ TZ, and there is only one possibility: either m is 
odd, x = m + 1 and K = {1,2m - 1,2m - 2,. . . ,m + 2,m + 1}, or m is even, 
x = m and TZ = {1,2m - 1,2m - 2 , . . . , m + 2, m}. The corresponding standard 
Young tableau 
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1 1 1 

2 

3 

gives (irrespective of the parity of m) the highest weight (|, \,..., \) = [2,0,..., 
0,1]-

2. -j! = j2 = 2; 2 e 72, -==> 2m — 1 ^ 72, and there is only one possibility (for x): 
either m is odd, x = m + 1 and 72, = {2,2m, 2m — 2,2m — 3 . . . , m + 2, m + 1}, 
or m is even, x — m and 72 = {2,2m, 2m - 2,2m - 3 . . . , m + 2, m}. Taking into 
account the condition of even number of integers greater than m in 71, only two 
possibilities of standard Young tableaux survive: 

1 2 2 

2 

3 

1 2 2 

3 

4 

m + 1 

2 m - l 

They give (irrespective of the parity of m) the highest weights (§, §, | • • •, | ) = 
[0,l,0...,0,l]resp. (§, \ . . . , | , - § ) = [1,0.. .,0,1,0]. 
h = h = 2m; 2m ell =-=> 1 ̂  71, and there is only one possibility: either m is 
even, x = m + 1 and 7£ = {2m,2m — 1,2m — 2,.. .,m + 2,m + 1}, or m is odd, 
x = m and 72, = {2m, 2m — 1,2m-2,... ,m + 2,m}. The corresponding standard 
Young tableau 
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1 2m 2m 

2 

3 

m - 1 

(5) 

gives (irrespective of the parity of m) the highest weight ( | , . . . , \) = [0, . . . , 0,1]. 
Summarizing together the case of Dm, in the basis of fundamental weights the 

decomposition reads 

[1,0,... ,0,1]® [1,0,.. . , 0 ] ~ [2,0,.. .,0,1] ©[1,0,. ..,0,1,0] 
( ] ©[0,1,0, . . . ,0,1]©[0, . . . ,0,1]. 

Note, that in the case of complementary spinor weight [1,0,. . . , 0,1,0] the decompo­
sition differs from the last case by exchange of last two entries of the RHS: 

[1,0,...,0,1,0]® [1,0, . . . ,0]-[2,0, . . . ,0 ,1,0] ©[1,0,.. . ,0,1] 

©[0,1,0, . . . ,0,1,0]©[0,. . . ,0,1,0]. 

Remark 2.9. In the context of Clifford analysis there is similar decomposition based 
on tensor products with spinor module, see [1],[5] instead of Rarita-Schwinger one. In 
this case one can use either representation theory in the spirit of previous paragraphs 
or (of course equivalent) intertwining operators (easily constructed because of single 
multiplicities of target Spin-modules). Within the context of representation theory, 
we talk about dual pair (spin(n), si(2)). 

3. R A R I T A - S C H W I N G E R OPERATOR 

Let us consider compact Lie group G, i.e. in our case of interest it will be G = 
Spin(n), and its (complexified) representation on finite dimensional complex vector 
space with Hermitian scalar product (Vc, <,>) , i.e. a homomorphism p : G —•> 
GFc(Vc)- Then Vc admits G-invariant Hermitian inner product 

(vuv2):= / <p(g)vup(g)v2> dg 
JG 

such that the representation p on (Vc, <,>) is unitary w.r. to (,). The symbol dg 
denotes (G-invariant) Haar measure on the group G. 

If p is a representation of G on (Vc, (,)), then p is the direct sum of irreducible 
representations, i.e. Vc -*-- Vi © ••• © Vm, m G N such that V* (i = l , . . . , ra) is 
irreducible (complex) finite dimensional G-module. In other words, 

{vi,vj) = Q V^GV i , VjZVj, i^j. 
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Rarita-Schwinger operator Us on a Spin-manifold M with conformal structure is 
conformally invariant differential operator acting between sections valued in Rarita-
Schwinger spm(n)-modules: 

(6) lis : (T(M,SlUnM)) - > C°°(M,S{U x , ^ ) 

One can consider this operator to be the second operator (behind Dirac operator) in 
the series of conformally invariant differential (elliptic) operators acting on spinor-like 
modules. 

Let us denote by V the covariant derivative of (the lift of) Levi-Civita connection 
on Spin-bundle of M with respect to a given Spin-structure. Let 

(7) 2*3 : 5/3 i i ,u <—•> 5 / i i . u ® V 
\ / 2 ^ 2 » 2 ' " ' , 2 » 2 ' ^ 2 > • • • , 2 , 2 ' 

be a homomorphism (embedding) of Spin-modules, uniquely determined in its isomor­
phism class up to a multiple by element C*; V is the fundamental vector representation. 

Let us consider a local orthonormal frame {e,}!^ and its (dual) coframe {e^}-1^ = 
{e,}?=i- The symbol of the operator Hs is the composition of maps 

(8) Symb(Us) = Y] n j o (1 ® a) o U 
. ^ 2 2 

2 

where (1 ® ej) is Spin-group action given by Clifford multiplication on the spinor 
module in the tensor product (and trivial action on the vector module) followed by 
projection on Rarita-Schwinger module of opposite chirality: 

V -> End(V(8)5i) 

(9) a -> p(e{) : V ® S ? ^ V ® S F , 
2 2 

Definition 3.1. Rarita-Schwinger operator is the map 

lis : Sf-> Sf 
2 2 

(10) lis -= ^ n f o(l<8>ei)ou oVi . 
t 

4. ALGEBRAIC OPERATORS ON 5S-VALUED DIFFERENTIAL FORMS 
2 

Let us fix canonical global ON-frame in Rn and restrict it to a domain D cRn. . 
First we define algebraic operators X, Y acting on A*(D) ® Sf by 

2 

X = y£e(ei)®p(ei), 
i 

(n) y = V\(e<)®p(ei), 
t 

where e(el) denotes wedge product with covector e% and i(ex) denotes contraction by 
dual of covector el. 

Lemma 4.1. The algebraic operators X,Y : A*(D) ® Sf -> A*+1(D) <8> Sf are 
2 2 

Spin-invariant, i.e. they intertwine canonical action of Spin-group on tensor prod­
uct A* (D)® Si. 
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Proof. It is sufficient to consider decomposable Si-valued differential form a;®5. The 
action of g € Spin 

(12) (\*(g) ® p(g))(u ® s) = \*(g)uj ® p(g)s 

yields (A* denotes action on wedge product of fundamental vector representation and 
p denotes the representation on Rarita-Schwinger module) 

(\*(g) ® p(g))X(u ® s) = (A*fo) ® p(g)) £ ( e ( e ' ) ® Pfe))(" ® 5) 
i 

= £ A*(<?)(e(eO)A*(5V ® Pis)pifii)pi9-l)p{9)» 
X 

= £ A*fo)(e(e«))A*(fl)W ® p(geig-l)p{g)8 
i 

= £ A*(<,)(6(ei))A*(5)u; ® Xis(S)p{es)p(s)8 
«J 

= (EA«(ff"1)A«w = ^ ) 
(13) = £ e ^ j A ^ J w ® P(c>)p(5)5 = X(A*(<?)u; ® p(</)s) 

which is the desired property. The proof for Y goes along the same lines. • 

These algebraic operators allow (via their kernels and images), similarly to the case 
of spinor valued differential forms, projection on Spin-invariant subspace of A*(D) ® 
5a. The difference with spinor case is that the corresponding spaces are (generally) 
reducible. 

Let us focus on the case of Si-valued 0-forms and 1-forms. 
2 

Lemma 4.2. The algebraic operators acting on Sz-valued 0-forms and 1-forms 

^IAO ( D )«5| : A°(o)®5f->A1(D)®sr, 

(14) Y\AHD)9S± : A»(Z>) ® S± -> A°(o) ® Sf 

fulfill 
.. /3 3 1 1 1\ / l 1 1\ 

Ker(y)|A,(D)0S| =s ^ ' 2 ' 2 ' - " ' 2 ' 2J ® U ' ' " ' ^ ' 2) 
/5 1 1 1\ 

e l 2 , 2 , " ' " ' 2 ' 2J' 

(15) Im(X) | A 1 ( D ) 8 S | ~ ( - , - , . . . , - , ^ 2 ) -

Proof. This result on isomorphism of Spin-modules is the consequence of Spin-
invariance of X, Y and of the decomposition of A°(D) ® 5 j , A1 (D) ® s$ on irreducible 
Spin-modules. • 
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We would like to emphasize, that due to the Spin-invariance descend X, Y to alge­
braic operators on Spin-bundles on Spin-manifold M. In other words, the decomposi­
tions (15) hold true globally on manifolds. 

Now we are prepared to define the notion of (higher) monogenic section of Rarita-
Schwinger bundle. 

Definition 4.3. A section s e T(M, Sf) is called Sf (left) monogenic iff fulfills 
2 2 

(16) Y(Ksf) = 0. 

Similar definition holds true for right invariant monogenic functions. 

5. STOKES THEOREM FOR Sz -VALUED MONOGENIC FUNCTIONS 
2 

We shall generalize Stokes theorem, [1], Ch.II, §.0, from the case of spinor valued 
(left, right) monogenic functions to the case of 53-valued (left, right) monogenic func­
tions. We use the convention ( . ) : = ( , ) s for Spin-invariant scalar product on 5s. 

2 -

Let us first start with a domain D C Rm+1, i.e. the Spin-module Si of values of 
u\,u2 is a fixed vector space. For two smooth (decomposable) elements LJI = LJI®V\ e 
d(D, A* <g> 5|),o;2 = ufi®v2e CX(D, A* ® Si), we define 

(17) (CJI Au2) :=uhAuJ^®(vi,v2) eCi(D,A*). 

The definition of action of exterior differential d on forms valued in Rarita-Schwinger 
module Si 

2 

(18) d(u®v) := (duJ®v), ueA*(D),veSi 

easily yields 

Lemma 5.1. J/o;i e CX(D, A*® 5 | ) , u2 e CX(D, A*® Si), then 

(19) d(ui A u2) = (duji A u2) + (-)M(ui A du2). 

For E C D a (m-l-l)-dimensional compact oriented submanifold with smooth bound­
ary 9E we define End (Si)-valued volume element on 9E 

m 

(20) da = ^2(-Yp(ei) dx{ e Am(D) ® End(5|) , 
«=o 

where for p(ek) e End (Si), ej ® Sj e Si: 

p(ek) : ei ® Sj l®*k > e{ ® ekSj 

such that in the second part of tensor product the Clifford algebra structure on spinor 
module is used. For each i = 0,..., m, 

(21) dxi := dxo A • • • A dxi-i A dx;+i A • • • A dxm. 

Note that on the domain D we could use any possible product on 5i-values (instead 
of the scalar product). This is however not the case on Spin-manifolds, where the 
scalar product on 53 and (Spin-) covariant derivative V 5 of Levi-Civita connection on 
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associate vector bundle instead of differential must be used (in such a way that da is 
Spin-invariant endomorphism of Rarita-Schwinger bundle S3). 

The Stokes theorem for S3-monogenic functions will be formulated directly on Spin-
manifolds instead (as has been done in [1]) on the domain D. 

Theorem 5.2 (Stokes). Let £ ,dim£ = m + 1, be a Riemannian Spin-mam/0/d with 
boundary 3E, and let (, )s3 a Sj>in-invariant scalar product on associated Spin-bundle 

S3. Let f,g € Ci(Y,,Ss) be smooth sections 0/S3 = J3SDin XsDm ̂ * Then 
2 2 2 K ^ 2 

(22) / (g, daf) = f (nsg, f)dZ+ f (g, 7^5/)dE . 
JdT. J£ JE 

where dZ is volume form o/E and da G V(E, AmT*E <g> End(Si)). 

Proof. For f,g E Ci(D,Ss), we have 

(23) d(g, daf) = (Vsg, daf) + (-)m(g, Vs(daf)), 

where the analogy of (19) for Riemannian manifolds (given by the lift of Levi-Civita 
connection to spinor bundle) 

(24) d(u>i A w2) = (Vwi A u2) + (-)M(ui A V<j2). 

has been used. We understand the action of V 5 on Si-valued form daf in the sense of 
unique extension of spinor covariant derivative V 5 from S3-valued functions (sections) 
to Si-valued forms A*(T*E) ® S3, i.e. 

(25) V5'(daf) e r(Am+1(T*£) ® Sz) ~ T(Sz) 

due to the orientability of E. Using the notation, in local chart {x0 , . . . ,xm], dx = 
dxo A • • • A dxm we have for each i = 0 , . . . , m 

dxi Ada = p(ei)dx, 

(26) daf\dxi = (-)mp(ei)dx, 

which implies immediately 

(dgAda,f) = (nsg,f)dZ, 
(27) (-r(gdaAdf) = (g,nsf)dZ. 

Now Spin-invariance of the scalar product, (g,pf) = (pg,f), immediately implies 
Eq.(22). • 

The Stokes Theorem implies analogy of Cauchy's Theorem for Si-valued monogenic 
functions. 

Corollary 5.3 (Cauchy). Let us assume the same as in the Stokes Theorem and in 
addition let nsg = 0 = nsf. Then 

(28) / (g,daf) = 0. 
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Remark 5.4. In the case of the domain D C Rn,dim(D) = n (i.e. instead of the 
manifold M)3 where the valuation Rarita-Schwinger module Si is just a fixed vector 
space, we need not use the scalar product of/, g, but can use any Spin-equivariant pair­
ing. The integration in Stokes Theorem is then component-wise in Si. The corollaries 
of Stokes Theorem are then formulated in terms of 53-monogenic functions. 

6. RESIDUE THEORY FOR SI-VALUED MONOGENIC FUNCTION 
2 

This is a generalization of Leray-Norguet residue theory for real submanifolds of 
any codimension in the sense of spinor monogenic functions ([1], Chapter IV, p.382) 
towards Si-valued monogenic functions. 

6.1. Leray-Norguet residues. In this subsection we describe Leray-Norguet residues 
for C-valued differential forms. In the next subsection this approach will be generalized 
to Si-valued differential forms. All cohomology groups appearing in this subsection 

2 

are de Rham cohomology groups (as a dual to C-valued singular homology groups). 
Let M, dim(M) = m, be an oriented manifold and N C M, dimN = n, be its 

oriented submanifold. An oriented tubular neighborhood of N in M is a pair (f,B), 
where (B, TT, N) is an oriented vector bundle over N and / : B —> M is an embedding 
with properties: 

• / preserves the orientation; 
• /IN = Ids (S is identified with zero section of E); 
• f(B) is an open neighborhood of N C M. 

An oriented closed tubular neighborhood of radius c > 0 of N C M is the image f(B€) 
determined by the tubular neighbourhood (/, B€), where B€ := {b G B : \\b\\ < e, e > 
0} is e-disk bundle of the oriented vector bundle B. 

There exists an oriented tubular neighborhood and any two oriented closed tubular 
neighborhoods are isotopic, see for example [1], Appendix A, p. 435. 

Let us denote by 5C := {b G B : \\b\\ = e, e > 0} sphere bundle of B (it should 
be understood as S€ = dB€). Let p > m - n - 1 and U€ := f(B€). Then the map 
7r o / _ 1 : U€ -> N induces push-forward map on smooth sections 

(29) (TT/-1)* : T(dU€,A
p) —> V(N, AMm-n-i)) 

and due to the fact that d(/irf-l)i( = (nf'1)^ also induces a map on de Rham coho-
mologies 

(30) W " 1 ) * : Hp(dU€) —> Hp-(m-n-l\N). 

Let us define canonical inclusion 

(31) i : 8U€—>M\N. 

Then it is easy to see that the composition Res := 7r*i* is independent of all possible 
choices mentioned above. 

Definition 6.1. Let p > m — n - 1. The map 

(32) Res:=7r*i* : HP(M\N) —> Hp^m-n~^(N) 

is called the Leray-Norguet residue. The dual (boundary) map to Res (for q < n) 

(33) S : Hq(N) —> H ^ . ^ M \ N) 
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is called Lerray-Norguet cobord. 

The Lerray-Norguet residue theorem utilizes all previous results and definitions. 

Theorem 6.2 (Lerray-Norguet residue theorem). Let 0 < p < n. Then for each 
closed (p-\-m — n — I)-formu on M\N and eachp-dimensional cycle E C N 

(34) f u= f Res(u). 
JJE / E 

holds true. 

6.2. Leray-Norguet residues for 53-valued monogenic function. We shall re­
strict to the formulation of residue theory for 5i-valued monogenic functions. How­
ever, note that no special property concerning Spin-module Si will be needed. In 
other words, presented machinery can be equally applied to any other Spin-module. 

Let / be a (left) 53-valued monogenic function. Then u = daf is closed 53-valued 
(m — l)-form. 

Definition 6.3. Let D C Rm be a domain and E c D a compact smooth oriented 
n-dimensional submanifold (n=0, . . . ,m-2). If u = daf for 5i-valued monogenic 
function / E M(D \ E) and Res (u) E Hn(E) its Leray-Norguet residue, then the 
C-number 

(35) resE(u;) := f Res (u) 

is called the residue of 53-valued form u on the submanifold E. 
2 

Note that the residues Res (u) and res (u) carry the same information, because 
Hn(E) ~ C 

Now we are able to state residue theorem, which computes global characteristic of 
u in terms of local information stored in residues of a;. 

Theorem 6.4 (Residue theorem). Let D C Rm be a domain and D' C D a relatively 
compact subdomain with a smooth closure dD'. Let Ej, i € I, \I\ < co be a finite 
family of pairwise disjoint compact submanifolds of D', whose dimensions belong to 
the set {0, . . . ,m - 2}. Let u = daf, f E M(D \ (UjEj)) be Si-valued monogenic 
function. Then 

(36) / w = £resE,(w) 
Jdv ieI 

Proof. The proof is standard and follows the case of spinor valued monogenic func­
tions, see [1], p.384. Using suitable tubular neighborhoods of Ej (i E I), one applies 
Stokes theorem and the rest is trivial. D 

Remark 6.5. Note that we have formulated Residue theorem only on a domain D 
and not on manifolds as in the case of Stokes theorem. The reason is that the residue 
is not invariant w.r. to the action of group Spin (in the sense of transition functions 
etc.). 
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