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HIGHER MONOGENICITY AND RESIDUE THEOREM FOR
RARITA-SCHWINGER OPERATOR

PETR SOMBERG

ABSTRACT. We define the notion of higher Spin-monogenic functions and prove
Stokes and residue theorems for them.

1. INTRODUCTION

In this article we investigate various properties of higher spin analogy of Clifford
analysis, see the monograph [1].

In particular, we employ representation theory (Littlewood-Richardson rule) to get
decompositions on irreducibles of various tensor-spinor Spin-modules. Based on these
results we define Rarita-Schwinger operator, which is higher spin analogy of Dirac
operator in Clifford analysis. We then proceed to define higher spin (i.e. Rarita-
Schwinger) monogenic functions. This notion is consequently used in the construction
of Stokes and residue theorems for Rarita-Schwinger monogenic functions.

It is worth to emphasize that similar (Clifford like) analysis can be done for any
other spinor like module, the only problem being connected with explicit construc-
tion of projectors on this module realized inside tensor-spinor tensor products of Spin-
representations. This is just the place where Clifford analysis enters the game. Because
we consider operators of the first order, the previous computations are in fact equiva-
lent to the constructions of their symbols.

In this article we shall consider only the closest higher Spin-module beyond spinor
module, i.e. the Rarita-Schwinger module. In fact, everything can be extended to any
(spinor like) Spin-module. Likewise everything can be generalized towards higher (than
one) degree forms valued in Rarita-Schwinger module (instead of zero and one forms
as in this article). But note that potential complications coming from irreducibles of
higher multiplicity could appear.
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2. ALGEBRAIC PRELIMINARIES — TENSOR PRODUCT DECOMPOSITIONS

The aim of this section is to decompose the tensor products of the Spin(n) rep-
resentation with the highest weight (1,0,...,0,1) (we call the corresponding repre-
sentation higher spinor representation) with fundamental vector representation with
highest weight (1,0,...,0). To carry out the computation, we shall employ so called
Littlewood-Richardson rule based on the notion of a “standard Young tableau” (see

(3])-

2.1. Spin-standard Young tableaux.

Definition 2.1. Let p = (py,...,pn) be a partition of a natural number n, that is
p1 > +++ > pm > 0 are integers and n = Y - p;. With p we associate its Young
diagram, a figure consisting of m left justified rows of boxes, p; boxes in the i-th
row from the top. By a Young tableau T of shape p we mean a filling of the boxes
with positive integers. A Young tableau is standard if the numbers in the boxes are
non-decreasing in the rows and strictly increasing in the columns from the top to the
bottom.

Remark 2.2. Note, that we use the convention introduced in [4], which is opposite
to the one in [3] in the sense that the roles of columns and rows are exchanged.

If we omit any column from a standard Young tableau 7, we get a standard Young
tableau again. Let us number columns of Young tableau from the right hand side. It
will be convenient to denote by 7(k,[) the Young tableau consisting of the I-th up
to the k-th columns of a Young tableau 7, and by 7(k) the tableau 7T'(k,1). If
is a positive integer, we define ¢y (¢) to be the number of boxes in 7 containing the
number 1.

To the dominant weight x of a representation V,, of a Lie algebra g we associate a
partition p(x) = (pi1,...,Pm).- The exact relation depends on the type of g, here we
shall restrict ourselves only to the formulas for Lie algebras of type B, and D,. The
formulas for other types of Lie algebras can be found in Appendix of [3].

Definition 2.3. Let w; be the i-th fundamental weight of a Lie algebra g, and let
p =Y v, aiw; be the decomposition of the dominant weight x of a representation V,
of g. Then we associate to p the partition p(s) = (p1, .. ., Pm) With p; = Z;";,-l 2a;+am
for g of type Bp,, and p; = E;":’ 2a; + @m_1 + am for g of type D,, (the void sums
give 0).

Definition 2.4. Let h be a column of a standard Young tableau such that it does not
contain numbers ¢ and 2m + 1 — ¢ together. For i = 1,...,m we denote by s;(h) the
columns defined in the following way:

If i < m and both i+ 1 and 2m+ 1 — 1 are entries of the column h, then
si(h) is the column obtained from h by replacing the entry i + 1 by 4
and 2m +1—1 by 2m —i. If ¢ = m, g is of type B,, and h contains
an entry with value m + 1, then s;(h) is the column obtained from h by
replacing m + 1 by m. If i = m, g is of type D,, and both m + 1 and
m + 2 are entries of the column h, then s;(h) is the column obtained
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from h by replacing m +1 by m — 1 and m + 2 by m. In all other cases

we set s;(h) = h.
We say that a pair of columns (h, h') is admissible, if there exists a sequence of different
columns (hy, ..., hg), £ > 0, such that

h=hy, h'=h,
si;(hj_1) =h; for j =1,...,k and some integers 1 < i; < m.

Definition 2.5. Let 7 be a Young tableau of shape p(u) that contains only positive
integers smaller or equal to 2m and that does not contain integers ¢ and 2m+1—1 in the
same column together. Denote p; = p; — ay, for g of type B,, and p; = p; — @ — @y
for g of type Dy,. T is called Spin-standard if all of the following conditions hold:

o If g is of type B,, then 7T is standard. If g is of type D,, then we divide 7 into
three tableaux: 71 := T(%1), T2 := T (p1—am, p1+1), and T3 := T (p1,p1 —am +1).
Then each of the tableaux 7y, 73, 75 is standard.

o Let t; be the i-th column of 7. The pair of columns (tz;_;, t5;) is admissible for
everyi=1,...,p1/2.

For g of type D,, there must be two further conditions satisfied:

e In 7; (resp. 73) the number of integers in a column greater than m is odd (resp.
even). The condition for 7; looks as follows: let 1 < i < 5;/2 — 1 and let the
(21)-th column ty; of 7; consists of entries (hy,...,h;) and the (2i+ 1)-st column
toiy1 of (Ji,..., /1), K < I. For any sequence of integers 1 < 4 < -+ < i, < k
such that

m+1—q$h,~l<---<h,-°Sm+q
m+1-¢<jy,<--<jipb<m+gq

there holds hy, + - -+ + hy, = ji, + -+ - + Jji, mod 2.

e This last condition is needed only if either a,,—; > 0 and a,, > 0, or 2:7:12 a; >0
and apm-1 + apy > 0. Let (ky,...,k,) be the entries of the most left column of 7;.
Denote by R the set {ki,...,ky,l1,...,lm—s-1,2} With the following properties:

2m >l > oo > g1 > m, lpn—s—1 > z, lp-s—1>2m+1-—
z,li#kj and #kj forall 1<i<m-s-1,1<j5<
s, andifr € R = 2m+1—r ¢ R. If the number of integers
strictly greater than m in R \ {z} is odd, then z > m else z < m
(R is uniquely determined by these properties).

Denote by 7; the tableau obtained from 7; by adding one column of length
m to the right of 7; and filling the boxes of this column with the elements of
{2m +1 -z} UR\ {z} in increasing order. Then the tableau 7; defined above
is standard.

Denote by 7; the tableau obtained from 73 by adding (am-1 + 1) columns
of length m to the left of 73, with filling of the columns defined inductively as
follows. The boxes of the most left added column of T3 are filled with integers R
in increasing order. Assume now that (¢ — 1)-st column has already been filled,
2<i<ap-+1 Let (j1,...,Jm) be the (i —1)-st row of T5. For1 <l <m
let R; denote the m-tuple (iy,...,%y,) such that 4 < --- < iy, and {4y,...,in} =
{41,-.-,2m+1—3,...,5m}. Note that R,,...,R,, are lexicographically ordered;
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the i-th row of 73 is equal to Ryaz, Where Rp,. is maximal among those 'R;.s for
which 73(3) with Rpe; the most left column is standard. Then the tableau 77
defined above is standard.

2.2. The Littlewood-Richardson Rules.

Definition 2.6. Let p be a dominant weight of a representation of g and let 7 be a
Spin-standard Young tableau of shape p(u) = (pi,-..,Pm). Define the weight of the
tableau 7T as

1
(1) U(T) = 5 ller(1) = er(2m))er + -+ (er(m) — er(m + 1))em]
where (g1, ...,Em) is the standard weight basis of g.

Remark 2.7. We suppose that the relation between the fundamental and the stan-
dard weight basis is the following. In the case of B,, we have £, = wy, €; = w; — w;_;
fori=2,...,m—1 and ¢, = 2w,, — Wu_1. In the case of D,, we have ¢, = wy,
gi=wij—wi1fori=2,... . m-2,mand €,_1 =Wy +Wn-1 — Wpm-2.

For 1 < ! < p; denote by v(T) the weight 2v(7(1)). If X is a dominant weight for

g, then a Spin-standard Young tableau 7 of shape p(u) is called A-dominant if all the
weights 2A +11(T), ..., 2A 4+, (T) are contained in the dominant Weyl chamber of g.

Theorem 2.8. The decomposition of the tensor product Vy ® V,, into a sum of irre-
ducible representations of g is given by the formula

(2) oV, = @ V,\+v(‘r)
T
where T runs over all A\-dominant Spin-standard Young tableauz of shape p(1).

2.3. Tensor product [1,0...,0,1]®[1,0...,0].

2.3.1. The case of odd spin group B,, = Spin(2m + 1). According to the notation
and rules discussed before Th.2.8, we define A = [1,0,...,0],z = [1,0,...,0,1]. The
conditions have in the case of Spin(2m + 1) (m > 1) the following content:

o The standard Young tableau

i1 Ji J2

12

i3
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is filled with integers from the set {1,...,2m}, such that for all i, 1 < i < 2m,
the couple {i,2m + 1 — 4} is not in the first column.

o The condition of admissibility of the second and third column (i.e. the second and
third box from the left in the first row) implies, that there are two complementary
possibilities (see the previous Young tableau):

~h=5h€ {11"'72m}1
—h=mja=m+1l
The last possibility, j; = m,jo = m + 1, is excluded because the weight 2\ +
2v(T(1)) = (2,0,...,0,-1) is not dominant. From the same reason are excluded the
possibilities j; = j, € {3,...,2m — 1}. The only non-trivial contributions come from
the cases j, = jz € {1,2,2m}:

1 1 1 1 2m 2m
2 2
3 3
m-1 m-1
m m
1 2 2 1 2 2
2 3
3 4
m~—1 m
m 2m — 1

They correspond to the weights [2,0,...,0,1] (j; = j2 =1),[0,...,0,1] (j =ja =
21’71), [0,1,0,...,0,1] (]1 =j2 =2) a.nd [1,0,...,0,1] (]1 ='-j2 =2)

In the basis of fundamental weights the decomposition reads
; 1,0,...,0,1]®[1,0,...,0) ~ [2,0,...,0,1] &1,0,...,0,1]
3) ®[0,1,0,...,0,1]®[0,...,0,1].
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2.3.2. The case of even spin group D,, = Spin(2m). We shall start with Young
tableaux attached to the weight [1,0,...,0,1]. Because p; = 3,p2 =1,...,pm =1, we
have the following rules:

1.

(2.5) The standard Young tableaux

| 2| =712 =T() | T3=7(3,3)

i2

i3

im-1

im

where the tableau T(2)={0} is trivial (=empty). Moreover, if 7, 1 < i < 2m, is
the entry of the first column, the number 2m + 1 — 7 is not the entry of the first
column. The number of integers greater than m in 7j is even.

(2.5) The condition of admissibility of the second and third columns (i.e. the
second and third boxes from the left in the first row) implies, that there is only
one possibility (see the previous Young tableau) - j; = j, € {1,2,2m}.

(2.5) This condition is non-trivial because Z:’;;l a; >0 A ap_1+a, >0is
fulfilled. Let (j;) be the value in the left column (=box) of 71 (ji € {1,2,2m}).
The set R = {j1,l1,..-,Im-2,2},|R| = m, has properties:

2m>h > >lpa>m,lp o>z, lno2>2m+1—-2z, [; #
j1 and z#j foralll1 <i<m-2, andif r e R = 2m+1—-r ¢
R . If the number of integers strictly greater than m in R\ {z} is
odd, then z > m else £ < m (R is uniquely determined by these
properties).

The tableau 75 is trivial, and so there is no condition on its modification. However
the tableau 73 is restricted by the following condition: denote by 7; the tableau
obtained from 73 by adding one column to the right, i.e. the left column of
74 contains integers {i1,...,in} and right columns contains integers (ordered in
increasing order) R. Then the tableau 73 is standard.

ji=j2=1,1€ R = 2m ¢ R, and there is only one possibility: either m is
odd,z=m+1land R={1,2m - 1,2m —2,...,m+ 2,m + 1}, or m is even,
z=mand R={,2m—-1,2m-2,...,m+ 2,'m}. The corresponding standard
Young tableau
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gives (irrespective of the parity of m) the highest weight (3,1,...,1)=1[2,0,...,
0,1].

.1 =Jj2=22€R=>2m—1¢ R, and there is only one possibility (for z):
either misodd,z=m+1and R = {2,2m,2m - 2,2m - 3...,m +2,m + 1},
or mis even, z =m and R = {2,2m,2m — 2,2m - 3...,m+ 2, m}. Taking into
account the condition of even number of integers greater than m in 77, only two
possibilities of standard Young tableaux survive:

1 2 2 1 2 2
2 3
3 4
m-—1 m+1
m 2m -1

They give (irrespective of the parity of m) the highest weights (3,32,1...,1) =
[0,1,0...,0,1) resp. (3,%...,3,—3) =(1,0...,0,1,0].

. =J2=2m;2m € R => 1 ¢ R, and there is only one possibility: either m is
even,z=m+1and R={2m,2m —1,2m - 2,...,m +2,m + 1}, or m is odd,
rz=mand R = {2m,2m—1,2m-2,...,m+2,m}. The corresponding standard
Young tableau
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gives (irrespective of the parity of m) the highest weight (3,...,3) =0,...,0,1].
Summarizing together the case of D,,, in the basis of fundamental weights the
decomposition reads

) [1,0,...,0,1]®[1,0,...,0] ~ [2,0,...,0,1] & [1,0,...,0,1,0]
(4) @[0,1,0,...,0,1]@[0,...,0,1].

Note, that in the case of complementary spinor weight [1,0,...,0,1,0] the decompo-
sition differs from the last case by exchange of last two entries of the RHS:

; [1,0,...,0,1,0]®[1,0,...,0] ~[2,0,...,0,1,0] & [1,0,...,0,1]
(%) ®[0,1,0,...,0,1,0|@[0,...,0,1,0].

Remark 2.9. In the context of Clifford analysis there is similar decomposition based
on tensor products with spinor module, see [1],[5] instead of Rarita-Schwinger one. In
this case one can use either representation theory in the spirit of previous paragraphs
or (of course equivalent) intertwining operators (easily constructed because of single
multiplicities of target Spin-modules). Within the context of representation theory,
we talk about dual pair (spin(n),sl(2)).

3. RARITA-SCHWINGER OPERATOR

Let us consider compact Lie group G, i.e. in our case of interest it will be G =
Spin(n), and its (complexified) representation on finite dimensional complex vector
space with Hermitian scalar product (Vg,<,>), i.e. a homomorphism p : G —
GLc¢(Vc). Then Ve admits G-invariant Hermitian inner product

(01, 02) o= /G < plg)o, plg)v > dg

such that the representation p on (Vg,<,>) is unitary w.r. to (,). The symbol dg
denotes (G-invariant) Haar measure on the group G.

If p is a representation of G on (Vg, (,)), then p is the direct sum of irreducible
representations, i.e. Vo ~ V1 ® - ® Vi, m € N such that V; (1 = 1,...,m) is
irreducible (complex) finite dimensional G-module. In other words,

v;,v;) =0 Vo, €V, v; €V, 1#7.
j i €V
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Rarita-Schwinger operator Rs on a Spin-manifold M with conformal structure is
conformally invariant differential operator acting between sections valued in Rarita-
Schwinger spin(n)-modules:

(6) Rs : ¢ (M S(a g »2* )) — (7 (M S(zm »z'*z))

One can consider this operator to be the second operator (behind Dirac operator) in
the series of conformally invariant differential (elliptic) operators acting on spinor-like
modules.
Let us denote by V the covariant derivative of (the lift of) Levi-Civita connection
on Spin-bundle of M with respect to a given Spin-structure. Let
(7) i3 0 St bah) S, 4ah OV
be a homomorphism (embedding) of Spin-modules, uniquely determined in its isomor-
phism class up to a multiple by element C*; V is the fundamental vector representation
Let us consider a local orthonormal frame {e;}™, and its (dual) coframe {e}}*
{e'}~,. The symbol of the operator Rs is the composition of maps

(8) Symb(Rs) = Z Hg o(1®e)o is

where (1 ® e;) is Spin-group action given by Clifford multiplication on the spinor
module in the tensor product (and trivial action on the vector module) followed by
projection on Rarita-Schwinger module of opposite chirality:

V - End(VeS))

9) & = ple): VO S; IV® ST,
Definition 3.1. Rarita-Schwinger operator is the map
RS : Sé: - Sg’
2 2
(10) Rs = ano(lmi)oi%ovi.
)

4. ALGEBRAIC OPERATORS ON S%-VALUED DIFFERENTIAL FORMS

Let us fix canonical global ON-frame in R* and restrict it to a domain D C R". .
First we define algebraic operators X,Y acting on A*(D) ® S5 by
2

X=Z (€') ® ples)
(11) Y= Z )®pe,),

where €(e’) denotes wedge product with covector ' and «(¢') denotes contraction by

dual of covector e'.

Lemma 4.1. The algebraic operators X,Y : A*(D) ® S§ — A**'(D) ® S§ are
2 2

Spin-invariant, i.e. they intertwine canonical action of Spin-group on tensor prod-
uct A*(D) ® Ss.
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Proof. It is sufficient to consider decomposable S %-valued differential form w®s. The
action of g € Spin

(12) (A(9) ® p(9))(w ® 5) = M (g)w ® p(g)s
yields (A* denotes action on wedge product of fundamental vector representation and
p denotes the representation on Rarita-Schwinger module)

(X*(9) ® p(9)) X (w B 5) = (A*(9) ® p(9)) Z ¢) ® ples))(w ® 5)
= Z X (9) (€)M (9)w @ p(g)ple)o(g~)p(g)s
= Z/\* 9)(e(€))3*(9)w ® plgeig™)p(9)s
-wa (DN (9) ® A (9)o(es)plg)s

~Zhw>% (€)X (g)w ® ple;)plg)s

’L’Y

= Z/\ki 97 )Nij(9) = o)
(13) = Z )X (g)w ® plej)p(g)s = X (A*(g)w @ p(g)s)

which is the desired property. The proof for Y goes along the same lines. D

These algebraic operators allow (via their kernels and images), similarly to the case
of spinor valued differential forms, projection on Spin-invariant subspace of A*(D) ®
S% . The difference with spinor case is that the corresponding spaces are (generally)

reducible.
Let us focus on the case of S%-valued 0-forms and 1-forms.

Lemma 4.2. The algebraic operators acting on S% -valued 0-forms and 1-forms

XIA°(D)®S; : AO(D)®S§:—)A1(D)®S:§,

(14) Y|A,(D)®s; : A{(D)® sgi S A(D)® 53
fulfill
o Wl = (3 3 538 (b3
oG 143)

31 1 1
(15) (X)lAl(D)gs;:: = (5 1ty ¢§)-

Proof. This result on isomorphism of Spin-modules is the consequence of Spin-
invariance of X,Y and of the decomposition of A°(D) ® S3, A'(D)® S on irreducible

Spin-modules. O
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We would like to emphasize, that due to the Spin-invariance descend X,Y to alge-
braic operators on Spin-bundles on Spin-manifold M. In other words, the decomposi-
tions (15) hold true globally on manifolds.

Now we are prepared to define the notion of (higher) monogenic section of Rarita-
Schwinger bundle.

Definition 4.3. A section s € [(M, ST) is called ST (left) monogenic iff fulfills
2 2
(16) Y(Rsf)=0.

Similar definition holds true for right invariant monogenic functions.

5. STOKES THEOREM FOR S%-VALUED MONOGENIC FUNCTIONS

We shall generalize Stokes theorem, [1], Ch.II, §.0, from the case of spinor valued
(left, right) monogenic functions to the case of S %-va]ued (left, right) monogenic func-
tions. We use the convention (,) := (’)53 for Spin-invariant scalar product on S;.

Let us first start with a domain D ¢ R™t!, i.e. the Spin-module S% of values of
wi,ws is a fixed vector space. For two smooth (decomposable) elements w; = Wy @v; €

Ci(D,A*® S%),wQ =w;Qus € Ci(D,A*Q S%), we define
(17) (w1 Awsg) :=T7 Ay ® (v1,v,) € C1(D,A*).

The definition of action of exterior differential d on forms valued in Rarita-Schwinger
module S 3

(18) dw®v):=(dw®v), weA* (D), ve Ss
easily yields
Lemma 5.1. Ifw; € C,(D,A*® S%), wq € C1(D, A* ®S§), then
(19) d(wy A wa) = (dwy A wa) + (=) (wy A dw,) .
For £ C D a (m+1)-dimensional compact oriented submanifold with smooth bound-

ary 0% we define End(S% )-valued volume element on 9L

m

(20) do =Y (-)'p(e:) d2; € A™(D) ® End(S}),
i=0

where for p(ex) € End(S3),e; ®s; € Sy

plek) : € @ s; LN € ® exs;
such that in the second part of tensor product the Clifford algebra structure on spinor
module is used. For each i =0,...,m,
(21) dZ;:=dzo A+ - AdTi-y ANdZipy A+ Adzy, .

Note that on the domain D we could use any possible product on S%-values (instead

of the scalar product). This is however not the case on Spin-manifolds, where the
scalar product on S% and (Spin-) covariant derivative V5 of Levi-Civita connection on
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associate vector bundle instead of differential must be used (in such a way that do is
Spin-invariant endomorphism of Rarita-Schwinger bundle S%).

The Stokes theorem for .S’% -monogenic functions will be formulated directly on Spin-
manifolds instead (as has been done in [1]) on the domain D.

Theorem 5.2 (Stokes). Let ¥,dimE = m + 1, be a Riemannian Spin-manifold with
boundary %, and let (,)s, @ Spin-invariant scalar product on associated Spin-bundle

z
S%. Let f,g € C, (E,S%) be smooth sections of S3 = Bspin Xspin S%. Then

(22) [ (@don = [(Rsg. iz + [ (0.5
oz T b

where dX is volume form of ¥ and do € I'(X,A"T*L ® End(S%)).

Proof. For f,g € C,(D, S%), we have

(23) d(g,dof) = (ng7d0f) +(=)"(9, Vs(daf)) )

where the analogy of (19) for Riemannian manifolds (given by the lift of Levi-Civita
connection to spinor bundle)

(24) d(w1 A wz) = (Vw1 A wz) + (—)"""(wl A VUJQ) .

has been used. We understand the action of V5 on S% -valued form do f in the sense of
unique extension of spinor covariant derivative V5 from S 3 -valued functions (sections)
to S3-valued forms A (T*E) ® S, ie.

(25) V¥(dof) € T(A™(T*E) ® S3) ~T'(S3)
due to the orientability of X. Using the notation, in local chart {zo,...,zn,}, dz =
dzy A - -+ A dzy, we have for each 1 =0,...,m
dz; A do = p(e;) dz,
(26) do Adz; = (—)"p(e;) dz,

which implies immediately
(dgAdayf) = (ng)f) dzv

(27) (—)™(gdo A df) = (9, Rsf) dE.
Now Spin-invariance of the scalar product, (g,pf) = (pyg, f), immediately implies
Eq.(22). a

The Stokes Theorem implies analogy of Cauchy’s Theorem for S%—va.lued monogenic
functions.

Corollary 5.3 (Cauchy). Let us assume the same as in the Stokes Theorem and in
addition let Rsg = 0= Rsf. Then

(28) /‘;2(g,daf) =0.
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Remark 5.4. In the case of the domain D C R",dim(D) = n (i.e. instead of the
manifold M), where the valuation Rarita-Schwinger module S% is just a fixed vector
space, we need not use the scalar product of f, g, but can use any Spin-equivariant pair-
ing. The integration in Stokes Theorem is then component-wise in S% . The corollaries
of Stokes Theorem are then formulated in terms of Sg-monogenic functions.

6. RESIDUE THEORY FOR S%-VALUED MONOGENIC FUNCTION

This is a generalization of Leray-Norguet residue theory for real submanifolds of
any codimension in the sense of spinor monogenic functions ([1], Chapter IV, p.382)
towards S% -valued monogenic functions.

6.1. Leray-Norguet residues. In this subsection we describe Leray-Norguet residues
for C-valued differential forms. In the next subsection this approach will be generalized
to S%-valued differential forms. All cohomology groups appearing in this subsection
are de Rham cohomology groups (as a dual to C-valued singular homology groups).

Let M,dim(M) = m, be an oriented manifold and N C M,dimN = n, be its
oriented submanifold. An oriented tubular neighborhood of N in M is a pair (f, B),
where (B, m, N) is an oriented vector bundle over N and f: B — M is an embedding
with properties:

o f preserves the orientation;

e f|v = Ids (S is identified with zero section of E);

e f(B) is an open neighborhood of N C M.
An oriented closed tubular neighborhood of radius € > 0 of N C M is the image f(B)
determined by the tubular neighbourhood (f, Be), where B.:={b€ B : ||b]| <€, e>
0} is e-disk bundle of the oriented vector bundle B.

There exists an oriented tubular neighborhood and any two oriented closed tubular
neighborhoods are isotopic, see for example [1], Appendix A, p. 435.

Let us denote by S := {b € B : ||b|]| = €, ¢ > 0} sphere bundle of B (it should
be understood as S, = dB,). Let p > m —n—1 and U, := f(B). Then the map
mo f~! : U, — N induces push-forward map on smooth sections

(29) (rf™), : T(0U, A?) — (N, Ap—(m—n—l))

and due to the fact that d(rf~!), = (rf~'),d also induces a map on de Rham coho-
mologies

(30) (xf7Y), : HP(OU,) — HP~m-m=D(N).
Let us define canonical inclusion
(31) i:0U.— M\N.

Then it is easy to see that the composition Res := ,i* is independent of all possible
choices mentioned above.

Definition 6.1. Let p > m —n — 1. The map

(32) Res :=m,4* : HP(M\ N) — HP-(mn-1(N)

is called the Leray-Norguet residue. The dual (boundary) map to Res (for ¢ < n)
(39) 6+ Hy(N) — Hoy(monry(M \ N)
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is called Lerray-Norguet cobord.
The Lerray-Norguet residue theorem utilizes all previous results and definitions.

Theorem 6.2 (Lerray-Norguet residue theorem). Let 0 < p < n. Then for each
closed (p+m —n —1)-formw on M \ N and each p-dimensional cycle © C N

(34) f5 = /E Res(w)

holds true.

6.2. Leray-Norguet residues for Ss-valued monogenic function. We shall re-
strict to the formulation of residue theory for S3 -valued monogenic functions. How-
ever, note that no special property concerning Spln module S% will be needed. In
other words, presented machinery can be equally applied to any other Spin-module.

Let f be a (left) S3-valued monogenic function. Then w = do f is closed S3-valued
(m — 1)-form.

Definition 6.3. Let D C R™ be a domain and ¥ C D a compact smooth oriented
n-dimensional submanifold (n=0, ... ,m-2). If w = dof for S3-valued monogenic
function f € M(D \ X) and Res (w) € H™(X) its Leray-Norguet residue, then the
C-number

(35) resg (w / Res (w
is called the residue of S%-valued form w on the submanifold L.

Note that the residues Res(w) and res(w) carry the same information, because
HY(Z)~C

Now we are able to state residue theorem, which computes global characteristic of
w in terms of local information stored in residues of w.

Theorem 6.4 (Residue theorem). Let D C R™ be a domain and D' C D a relatively
compact subdomain with a smooth closure 0D'. Let ;, i € I, |I| < oo be a finite
family of pairwise disjoint compact submanifolds of D', whose dimensions belong to
the set {0,...,m —2}. Letw = dof, f € M(D\ (UiLs)) be S;-valued monogenic
function. Then

(36) ./a - w= Zresz,

iel

Proof. The proof is standard and follows the case of spinor valued monogenic func-
tions, see [1], p.384. Using suitable tubular neighborhoods of I; (i € I), one applies
Stokes theorem and the rest is trivial. O

Remark 6.5. Note that we have formulated Residue theorem only on a domain D
and not on manifolds as in the case of Stokes theorem. The reason is that the residue
is not invariant w.r. to the action of group Spin (in the sense of transition functions
etc.).
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