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SASAKIAN GEOMETRY, HYPERSURFACE SINGULARITIES,
AND EINSTEIN METRICS

CHARLES P. BOYER AND KRZYSZTOF GALICKI

1. INTRODUCTION

This review article has grown out of notes for the three lectures the second author
presented during the XXIV-th Winter School of Geometry and Physics in Srni, Czech
Republic, in January of 2004. Our purpose is twofold. We want give a brief intro-
duction to some of the techniques we have developed over the last 5 years while, at
the same time, we summarize all the known results. We do not give any technical
details other than what is necessary for the clarity of the exposition. In conclusion
we would like to argue that Sasakian geometry has emerged as one of the most pow-
erful tools of constructing and proving existence of special Riemannian metrics, such
as Einstein metrics or metrics of positive Ricci curvature, on a wide range of odd-
dimensional manifolds. The key geometric object in the theory is that of a contact
structure (hence, only odd dimensions) together with a Riemannian metric naturally
adapted to the contact form. Sasakian metrics in contact geometry are analogous to
the Kéhler metrics in the symplectic case.

We begin with basic facts about contact and Sasakian manifolds after which we focus
on exploring the fundamental relation between the Sasakian and the transverse Kéhler
geometry. In this context positive Sasakian, Sasakian-Einstein, and 3-Sasakian man-
ifolds are introduced. In Section 3 we present all known constructions of 3-Sasakian
manifolds. These come as V-bundles over compact quaternion Kahler orbifolds and
large families can be explicitly obtained using symmetry reduction. We also discuss
Sasakian-Einstein manifolds which are not 3-Sasakian. Here there has been only one
effective method of producing examples, namely by representing a Sasakian-Einstein
manifold as the total space of an S! Seifert bundle over a Kihler-Einstein orbifold.
In the smooth case with a trivial orbifold structure, this construction goes back to
Kobayashi [Kob56]. Any smooth Fano variety Z which admits a Kéahler-Einstein
metric can be used for the base of a unique simply connected circle bundle P which
is Sasakian-Einstein. Any Sasakian-Einstein manifold obtained this way is automati-
cally regular. It is clear that, in order to get non-regular examples of Sasakian-Einstein
structures, one should replace the smooth Fano structure with a Fano orbifold. This
was done in [BG00] where we generalized the Kobayashi construction to V-bundles over
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Fano orbifolds. However, at that time, with the exception of twistor spaces of known
3-Sasakian metrics, compact Fano orbifolds known to admit orbifold Kéihler-Einstein
metrics were rare. The first examples of non-regular Sasakian-Einstein manifolds which
are not 3-Sasakian were obtained in [BG00]. There we observed that Sasakian-Einstein
manifolds have the structure of a monoid under a certain “join” operation. A join
M, x M, of non-regular 3-Sasakian manifold and a regular Sasakian-Einstein mani-
fold (say an odd-dimensional sphere) is automatically a non-regular Sasakian-Einstein
space. The problem is that our join construction produced new examples starting in
dimension 9 and higher. It gave nothing new in dimensions 5 and 7. The construc-
tion of 5-dimensional examples followed, however, a year later, and with that, new
non-regular Sasakian-Einstein examples in every dimension could be obtained.

In [BGO1] the authors constructed three 5-dimensional examples using the results
of Demailly and Kolldr [DKO1]. At the same time it became clear that the so-called
continuity method as being applied by Demailly and Kolldr to Fano orbifolds gave
a cornucopia of new examples of Kéhler-Einstein orbifolds [Ara02, BG03b, BG03a,
BGNO02b, BGN02a, BGN03b, BGK03, BGKT03, JK01b, JK01a, Kol04]. A particular
illustration of how the method works comes from one example in classical differential
topology. It is well-known [Tak78, BGO01] that any link of isolated hypersurface singu-
larities has a natural Sasakian structure. The transverse Kihler geometry in such a
situation is induced by a Kdhlerian embedding of a complex hypersurface in an appro-
priate weighted projective space. Section 6 describes Sasakian geometry of links while
reviewing basic facts about their differential geometry and topology. At the end of this
section we are left with a powerful method of producing positive Sasakian structure
on links.

In Section 7 we begin to discuss the famous Calabi Conjecture proved in 1978 by Yau
[Yau78]. Yau’s proof uses the continuity method and works equally well for compact
orbifolds. This fact has important consequences for Sasakian manifolds: every positive
Sasakian manifold admits a metric of positive Ricci curvature. This observation offers
a very effective tool of proving the existence of such metrics on many odd-dimensional
manifolds. One interesting example is a theorem of Wraith [Wra97], proved originally
by surgery methods, which asserts that all homotopy spheres which bound paralleliz-
able manifolds admit metrics of positive Ricci curvature. The authors together with
M. Nakamaye [BGNO03c] recently gave an independent proof of this result using the
methods described here.

In the next section we turn our attention to positive Kihler-Einstein metrics. Even
in the smooth Fano category tractable necessary and sufficient conditions for such a
metric to exist are not known. After disproving one of the Calabi conjectures asserting
that in the absence of holomorphic vector fields Kéhler-Einstein metrics should exist,
Tian proposed his own conjecture [Tia97] proving it in one direction. Even assuming
the conjecture to be true, in general it is not easy to check if a particular Fano manifold
(orbifold) satisfies the required stability conditions. On the other hand, in some cases,
the continuity method has been used effectively to check sufficient conditions. In this
respect the method of Demailly and Kolldr mentioned before draws on earlier results
of Nadel [Nad90], [Siu88], Tian [Tia87a, Tia87b, Tia90], and Tian and Yau [TY87].

The last two sections give a summary of what has been accomplished to date by
applying the continuity method to Fano orbifolds. We begin with a brief discussion
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of the method itself. We follow with two important examples of how the method
applies to orbifolds constructed as hypersurfaces in weighted projective spaces. We
review our recent work [BGK03, BGKTO03] in collaboration with J. Koll4r which shows
that standard odd-dimensional spheres have Einstein metrics with one-dimensional
isometry group and very large moduli spaces. There we also proved that all homotopy
spheres in dimensions 47 + 1,7,11, and 15 that bound parallelizable manifolds admit
Sasakian-Einstein metrics. We discuss a conjecture that the last statement is true in
any odd dimension. Furthermore, it is shown that in each odd dimension starting
with n = 5 there are infinitely many rational homology spheres which admit Einstein
metrics [BG03a]. We close with the discussion of Sasakian-Einstein geometry of Barden
manifolds.
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also like to thank Max-Planck-Institut fiir Mathematik in Bonn for hospitality and
support. This paper was written during his one year visit there. In addition, KG
would like to thank the organizers of the XXIVth Workshop on Geometry and Physics
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2. CONTACT STRUCTURES AND SASAKIAN METRICS

Contact transformations arose in the theory of Analytical Mechanics developed in
the 19th century by Hamilton, Jacobi, Lagrange, and Legendre. But its first system-
atic treatment was given by Sophus Lie. Consider R2**! with Cartesian coordinates
(z,---,z% 9, -+ ,y"; 2), and a 1-form 7 given by

(1) n=dz—zy‘dzi

It is easy to see that 7 satisfies n A (dn)" # 0. A 1-form on R?™*! that satisfies this
equation is called a contact form. Locally we have the following

Theorem 1. Let n be a 1-form on R*™™ ! that satisfies n A (dn)™ # 0. Then there is
an open set U C R?"! and local coordinates (z*,-- - ,z™;y*,- -+ ,y™; 2) such that n has
the form (1) in U.

Definition 2. A (2n+1)-dimensional manifold M is a contact manifold if there exists
a 1-form 7, called a contact 1-form, on M such that

n A (dn)" #0

everywhere on M. A contact structure on M is an equivalence class of such 1-forms,
where 1’ ~ 7 if there is a nowhere vanishing function f on M such that /' = f.

Lemma 3. On a contact manifold (M,n) there is a unique vector field £, called the
Reeb vector field, satisfying the two conditions

€ln=1,  ¢ldn=0.
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Definition 4. An almost contact structure on a differentiable manifolds M is a triple
(&,m,®), where @ is a tensor field of type (1,1) (i.e. an endomorphism of TM), £ is a
vector field, and 7 is a 1-form which satisfy

n(¢)=1 and Pod=-I+£(Q7,

where [is the identity endomorphism on M. A smooth manifold with such a structure
is called an almost contact manifold.

Let (M, n) be a contact manifold with a contact 1-form 7 and consider D = ker  C
TM. The subbundle D is maximally non-integrable and it is called the contact distri-
bution. The pair (D,w), where w is the restriction of dn to D gives D the structure
of a symplectic vector bundle. We denote by J (D) the space of all almost complex
structures J on D that are compatible with w, that is the subspace of smooth sections
J of the endomorphism bundle End(D) that satisfy
(2) JE=-1, dp(JX,JY)=dn(X,Y), dn(X,JX)>0
for any smooth sections X,Y of D. Notice that each J € J(D) defines a Riemannian
metric gp on D by setting
(3) gD(X: Y) = d’?(X, JY)'

One easily checks that gp satisfies the compatibility condition gp(JX, JY) = gp(X,Y).
Furthermore, the map J — gp is one-to-one, and the space J(D) is contractible. A
choice of J gives M an almost CR structure.

Moreover, by extending J to all of TM one obtains an almost contact structure.
There are some choices of conventions to make here. We define the section @ of

End(TM) by ® = J on D and ®¢ = 0, where ¢ is the Reeb vector field associated to
n. We can also extend the transverse metric gp to a metric g on all of M by

(4) 9(X,Y) = gp +n(X)n(Y) = dn(X, ®Y) + n(X)n(Y)

for all vector fields X,Y on M. One easily sees that g satisfies the compatibility
condition g(®X, ®Y) = g(X,Y) — n(X)n(Y).

Definition 5. A contact manifold M with a contact form 7, a vector field ¢, a section
® of End(TM), and a Riemannian metric g which satisfy the conditions

n€)=1, =-I+(0n,
9(2X,®Y) = g(X,Y) — n(X)n(Y)
is known as a metric contact structure on M.

Definition-Theorem 6. A Riemannian manifold (M, g) is called a Sasakian mani-
fold if any one, hence all, of the following equivalent conditions hold:
(1) There ezists a Killing vector field & of unit length on M so that the tensor field
® of type (1,1), defined by ®(X) = —Vx&, satisfies the condition
(Vx@)(Y) = g(X,Y)E-g(£,Y)X

for any pair of vector fields X andY on M.
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(2) There ezists a Killing vector field  of unit length on M so that the Riemann
curvature satisfies the condition

R(X,E)Y = g(f,Y)X—g(X,Y)ﬁ,

for any pair of vector fields X andY on M.
(8) The metric cone (C(M),3) = (Ry x M, dr?+r?g) is Kihler.

We refer to the quadruple S = (¢,7,9®, g) as a Sasakian structure on M, where 7
is the 1-form dual vector field €. It is easy to see that 7 is a contact form whose
Reeb vector field is €. In particular S = (¢,7,®, g) is a special type of metric contact
structure.

The vector field £ is nowhere vanishing, so there is a 1-dimensional foliation
associated with every Sasakian structure, called the characteristic foliation. We will
denote the space of leaves of this foliation by Z. Each leaf of F¢ has a holonomy group
associated to it. The dimension of the closure of the leaves is called the rank of S. We
shall be interested in the case rk(S) = 1. We have

Definition 7. The characteristic foliation F; is said to be quasi-regular if there is a
positive integer k such that each point has a foliated coordinate chart (U, z) such that
each leaf of F¢ passes through U at most £ times. Otherwise F¢ is called irregular. If
k = 1 then the foliation is called regular, and we use the terminology non-regular to
mean quasi-regular, but not regular.

3. TRANSVERSE KAHLER GEOMETRY

Let (M, £,7n,®, g) be a Sasakian manifold, and consider the contact subbundle D =
ker 1. There is an orthogonal splitting of the tangent bundle as

(5) TM =D @ L,

where L is the trivial line bundle generated by the Reeb vector field {. The contact
subbundle D is just the normal bundle to the characteristic foliation F; generated by
&. It is naturally endowed with both a complex structure J = ®|D and a symplectic
structure dn. Hence, (D, J,dn) gives M a transverse Kdhler structure with Kéhler
form dn and metric gp defined as in (3) which is related to the Sasakian metric g
by 9 = g9p ®n®n as in (4). We have the following fundamental structure theorems
[BGOO]:

Theorem 8. Let (M,€,m,9,9) be a compact quasi-regular Sasakian manifold of di-
mension 2n + 1, and let Z denote the space of leaves of the characteristic foliation.
Then the leaf space Z is a Hodge orbifold with Kdhler metric h and Kdhler form w
which defines an integral class (w] in H2,(2,Z) so that 7 : (M, g)— (2, h) is an orb-
ifold Riemannian submersion. The fibers of m are totally geodesic submanifolds of M
diffeomorphic to S*.

Theorem 9. Let (2, h) be a Hodge orbifold. Let m : M— Z be the S* V-bundle whose
first Chern class is [w], and let n be a connection 1-form in M whose curvature is 2m*w,
then M with the metric 7*h + n ® n is a Sasakian orbifold. Furthermore, if all the
local uniformizing groups inject into the group of the bundle S, the total space M is
a smooth Sasakian manifold.
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Remark 10. The structure theorems discussed above show that there are two Kéhler
geometries naturally associated with every Sasakian manifold and we get the following
diagram

C(M) «+ M
©) |+
: zZ

The orbifold cohomology groups H? ,(Z,Z) were defined by Haefliger [Hae84]. In
analogy with the smooth case a Hodge orbifold is then defined to be a compact Kéhler
orbifold whose Kihler class lies in H2,(Z,Z). Alternatively, we can develop the con-
cept of basic cohomology. This is useful in trying to extend the notion of Z being
Fano to the orbifold situation. This can be done in several ways. Here we will use the
notion of basic Chern classes. Recall [Ton97] that a smooth p-form & on M is called
basic if
(7) €(la=0, Lea=0,

and we let A}, denote the sheaf of germs of basic p-forms on M, and by Q% the set of
global sections of A% on M. The sheaf A% is a module over the ring, A%, of germs of
smooth basic functions on M. We let CF (M) = Q} denote global sections of A, i.e.
the ring of smooth basic functions on M. Since exterior differentiation preserves basic
forms we get a de Rham complex

d
8 (/T ¢ A

whose cohomology Hp(F¢) is called the basic cohomology of (M, F¢). The basic co-
homology ring Hy(F¢) is an invariant of the foliation ¢ and hence, of the Sasakian
structure on M. It is related to the ordinary de Rham cohomology H*(M,R) by the
long exact sequence [Ton97]

(9) -+ ——HB(Fo)——HP(M, R) ~ HE(F) —— HE(F)—» -
where § is the connecting homomorphism given by d[a] = [dn A a] = [dn] U [a], and
Jp is the composition of the map induced by £] with the well known isomorphism
H™(M,R) ~ H™(M,R)S' where H"(M,R)S" is the S'-invariant cohomology defined
from the S'-invariant r-forms Q" (M)S". We also note that dn is basic even though 7 is
not. Next we exploit the fact that the transverse geometry is Kéhler. Let D¢ denote
the complexification of D, and decompose it into its eigenspaces with respect to J,
that is, Dc = D% @ D%!. Similarly, we get a splitting of the complexification of the
sheaf A} of basic one forms on M, namely

A}@C=A®AY.
We let £79 denote the sheaf of germs of basic forms of type (p,q), and we obtain a
splitting

(10) »eC= P ez

ptg=r
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The basic cohomology groups HE?(F¢) are fundamental invariants of a Sasakian
structure which enjoy many of the same properties as the ordinary Dolbeault coho-
mology of a Kéhler structure.

Consider the complex vector bundle D on a Sasakian manifold (M, &,n,®,9). As
such D has Chern classes ¢,(D), -+ ,c,(D) which can be computed by choosing a
connection V? in D [Kob87). Let us choose a local foliate unitary transverse frame
(X1,-++,Xy), and denote by Q7 the transverse curvature 2-form with respect to this
frame. A simple calculation shows that QT is a basic (1,1)-form. Since the curvature
2-form Q7 has type (1,1) it follows as in ordinary Chern-Weil theory that

Definition-Theorem 11. The kth Chern class cx(D) of the complez vector bundle
D is represented by the basic (k, k)-form v, determined by the formula

1
det(nn_%gT)=l+7I+"’+7k'

Since ¢ is a closed basic (k, k)-form it represents an element in Hy*(F¢) C HE(F)
that is called the basic kth Chern class and denoted by ci(Fe).

We now concentrate on the first Chern classes c;(D) and c;(F¢). We have

Definition 12. A Sasakian structure (¢,7,®,g) is said to be positive (negative) if
c1(Fe) is represented by a positive (negative) definite (1,1)-form. If either of these
two conditions is satisfied (£,7,®, g) is said to be definite, and otherwise (¢,7, ®, g) is
called indefinite. (€,7,®, g) is said to be nullif ¢,(F¢) = 0.

In analogy with common terminology of smooth algebraic varieties we see that a
positive Sasakian structure is a transverse Fano structure, while a null Sasakian struc-
ture is a transverse Calabi-Yau structure. The negative Sasakian case corresponds to
the canonical bundle being ample; we refer to this as a transverse canonical structure.

Remark 13. Alternatively, a complex orbifold Z is Fano if its orbifold canonical
bundle Kzors is anti-ample. In the case Z is well-formed, that is when the orbifold
singularities have codimension at least 2, the orbifold canonical bundle Kzors can be
identified with the ordinary canonical bundle. However, in the presence of codimen-
sion 1 singularities the orbifold canonical divisor is not the usual algebraic geometric
canonical divisor, but is shifted off by the ramification divisors coming from the codi-
mension one singularities [BGK03]. We shall give specific examples of this difference
later.

4. THE EINSTEIN CONDITION

Definition 14. A Sasakian space (M, g) is Sasakian-Einstein if the metric g is also
Einstein. For any 2n+1-dimensional Sasakian manifold Ric(X,¢) = 2nn(X) imply-
ing that any Sasakian-Einstein metric must have positive scalar curvature. Thus any
complete Sasakian-Einstein manifold must have a finite fundamental group. Further-
more the metric cone on M (C(M),3) = (R, x M, dr?+ r?g) is Kéhler Ricci-flat
(Calabi-Yauy).
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The following theorem [BGO0O0] is an orbifold version of the famous Kobayashi bundle

construction of Einstein metrics on bundles over positive Kéhler-Einstein manifolds
[Bes87, Kob56].
Theorem 15. Let (Z,h) be a compact Fano orbifold with n{™(Z) = 0 and Kdhler-
Einstein metric h. Let 7 : M—Z be the S' V-bundle whose first Chern class is
7%. Suppose further that the local uniformizing groups of Z inject into S'. Then
with the metric g = m*h+nQ®n, M is a compact simply connected Sasakian-Einstein
manifold.

Here Ind(Z) is the orbifold Fano indez [BGOO] defined to be the largest positive
integer such that ﬁl‘—éa—) defines a class in the orbifold cohomology group HZ,(Z,Z).
A very special class of Sasakian-Einstein spaces is naturally related to several quater-
nionic geometries.

Definition 16. Let (M, g) be a Riemannian manifold of dimension m. We say that
(M, g) is 3-Sasakian if the metric cone (C(M),3) = (Ry x S, dr? +r%g) on M is
hyperkéhler.

Remark 17. In the 3-Sasakian case there is an extra structure, i.e., the transverse
geometry O of the 3-dimensional foliation which is quaternionic-Kéhler. In this case,
the transverse space Z is the twistor space of O and the natural map Z — O is the
orbifold twistor fibration [Sal82]. We get the following diagram which we denote by
o(M) and which extends the diagram in (6) [BGM93, BGM94]:

Hyperkahler
Geometry

c(M)

Twistor 3-Sasakian

(11) Geometry 2 ’ M Geometry

N e
o

Quaternion Kéahler
Geometry

Remark 18. The table below summarizes properties of cone and transverse geome-
tries associated to various metric contact structures.

Cone Geometry of C(M) | M Transverse Geometry of F¢

Symplectic Contact Symplectic

Kahler Sasakian Kéhler

Kahler positive Sasakian Fano, ¢;(Z2) > 0

Kahler null Sasakian Calabi-Yau, ¢;(2) =0

Kahler negative Sasakian canonical, ¢;(2) <0
Calabi-Yau Sasakian-Einstein Fano, Kahler-Einstein
Hyperkahler 3-Sasakian C-contact, Fano, Kahler-Einstein
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5. SOME EXAMPLES

Below we list some well-know constructions of Sasakian-Einstein and 3-Sasakian
manifolds. We start with the latter.

Example 19. Examples of 3-Sasakian manifolds are numerous and they are easily
constructed by way of the so called 3-Sasakian reduction [BGM94]. To begin with one
starts with the canonical example of o(M) where M is the round (4n — 1)-dimensional
sphere S4"~1 of constant sectional curvature 1.

c
' N

(12) Pe! + gin-1,
Y '

n—1
PH

Moreover, there is such a diamond diagram for any semisimple Lie group G and we
get all homogeneous examples this way [BGM94], i.e.,

c@/n)
Y \
(13) o —— oL
N\ v
G
Sp(1)L

The spaces Sv(% are the well-known Wolf spaces [Wol65] and they are the only know
examples of smooth compact positive quaternion Kéhler manifolds. A conjecture of
LeBrun and Salamon [LS94] asserts that there are no other examples. This conjec-
ture have been proved in the first three quaternionic dimensions by Hitchin [Hit74],
Friedrich and Kurke [FK82], Poon and Salamon [PS91], and Herrera and Herrera
[HH02a, HHO2b).

Example 20. Now, one can start with any of the homogeneous diamonds ¢(G/L) in
13. In principle, any subgroup H C G of appropriate dimension leads to a reduction
of o(G/L) by symmetries of H. At various levels of the diamond such reductions
are known as hyperkidhler [HKLR87], 3-Sasakian [BGM94], and quaternionic Kahler
quotients [GL88], respectively. In practice, it is not easy to assure that, say, the 3-
Sasakian quotient of G/L by H be a smooth manifold. On the other hand, there are
many cases when this happens. For instance, one can reduce the standard diagram 12
by an action of T* C T™ C Sp(n) k-dimensional torus. We get the reduction diagram

c C(S())
4 ~ Reduction 4
Pr-t + Gin-1 = Z(Q) 4-+ S(Q).
¢ N / by k-torus N /

Py 0(Q)
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The geometry of the 3-Sasakian reduced space S(f) is completely determined by an
integral k x n matrix  which for any k& > 1 defines a homomorphism f : T*—T™ C
U(n) C Sp(n). The real dimension dim(S(?)) = 4(n—k)—1. In the case dim(S(Q)) =
7, there are choices of § for any k > 1 which make S(§2) smooth. Since by(S(Q)) =k
we conclude that in dimension 7 there exist Einstein manifolds with arbitrarily large
second Betti number. These were the first such examples and they were constructed
in [BGMR9S). Interestingly, this toric reduction does not give smooth manifolds with
large second Betti numbers in dimensions greater than 7 [BGM98]. Nevertheless, one
can obtain Sasakian-Einstein manifolds with arbitrary second Betti number in any odd
dimension greater than seven by the join construction discussed in 31 below. Later
Bielawski showed that in all allowed dimensions all toric examples must occur through
the above procedure [Bie99].

Example 21. The first non-toric examples in dimension 11 and 15 were obtained
by Boyer, Galicki, and Piccinni [BGP02]. These are toric quotients of the diamond
digram o(G/L) for G = SO(n),L = SO(4) x SO(n — 4). Alternatively, these can be
thought of as non-Abelian reductions of o(S**~1).

Example 22. Recently, the first non-toric examples in dimension 7 were obtained by
Grove, Wilking, and Ziller (Zil]. They use an orbifold bundle construction with the
examples of orbifold twistor space and self-dual Einstein metrics Z;— O, discovered
by Hitchin in 1992 [Hit95]. The self-dual Einstein metric on O is defined on S*\ RP?
and it has Z; orbifold singularity along RP?. However, it turns out that the bundle
My — 2y, is actually smooth. In particular, one can compute the integral cohomology
ring of M;. For odd k the 3-Sasakian manifold Mj is a rational homology 7-sphere
with non-zero torsion depending on k. Hence, there exist infinitely many rational
homology 7-spheres which have 3-Sasakian metrics

Let us turn our attention to complete examples of Sasakian-Einstein manifolds which
are not 3-Sasakian.

Example 23. The standard example is that of complex Hopf fibration
(14) C' S 5 PLL

Just as in 3-Sasakian case this example generalizes when one replaces the complex
projective space with a generalized flag manifold. That is, consider any complex semi-
simple Lie group G. A maximal solvable subgroup B of G is called a Borel subgroup
and is unique up to conjugacy. Any P C G containing B is called parabolic. It is
known that any such generalized flag G/P admits a homogeneous Kéhler-Einstein
metric, and that any compact homogeneous simply connected Kéhler manifold is a
generalized flag manifold. Applying the construction of Theorem 15 gives all compact
homogeneous Sasakian-Einstein metrics, in fact, all compact homogeneous Sasakian
manifolds [BG00).

Example 24. The Kobayashi bundle construction also gives many inhomogeneous
examples. These are all circle bundles over compact smooth Fano manifolds. For
instance, in the case of surfaces all del Pezzo surfaces are classified and it is known
which of them admit Kéhler-Einstein metrics [Tia90, Tia99, Tia00].
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Theorem 25. The following del Pezzo surfaces admit Kdhler-Einstein metrics: CP?,
CP' x CP!, CP?#nCP?, 3 < n < 8. Furthermore, the moduli space of K-E structures
in each case is completely understood.

As and immediate consequence, for 5-manifolds, we have the following result of
Friedrich and Kath [FK90)

Theorem 26. Let M; = S5#I(S? x S3).
1. For each | = 0,1, 3,4, there is precisely one regular Sasakian-Einstein structure

on M(.

2. For each 5 < 1 < 8 there is a 2(l — 4) complez parameter family of inequivalent
regular Sasakian-Einstein structures on M;.

3. Forl =2 orl > 9 there are no regular Sasakian-Einstein structures on M;.

There are two del Pezzo surfaces which do not admit any K-E metrics due to theo-
rem of Matsushima [Mat57]: the existence is obstructed by holomorphic vector fields.
These are blow-ups of CP? at one or two points.

Remark 27. A well known result of Martinet says that every orientable 3-manifold
admits a contact structure. Furthermore, all Sasakian 3-manifolds have been classified
[Bel00, Bel01, Gei97] and they are Seifert bundles over Riemann surfaces. In this case
every compact Sasakian 3-manifold is either negative, null, or positive. In addition,
if M is Sasakian-Einstein than it follows that the universal cover M is isomorphic to
the standard Sasakian-Einstein metric on S3.

Example 28. [Barden Manifolds] Similarly one might try to classify all Sasakian
manifolds in dimension 5. In the simply connected case there exists a classification
result of all smooth 5-manifolds due to Smale [Sma62] and Barden [Bar65]. Extending
Smale’s theorem for spin manifolds Barden proves the following:

Theorem 29. The class of simply connected, closed, oriented, smooth, 5-manifolds is
classifiable under diffeomorphism. Furthermore, any such M is diffeomorphic to one
of the spaces Mjx,,.. k, = X;j# My, # - #M,, where =1 < j < 00,582>0,1< k; and
k; divides ki, or ki1 = 0o. A complete set of invariants is provided by Ha(M,Z) and
an additional diffeomorphism invariant i(M) = j which depends only on the second
Stiefel-Whitney class w?(M).

In this article we will refer to a simply connected, closed, oriented, smooth, 5-
manifold as a Barden manifold. The building blocks of Theorem 29 are given in the
table below. They are listed with Hy(M, Z) and Barden'’s i(M) invariant.

M H,(M,Z) |i(M)
X_1=SU(3)/SO(3) Zy -1
Xn,n2>1 Zion ®Zon | n
Xo = non-trivial S° bundle over S? Z 00
Xo=5" 0 0
My, =58%x 5% Z 0
M, n>1 Zy, @ Zy, 0
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When M is spin i(M) = j = 0 as is w?(M) = 0 and Barden’s result is the extension
of the well-known theorem of Smale for spin 5-manifolds. By an old theorem of Gray
[Grab9] M admits an almost contact structure when j = 0,00 and by another result
of Geiges M is in such a case necessarily contact [Gei91].

Question 30. It is natural to ask whether Barden manifolds admit Sasakian struc-
tures. Specifically, we would like to ask

1. Does every Barden manifold which is contact (j = 0,00) admit a Sasakian struc-
ture?

2. Does every Barden manifold which is spin (j = 0) admit positive (respectively
negative) Sasakian structure? (Null Sasakian structures are obstructed. For
example, Corollary 1.10 of [BGNO03a] implies that S* and S? x S3 cannot admit
null Sasakian structures).

3. Which of the Barden manifolds which are spin admit Sasakian-Einstein struc-
tures?

Remark 31. There is one more construction of non-regular Sasakian-Einstein man-
ifolds which draws on examples of 3-Sasakian structures. In [BGOO] the authors ob-
served that the set of all Sasakian-Einstein manifolds has a monoid structure, i.e., for
any two compact quasi-regular Sasakian-Einstein orbifolds M; and M, one can define
M; x M, which is automatically a compact Sasakian-Einstein orbifold of dimension
dim(M;) + dim(Mj) — 1. This construction is an orbifold generalization of the well-
known construction of Wang and Ziller in [WZ90] adapted to the Sasakian-Einstein
setting. It turns out that a join of any non-regular Sasakian-Einstein manifold M; with
a regular Sasakian-Einstein space M, (say, for example, M, = S®) is automatically a
compact smooth, non-regular Sasakian-Einstein manifold. The join construction pro-
duces new examples beginning in dimension 7. If, however, M; is 3-Sasakian, new
examples begin in dimension 9. In addition, a completely new construction of in-
homogeneous Sasakian-Einstein metrics have been considered by Gauntlett, Martelli,
Sparks, and Waldram [GMSW04a, GMSWO04b]. Their metrics are in fact very ex-
plicit and they were first obtained indirectly by considering general supersymmetric
solutions in certain D = 11 supergravity theory.

6. SASAKIAN GEOMETRY OF LINKS

Consider the affine space C™*t! together with a weighted C*-action given by
(20y- -+ ,2n) H (A%2,... ,A¥"2,), where the weights w; are positive integers. It is
convenient to view the weights as the components of a vector w € (Z*)"**!, and we
shall assume that ged(wo, ..., wn) = 1.

Definition 32. We say that f is a weighted homogeneous polynomial with weights
w and of degree d if f € Clz, ... ,2;] and satisfies

(15) FA%2, ..., A% 2,) = A4f (20, .+ y 2n) -

We shall assume that the origin in C**! is an isolated singularity.
Definition 33. The link of f is defined by
(16) Ly ={f=0}ns>*,
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where S?7*! is the unit sphere in C**!.

Remark 34. Ly is endowed with a natural quasi-regular Sasakian structure [Tak78,
YK84, BG01] inherited as a Sasakian submanifold of the sphere $?**! with its “weighted”
Sasakian structure (éw,7w,®Pw,gw) Which in the standard coordinates {z; = z; +
1y;}7=o on C*+! = R***2 is determined by

ool dy; — vi dzy)
(17) "7w - Z:lzo wi(z? + y?) ’ Zwl .'B, yl z,)

and the standard Sasakian structure (¢,7,®, g) on S’"“.

The quotient of S?*+! by the “weighted S'-action” generated by the vector field &,
is the weighted projective space P(w) = P(wy,... ,ws), and we have a commutative
diagram:

L 7 y Sa,"“
(18) ™

Zf e ]P(W)
where the horizontal arrows are Sasakian and Kahlerian embeddings, respectively, and
the vertical arrows are orbifold Riemannian submersions. Ly is the total space of the
principal S* V-bundle over the orbifold Z;. Alternatively we will sometimes denote

Zs as X4 C P(w) to indicate the weights and the degree of f. In such case we will
also write Ly = L(Xg C P(w)).

Proposition 35. [BGK03] The orbifold Z; is Fano if and only if d — Y w; < 0.

Example 36. At this point we return to the comments made in Remark 13. Consider
links defined by

(19) filz0,21,2) =28 + 2 + 23,

The orbifold Zj, is a hypersurface X, in P(6,2(6k — 1),3(6k — 1)) of degree d =
6(6k — 1). The corresponding link Ly, is of Brieskorn-Pham type and will be denoted
by L(6k — 1,3,2) (see (23)). All 3-dimensional Brieskorn-Pham links were classified
by Milnor in [Mil75). According to the Proposition 35, L(6k — 1,3,2) is positive
only when k = 1 and in all other cases it is negative. Indeed, L(5,3,2) ~ S3/I* is
the famous Poincaré sphere, where I* C SU(2) is the binary isocahedral group. For
k > 1, the link L(6k — 1, 3,2) is a homology sphere with infinite fundamental group.
The complex orbifold Zy,, for £ > 1 is not Fano. In particular, it cannot have an
orbifold metric of constant positive curvature (though it has a natural metric of
constant negative curvature). On the other hand, as an algebraic variety, for any k we
must have Z;, ~ P'. This can be seen from the generalized genus formula. For any
curve Xg4 C P(wp, w;, we) we have:

1/ d? ged(w;, w;) ged(d, w;)
20 Xa) = —(—— d i L e 2 foahnlac hud LA 1).
(20) 9(Xa) 2 \wow, w, Z Wiw; + Z w;

Hence, Zj, is certainly Fano as a smooth variety in the algebraic geometric sense, but
it has codimensionl orbifold singularities and it is not Fano in the orbifold sense. Here
the orbifold canonical class is not the usual algebraic geometric canonical class, but the
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codimension one orbifold ramification divisors are added in. By Milnor’s classification
L(6k —1,3,2), for (k > 1), is the quotient of the universal cover §2(2, R) of SL(2,R)
by a co-compact discrete subgroup I' C SL(2,R). Furthermore, L(6k —1,3,2) has a
finite covering by a manifold that is diffeomorphic to a non-trivial circle bundle over
a Riemann surface of some genus g > 1.

Now, recall the well-known construction of Milnor for isolated hypersurface singu-
larities [Mil68, MO70]: there is a fibration of (S?**! — L;)—S' whose fiber F is an
open manifold that is homotopy equivalent to a bouquet of n-spheres S*v S™...v S™.
The Milnor number u of Ly is the number of S™’s in the bouquet. It is an invariant
of the link which can be calculated explicitly in terms of the degree d and weights
(wg, - - . ywy,) by the formula

(21) p=p(Ly) = ﬁ(ﬁ -1)

i=0

The closure F' of F has the same homotopy type as F' and is a compact manifold with
boundary precisely the link L. So the reduced homology of F and F is only non-zero
in dimension n and Hy(F,Z) ~ Z*. Using the Wang sequence of the Milnor fibration
together with Alexander-Poincare duality gives the exact sequence

(22) 0—Hy (Ly, Z) = Hy(F,Z)—5 Ho(F,Z) = Hy1(Ls, Z)=0

where h, is the monodromy map (or characteristic map) induced by the S. ac-
tion. From this we see that H,(Ls,Z) = ker(I — h,) is a free Abelian group, and
H,_1(Ly,Z) = Coker(I — h,) which in general has torsion, but whose free part equals
ker(I — h,). So the topology of Ly is encoded in the monodromy map h,. There is a
well-known algorithm due to Milnor and Orlik [MO70] for computing the free part of
H,_1(Ly,Z) in terms of the characteristic polynomial A(t) = det(tI — h,), namely the
Betti number by,(Ly) = by—1(Ly) equals the number of factors of (t — 1) in A(t). First
we mention an important immediate consequence of the exact sequence (22) which is
due to Milnor:

Proposition 37. The following hold:

(1) Ly s a rational homology sphere if and only if A(1) # 0.
(2) Ly 1s a homology sphere if and only if |A(1)| = 1.
(8) If Ly is a rational homology sphere, then the order of Hn_1(Ly,Z) equals |A(1)).

Example 38. The following table lists some illustrating examples. All of the cho-
sen links are Fano, but negative and null Sasakian structures can also be considered.
We either explicitly identify the link with some smooth contact manifold or list non-
vanishing homology groups. £} and E; indicate homotopy spheres where the differen-

tiable structure depends on & and p.
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Z; Ly
X, C P(1,1,1,1) STx S8
X, CPLLLI) FEST X 5
X, CPLLL2) (ST X )
Xs C P(1,1,2,3) 8#(5% x S%)
Xi41 C P(l, 1, 1,k) k#(SZ X SJ)
XlO C P(l, 2,3, 5) 9#(52 X 53)
X7 C P(11,29, 39,49) 2#(52 X 53)
Xose C P(13,35, 81, 128) S?x 53
Xsx C P(3,3,3,k), k # 3n M
X CP(4,4,4,4,k), k # 2n |Hs(L¢,Z)| = k%
Xe(er—1) C P(6,2(6k — 1), 3(6k — 1), 3(6k — 1), 3(6k — 1)) T~ ST
Xo2p+1) CP(2,2p+1,2p+1,2p+1,2p+1,2p+1) T, ~ S50

In some of the above examples the homogeneous polynomial f can be chosen to
contain no “mixed” monomial terms of the form z{*2;7. Such an f is called of Brieskorn-
Pham type. In his famous work, in 1966 Brieskorn considered links L(a) defined by

n
(23) Y=, fal@) =g+t =0,
rs '
To the vector a = (ag,"*,a,) € Z3*' one associates a graph G(a) whose n + 1

vertices are labeled by ag,: -+ ,a,. Two vertices a; and a; are connected if and only
if ged(asi,a;) > 1. Let C., denote the connected component of G(a) determined by
the even integers. Note that all even vertices belong to Cey, but Ce, may contain odd
vertices as well. Then we have the so-called Brieskorn Graph Theorem [Bri66):

Theorem 39. The following hold:

(1) The link L(a) is a rational homology sphere if and only if either G(a) contains at
least one isolated point, or C,, has an odd number of vertices and for any distinct
i, aj € Cey, gcd(a,-,a,-) =2.

(2) The link L(a) is an integral homology sphere if and only if either G(a) contains
at least two isolated points, or G(a) contains one isolated point and C., has an
odd number of vertices and a;,a; € C.,, implies gcd(a;,a;) = 2 for any distinct
i,J.

Recall that by the seminal work of Milnor [Mil56], Kervaire and Milnor [KM63],
and Smale [Sma61), for each n > 5, differentiable homotopy spheres of dimension n
form an Abelian group ©,, where the group operation is connected sum. ©, has a
subgroup bP,4; consisting of those homotopy n-spheres which bound parallelizable
manifolds V,,4:. Kervaire and Milnor proved that bPppy1 = 0 for m > 1, bPyyye = 0,
or Zy and is Zs if 4m+2 # 21— 2 for any i > 3. The most interesting groups are bP,,,
for m > 2. These are cyclic of order

(24) [6Pym| = 2%™=2(22™~! — 1) numerator (%),

where By, is the m-th Bernoulli number. Thus, for example |bF;| = 28, [bP;| =
992, [bPyg| = 8128 and |bPy| = 130, 816. In the first two cases these include all exotic
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spheres. The correspondence is given by
1
(25) KM:YX gT(VQm(E))mod|bP4m|,

where Vi (X) is any parallelizable manifold bounding ¥ and 7 is its signature. Let X;
denote the exotic sphere with KM(X;) = i. Now, the Brieskorn Graph Theorem tells
us for which a the Brieskorn-Pham link L(a) is a homotopy sphere. By (25) we need
to be able to compute the signature to determine the diffeomorphism types of various
links. We restrict our interest just to the case when m = 2k + 1.

In this case, the diffeomorphism type of a homotopy sphere L(a) € bP,,_ is deter-
mined by the signature 7(M) of a parallelizable manifold M whose boundary is ©2™-3,
By the Milnor Fibration Theorem we can take M to be the Milnor fiber M2™~2 which,
for links of isolated singularities coming from weighted homogeneous polynomials is
diffeomorphic to the hypersurface {z € C™ | fa(20,--.,2m-1) = 1}.

Brieskorn shows that the signature of M*(a) can be written combinatorially as

2%
r(M*(a)) = #{x € Z**'|0<z;<a; and 0< Z? <1 mod?2}

=0

2
(26) - #{xeZ*"|0<z;<aq; and 1<Z?<2 mod 2} .
j=0
Using a formula of Eisenstein, Zagier (cf. [Hir71]) has rewritten this as:

—1)r ! % +1 2 +1
N) Zcot”(” )cot"(” )

27+1
cecot T2 +1)
2N 20,1 2&2k+1

@) rrr@) = SR

where N is any common multiple of the a;’s.

Both formulas are quite well suited to computer use. A simple C code called sig.c,
which for any m-tuple with m = 2k + 1 = 5,7,9, computes the signature 7(a) :=
7(M2¥) and the diffeomorphism type of the link using either of the above formulas can
be found in [BGKTO3).

Example 40. Let us consider the Brieskorn-Pham link L(5,3,2,2,2). By Brieskorn
Graph Theorem this is a homotopy 7-sphere. One can easily compute the signature
using (2.14) to find out that 7(L(5,3,2,2,2)) = 8. Hence L(5,3,2,2,2) = X7 is an
exotic 7-sphere and it is called Milnor generator (all others can be obtained from
it by taking connected sums). It is interesting to note that one does not need a
computer to find the signature of L(6k — 1,3,2,2,2). This was done in Brieskorn
original paper [Bri66] where he used the combinatorial formula 26 to show that all the
28 diffeomorphism types of homotopy 7-spheres are realized by taking k =1,---,28.

Question 41. Suppose that Z is Fano. How can one prove the existence of a Kihler-
Einstein metric on Z;? When this can be done successfully we automatically get a
Sasakian-Einstein metric on the link Ly.
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7. CALABI CONJECTURE I

Recall that on a Kédhler manifold the Ricci curvature 2-form p,, of any Kéhler metric
represents the cohomology class 2mc;(M). The well-known Calabi Conjecture is the
question whether or not the converse is also true. To be more specific we begin with
a couple of definitions

Definition 42. Let (M, J,g,w,) be a compact Kéhler manifold. The Kahler cone
of M

K(M) = {[w] € H'Y'(M,C) N H (M,R) | [w] = [ws] for some Kéhler metric h}
is the set of all possible Kahler classes on M.

The global i39-lemma provides for a very simple description of the space of Kihler
metrics K. Suppose we have a Kéhler metric g in a with Kéhler class [w,] = [w] €
K(M). If h € Ky,) is another Kéhler metric then, up to a constant, there exists a
global function ¢ € C®(M,R) such that wy, — w, = 100¢. We could fix the constant
by requiring, for example, that [, m $wy = 0. Hence, we have

Corollary 43. Let (M,J,g,w,) be a compact Kihler manifold with (w,] = [w] €
K(M). Then, relative to the metric g the space Ky, of all Kihler metric in the
same Kdhler class can be described as

Kiy = {$ € C*(M,R) | wp = w, +i03¢ > 0, / pup =0},
M
where the 2-form wy, > 0 means that wy(X, JY) is a Hermitian metric on M.

We have the following theorem

Theorem 44. Let (M, J,9,w,) be a compact Kéihler manifold, (wg) = w € K(M) the
corresponding Kdhler class and p, the Ricci form. Consider any real (1,1)-form Q on
M such that Q] = 2mci(M). Then there exists a unique Kihler metric h € Ky, such
that Q = Ph-

The above statement is the celebrated Calabi Conjecture which was posed by Eugene
Calabi in 1954. The conjecture in its full generality was eventually proved by Yau in
1978 [Yau7s].

Let us reformulate the problem using the global i09-lemma. We start with a given
Kéhler metric g on M in the Kahler class (wy] = [w]. Since py also represents 2mc, (M)
there exists a globally defined function f € C*°(M,R) such that

py — Q= i00f .
Appropriately, f may be called a discrepancy potential function for the Calabi problem
and we could fix the constant by asking that [, (ef — 1)w, = 0.

Now, suppose that the desired solution of the problem is a metric A € Kp,). We
know that the Kéhler form of A can be written as

wh = wy + 1009,

for some smooth function ¢ € C*(M, R). We normalize ¢ as in the previous corollary.
Combining these two equations we see that

Ph— Pg = 'Laéf
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If we define a smooth function F' € C®°(M,R) relating the volume forms of the two
metrics wf = e"w} then the left-hand side of the above equation takes the following
form

i00F = py, — p, = i00f ,
or simply i99(F - f) = 0. Hence, F = f+c. But since we normalized [ (e —1)w, =0
we must have ¢ = 0. Thus, F = f, orw! = ef wy. We can now give two more equivalent
formulations of the Calabi Problem.

Theorem 45. Let (M, J, g,w,) be a compact Kihler manifold, [wg] = [w] € K(M) the
corresponding Kahler class and p, the Ricci form. Consider any real (1,1)-form on M
such that [Q] = 2mc;(M). Let py — Q = i80f, with f,,(ef — 1)wg = 0.
(1) There exists a unique Kihler metric h € Ky,) whose volume form w} equals ef wy.
(2) Let (U, 21,... ,2,) be a local complez chart on M with respect to which the metric
g = (9i)- Then, up to a constant, there ezists a unique smooth function ¢ in
Kiw), which satisfies the following equation

2
det ( gi; + 8—2 a‘;j )
det(g,-;)

The equation in (2) is called the Monge-Ampere equation. Part (1) gives a very
simple geometric characterization of the Calabi-Yau theorem. On a compact Kéahler
manifold one can always find a metric with arbitrarily prescribed volume form. The
uniqueness part of this theorem was already proved by Calabi. This part involves only
Maximum Principle. The existence proof uses the continuity method discussed briefly
in Section 9 and it involves several difficult a priori estimates. These were found by
Yau in 1978. We have the following:

Corollary 46. Let (M, J, g,w,) be a compact Kihler manifold.

(1) If c1(M) > 0 then M admits a Kdhler metric of positive Ricci curvature.
(2) If M) = 0 then M admits a unique Kdhler Ricci-flat metric.

=6f.

It is “folklore” that the Calabi-Yau Conjecture is also true for compact orbifolds. In
the context of Sasakian geometry with its characteristic foliation, the transverse space
Z is typically a compact Kéihler orbifold. In the context of foliations a transverse
Yau theorem was proved by El Kacimi-Alaoui in 1990 [EKA90).

Theorem 47. Ifc;(F¢) is represented by a real basic (1,1)-form pT, then it is the Ricci
curvature form of a unique transverse Kihler form wT in the same basic cohomology
class as dn.

In the language of positive Sasakian manifolds this theorem provides the basis for
proving [BGN03a]

Theorem 48. Any positive Sasakian manifold (M, g) admits a Sasakian metric g' of
positive Ricci curvature.

There is a similar statement for negative and null Sasakian structures. This is
studied in a forthcoming article [BGMO04].
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Corollary 49. Let L(f) be the link of an isolated hypersurface singularity where f is
weighted homogeneous polynomial of weight w and degree d. If 3, w; — d > 0 then
L(f) admits a Sasakian metric of positive Ricci curvature. In particular,

(1) #xMo = #i(S? x S%) ~ L(Xz41 C P(1,1,1,k)) admits Sasakian metric of
positive Ricci curvature for all k > 1.

(2) The links L(6k — 1,3,2,...,2) =~ ;™ and L(2p + 1,2,...,2) = Si"+! admit
Sasakian metric of positive Ricci curvature for each n, k and p. Hence, all homo-
topy spheres that bound parallelizable manifolds admit metrics of positive Ricci
curvature.

Part (1) is the 5-dimensional case of a well known theorem of Sha and Yang [SY91].
Their theorem asserts the existence of positive Ricci curvature metrics on connected
sums of product of spheres. Part (2) is in its final form a theorem of Wraith [Wra97).
Both papers rely on techniques of surgery theory. The proofs given in [BGNO03a,
BGNO3c] are completely different being a consequence of the orbifold version of Yau's
theorem.

8. CALABI CONJECTURE II — KAHLER-EINSTEIN METRICS

As pointed out in the previous section one of the consequences of the Yau’s theorem
is that a compact Kéhler manifold with ¢;(M) = 0 must admit a Ricci-flat, hence,
Einstein metric. More generally, we can consider existence of Kéhler-Einstein metrics
with arbitrary Einstein constant A. By scaling we can assume that A = 0, £1. Specif-
ically, let (M, J, g,w,) be a compact Kaher manifold. We would like to know if one
can always find a Kéhler-Einstein metric 4 € K,,}. Recall that on a Kahler-Einstein
manifold p, = Aw,y. This implies that 2rc; (M) = Alwg]. Now, if ¢,(M) > 0 we must
have A = +1 because [w,] is the Kéhler class. Similarly, when ¢;(M) < 0 the only
allowable sign of a Kahler-Einstein metric on M is A = —1. Clearly, when ¢;,(M) =0
we must have A = 0 as [w,] # 0. As we have already pointed out the A = 0 case follows
from Yau’s solution to the Calabi conjecture. For the reminder of this lecture we shall
assume that A = £1.

Let (M, J,g,w,) be a Kéhler manifold and [w,] = [w] € K(M) the Kéhler class.
Let us reformulate the existence problem using the global 93-lemma. Suppose there
exists an Einstein metric A € K,). Starting with the original Kahler metric g on M
we have a globally defined function f € C*(M,R) such that

(28) Pg — Aw, = i00f.

As before we will call f a discrepancy potential function. We also fix the constant
by asking that [, (¢/ — 1)w, = 0. Let h € K, be an Einstein metric for which
pr = Awy. Using the global i95-lemma once again we have a globally defined function
¢ € C*(M,R) such that wy — w, = i09¢$. We shall fix the constant in ¢ later. Using
these two equations we easily get

pg = pn =100(f — A¢) .
Defining F' so that wj = e"w} we can write this equation as

i00F = i00(f — \p) .
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This implies that FF = f — Ad + c. We have already fixed the constant in f so
¢ depends only on the choice of . We can make ¢ = 0 by choosing ¢ such that
Jpe(€f72% — 1)wP = 0. Hence, we have the following

Proposition 50. Let (M,J) be a compact Kahler manifold with Aey(M) > 0, where
A= x£1. Let [w] € K(M) be a Kdhler class and g, h two Kdhler metrics in Ky, with
Ricci forms pg, pn. Let f,¢ € C°(M,R) be defined by py—Iw, = i00f, wp—wy = 100¢.
Fiz the relative constant of f —A¢ by setting [,,(e/~2*~1)w, = 0. Then the metric h is
FEinstein with Einstein constant ) if and only if ¢ satisfies the following Monge-Ampére
equation '

wh =¢f ‘Mw;' )

which in a local complex chart (U, 21, ... ,z,) written as
8% '
det (913 + aziaij) - ef_A¢ .
det(9:3)

Note that by setting A = 0 we get the Monge-Ampere equation for the original Calabi
problem. The character of the Monge-Ampere equation above very much depends on
the choice of A\. The case of A = —1 is actually the simplest as the necessary a priori
(CY-estimates can be derived using the Maximum Principle. This was done by Aubin
[Aub76] and independently by Yau [Yau78]. We have

Theorem 51. Let (M, J,g,w,) be a compact Kihler manifold with ¢;(M) < 0. Then
there ezists a unique Kdhler metric h € Ky, such that pp = —wp.

When k = +1 the problem is much harder. It has been known for quite some time
that there are non-trivial obstructions to the existence of Kéhler-Einstein metrics. Let
h(M) be the complex Lie algebra of all holomorphic vector fields on M. Matsushima
[Mat57) proved that on a compact Kéhler-Einstein manifold with ¢;(M) > 0, h(M)
must be reductive, i.e. h(M) = Z(h(M)) @ [h(M), h(M)] where Z(h(M)) denotes
the center of h(M). Now, suppose (M, g, J,w) is a Kahler manifold and let f be the
discrepancy potential defined by (28). Further, let X € h(M) and define

(29) F(X) = /M X(f)dvol, .

At first glance F(X) appears to depend on the Kéhler metric. However, Futaki shows
that this is not the case: F(X) does not depend on the choice of the metric in h € Ki,).
Hence, F : h(M)—C is well-defined and it is called the Futaki functional or character
[Fut83, Fut87, Fut88]. In particular, if an Einstein metric exists than we can choose
f constant. Hence,

Corollary 52. Suppose (M, g,J,w) admits a Kihler-Einstein metric h € K,,;). Then
F must be identically zero.

Remark 53. Futaki also showed that there are Fano manifolds for which h(M) is
reductive, but F' is non-trivial [Fut88]. A folklore conjecture attributed to Calabi
asserted that in the case h(M) = 0 there are no obstructions to finding a Kéhler-
Einstein metric. This conjecture was disproved by Tian. First, Ding and Tian [DT92]
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constructed an example of an orbifold del Pezzo surface with h(M) = 0 and no Kahler-
Einstein metric. Later Tian found an example of a smooth Fano 3-fold with h(M) =
0 and no Kéhler-Einstein metric [Tia99]. In [Tia97] Tian shows that two different
conditions are necessary for the existence of a Kihler-Einstein metric. One condition
involves the generalized Futaki functional of every special degeneration of the manifold.
The other condition is Mumford stability with respect to a certain polarization. Tian
conjectures that the two conditions are equivalent and that they are also sufficient.
This conjecture is still open. However, even if it is true neither of the conditions are
easily checked for an arbitrary compact Fano manifold (orbifold). In principle, one
should be able to compute generalized Futaki invariants for any Fano hypersurface
X4 C P(w). (see, for example, Lu [Lu99], and Yotov [Yot99] for the computation of
generalized Futaki invariants in the case of smooth complete intersections).

9. THE CONTINUITY METHOD AND KAHLER-EINSTEIN ORBIFOLDS

Let us briefly describe the main aspects of the continuity method. Let’s say we are
trying to show existence of Kihler-Einstein metric of positive sign. Here one tries to
solve the Monge-Ampere equation

M = e it/
det(g;3)

for t € [0,1]. Yau’s Theorem tells us that this has a solution for t = 0, and we
try to solve this for ¢ = 1, where the metric will be Kéhler-Einstein. The so called
continuity method sets out to show that the interval where solutions exist is both
open and closed. Openness follows from the Implicit Function Theorem, but there are
well known obstructions to closedness. This problem has been studied most recently
by Demailly and Kolldr who work in the orbifold category [DKO1]. Closedness is
equivalent to the uniform boundedness of the integrals

-tde, n
/ R
z

for any v € (;57,1), where wp is the Kéhler form of hg. This means that the multiplier
ideal sheaf of Nadel [Nad90] J (v¢) = Oz for all v € (%7, 1)-

We will illustrate how the method works for links. The approach developed by
Demailly and Kolldr in [DKO01] yields the following general theorem:

s Gi5 + 6:'5}¢t >0

Theorem 54. Let X° be a compact, n-dimensional orbifold such that K;ﬁ,,, is ample.
The continuity method produces a Kdihler-Einstein metric on X°™ if the following
holds: There is a«y > ;B such that for every s > 1 and for every holomorphic section
T, € HO(X°, K¢ ) the following integral is finite:

Xorbd
/l'r,|‘l}w(’,‘ < +o00.

In general, this condition is not hard to check. For hypersurfaces the situation is
somewhat simpler and one gets
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Corollary 55. Let Z; =: X4 C P(w) be a hypersurface in P(w) given by the vanishing
of the weighted homogeneous polynomial f of weight w and degree d. Let Yy := {{f =
0} C C**'} so that Z; = (Y5 \ {0})/C,. Assume Z; is Fano, that isd < ¥ w;.
The continuity method produces a Kdhler-Einstein metric on Z; if the following holds:
There is a v > 2= such that for every weighted homogeneous polynomial g of weighted

n+l
degree s(3_ w; — d), not identically zero on Yy, the function

lg|=""* s locally L? on Y; \ {0} .

Example 56 (Log Del Pezzo Surfaces). One can take Xy C P(wp, wy, we, w3) with
I =1Ind(Xg) = Y ;wi — d > 0. Assuming X, has only isolated orbifold singularities
one can classify all such log del Pezzo surfaces and check if the conditions of Corollary
55 are satisfied. This was done by Johnson and Kolldr in [JKO1b] when I = 1. In
some cases the existence question was left open and more recently Araujo completely
finished the analysis in [Ara02]. On the other hand, the similar question can be con-
sidered for an arbitrary index I > 1. This was done to a limited extend in [BGNO03b].
That is, we enumerated all log del Pezzo surfaces for 2 < I < 10 which can possibly
admit Kéahler-Einstein metrics as a consequence of the Corollary 55. Sometimes we
were able to prove the existence, but unlike in the I = 1 situation, it has not been
done for all the candidates. Furthermore, it remains to show that for I > 10 there
are no examples of log del Pezzo surfaces satisfying condition of Corollary 55. As a
result of this analysis we got Sasakian-Einstein structures on certain connected sums
of §2 x S3. The table below summarizes the results of [BGN03b, BGN02a, BG03b).

[#(S* x S°) | N=(ng,n4,...,n7,n8) Example
k=1 (14 +1,0,0,0,0,0,0,0, 0) X7 C P(11, 13, 21, 39)
=2 (21,2,0,0,0,0,0,0,0) Xs7 C P(7,8,19,25)
k=3 | (Ro+14,2,0,0,0,0,0,0) Xos C P(7,8,19,32)
k=4 | (2R +1,0,1,2,0,0,0,0,0) Xz0 C P(3,4,5,10)
k=5 |(2%,0+1,0,1,1,0,0,0,0) Xas C P(3,5,7, 14)
k=6 | (2%,0,0+1,3,0,5,0,0,0) X1s C P(2,3,5,9)
k=7 1(0,0,0,0+1,0,R0,0,0,0) | Xenss C P(2, 2k + 1,2k + 1,4k + 1)
k=8 (0,0,0,0,0+1,0,0,0,2) X1o C P(1,2,3,5)
F=9 (0,0,0,0,0,0,0,0,1) X5 C P(1,3,5,8)

For each #(S? x S%), with 1 < k < 9 we list N = (ng, 11,72, . .. ,ng), where n; is the
number of distinct families of links with complex dimension of deformation parameters
equal to i. The largest family constructed this way had complex dimension 8 so that
n; =0 when i > 8 forall k =1,...,9. Also, the method produced no examples for
k > 9. Furthermore, for instance, ng = 28, means that there are two distinct infinite
sequence of examples which have no deformation parameters. We include regular
examples in the count by writing “+1” where appropriate. In the third column we
give an example with the largest moduli.

Remark 57. Example 56 forces an obvious question. Are there Sasakian-Einstein
structures on #(S? x S%) for arbitrary k? Recently Kolldr [Kol04] has been able to
answer this question in the affirmative. His method differs substantially from the one
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described here. The idea is to consider Seifert bundles over smooth surfaces, but with a
non-trivial orbifold structure. Such a construction is more flexible in obtaining log del
Pezzo surfaces with orbifold Kéhler-Einstein metrics and more complicated topology.
In particular, Kolldr proves

Theorem 58. For every integer k > 6 there are infinitely many complez (k — 1)-
dimensional families of Einstein metrics on #¢(S% x S3).

Combining this remarkable result with the links of hypersurfaces in Example 56, we
get the following

Corollary 59. Let M be any compact, smooth, simply-connected 5-manifold which is
spin and has no torsion in Hy(M,Z). Then M admits a Sasakian-Einstein metric.

Example 60 (Brieskorn-Pham Links). Now, we consider Brieskorn-Pham links
as defined in Equation (23). Let Y(a) := (31, 2" = 0) C C**1. One can easily see
that d = lem(a; : 4 = 0,...,n) is the degree of fa(z) and w; = d/a; are the weights.
The transverse space 2 (a) := (Y(a) \ {0})/C* is a Fano orbifold if and only if

.1
1< —.
2
i=0
More generally, we consider weighted homogeneous perturbations

n
Y(a,p) := (E 2¥ +p(z0, ..., 2,) =0) C C*H1
=0
where weighted degree(p) = d. The genericity condition we need, which is always
satisfied by p = 0 is: The intersections of Y (a,p) with any number of hyperplanes
(2; = 0) are all smooth outside the origin.

The continuity methods produces the following sufficient conditions for the quotient
Y(a,p)/C* to admit a Kéhler-Einstein metric [BGKO3]:

Theorem 61. Let Z(a,p) be the transverse space of a perturbed Brieskorn-Pham link
L(a,p). Let C; =lem(ag, ... , ;... ,a4), by = ged(C;, a;). Then Z(a,p) = Y (a,p)/C*
is Fano and it has a Kdhler-Einstein metric if

(1) 1< E"—O a;’

2 > Oa < 1+—m1n,{ .-}’ and

(3) Yoo <1+ 2yming{g; ).
In this case the link L(a,p) admits a Sasakian-Einstein metric with one-dimensional
isometry group.

10. SASAKIAN-EINSTEIN STRUCTURES ON BRIESKORN-PHAM LINKS

In this section we will discuss some consequences of Theorem 61 of the previous
section. We will investigate two separate cases: when L(a) is a homotopy sphere and
(2) when L(a) is a rational homology sphere with non-vanishing torsion. If L(a) is a
homotopy sphere, for a fixed n, there are only finitely many examples of a’s satisfying
all three conditions of Theorem 61. However, the number of examples as well as
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the moduli grows doubly exponentially with each odd dimension. One can list all
solution in dimensions 5 and 7 without difficulties. However, already in dimension 9
that task is too overwhelming. It is quite clear that many of our links will actually
be diffeomorphic to standard spheres. Hence, let us begin with a remark concerning
what is known about Einstein metrics on spheres in general.

Remark 62. Any standard sphere S™, n > 1, admits a metric of constant positive
sectional curvature. These canonical metrics are SO(n+1)-homogeneous and Einstein,
i.e., the Ricci curvature tensor is a constant positive multiple of the metric. The spheres
S*m+3 m > 1 are known to have another Sp(m + 1)-homogeneous Einstein metric
discovered by Jensen [Jen73]. The metric is obtained from the “quaternionic Hopf
fibration” §3 — S§*m+3 — HP™. Since both base and fiber are Einstein spaces with
positive Einstein constant we obtain two Einstein metrics in the canonical variation.
The second metric is also called “squashed sphere” metric in some physics literature.
In addition, S° has a third Spin(9)-invariant homogeneous Einstein metric discovered
by Bourguignon and Karcher in 1978 [BK78]. The existence of such a metric has
to do with the fact that S5, in addition to fibering over HP?, also fibers over S®
with fiber S7. Thus thel5-sphere admits 3 different homogeneous Einstein metrics.
Ziller proved that these are the only homogeneous Einstein metrics on spheres [Zil182].
B6hm obtained infinite sequences of non-isometric Einstein metrics, of positive scalar
curvature, on S®, S S7, S% and S° [B6h98]. BShm's metrics are of cohomogeneity
one and they are not only the first inhomogeneous Einstein metrics on spheres but
also the first non-canonical Einstein metrics on even-dimensional spheres.

Example 63 (Sasakian-Einstein Metrics on S°). Consider L(2,3,7,m). These
are homotopy spheres as long as m is relatively prime to at least two of 2,3,7. It
is easy to see that L(2,3,7,m) satisfies the condition of Theorem 61 if 5 < m < 41
which gives 27 cases. The link L(2,3,7,35) admits deformations, i.e., C(u,v) is any
sufficiently general homogeneous septic polynomial, then the link of

22+ 23+ C(2,25)

also gives a Sasakian-Einstein metric on S°. The relevant automorphism group of C*
is

(20, 21, 22, 23) = (20, 21, 222 + B23, @323) -
Hence we get a 2(8 — 3) = 10 real dimensional family of Sasakian-Einstein metrics on
S%. There are other examples, 68 in total, and we get [BGKO03]

Theorem 64. On S® there are at least 68 inequivalent families of Sasakian-Einstein
metrics. Some of these families admit non-trivial continuous Sasakian-Einstein defor-
mations. The biggest constructed family has has real dimension 10.

Example 65 (Sasakian-Einstein Metrics on Homotopy 7-Spheres). Similarly
L(2,3,7,43,43-31) is the standard 7-sphere with a 2(43 — 2) = 82-dimensional family
of Sasakian-Einstein metrics. One can do a computer search of all homotopy 7-spheres
that satisfy the numerical conditions of Theorem 61. One finds 8610 such links. An ad-
ditional computation of the Hirzebruch signature of the parallelizable manifold whose
boundary is L shows that they are more or less evenly distributed among the 28
oriented diffeomorphism classes. This way we get [BGK03, BGKT03]
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Theorem 66. Let ©7, be a homotopy 7-sphere corresponding to the element i € bPg ~
Zgg =~ O in the Kervaire-Milnor group. X! admits at least n; inequivalent families
of Sasakian- Einstein metrics, where (ny, ... ,ngg) =(376, 336, 260, 294, 231, 284, 322,
402, 317, 309, 252, 304, 258, 390,409, 352, 226, 260, 243, 309, 292, 452, 307, 298, 230,
307, 264, 353), giving a total of 8610 cases. In each oriented diffeomorphism class
some of the families depend on a moduli. In particular, the standard 7-sphere L3,
admits an 82-dimensional family of inequivalent Sasakian-Einstein metrics.

Example 67 (Sasakian-Einstein Metrics on Kervaire Spheres). Let {c;} be an
infinite sequence defined by the recursion relation

Ck+1=61"'Ck+1=Ci—'Ck+1, Cl=2.

Consider sequences of the form L(a) = L(2¢;,2¢,. .. ,20m_2,2,an_1) Where a,_; is
relatively prime to all the other a;s. Such L(a) are rational homotopy spheres. The
condition of Theorem 61 is satisfied if 2¢,,—2 < @nm-1 < 2¢;m-1 — 2. In particular,
we can ask for a,,_; to be prime and estimate the number of primes in the range
(2¢m-2, 2¢m-1 — 2) which gives double exponential growth in m by the Prime Number
Theorem. For odd m, L(a) the standard sphere if one of the exponents of a equals
to £1 mod 8 and it is the Kervaire sphere if one of the exponents equals 3 mod 8
[Bri66]. It is easy to check for all values of m that we get at least one solution of both
types. Hence, we get [BGKO03]

Proposition 68. Theorem 61 yields a doubly ezponential number of inequivalent Sa-
sakian-Einstein metrics on both the standard and Kervaire spheres in every odd di-
menston 4m + 1.

Example 69. L(a) = L(2,3,7,43, 1807, 3263443, 10650056950807, m) is just the stan-
dard 13-sphere for any suitably chosen m as bPy, is trivial. If we choose m =
(10650056950807 — 2) - 10650056950807 we get 2(10650056950807 — 2)-dimensional
family of deformations. By contrast the only Einstein metric on S'3 known previously
was the the canonical one.

All these examples point towards the following:

Conjecture 70. All odd-dimensional spheres that bound parallelizable manifolds ad-
mit Sasakian-Einstein metrics.

The conjecture is true in dimension 4m + 1 by Proposition 68. It is also true in
dimension 7. In addition, using computer programs we were able to verify that the
conjecture holds in dimensions 11 and 15. Computational verification in arbitrary
dimension 4m + 3 is not possible. On the other hand it does appear that Brieskorn-
Pham links satisfying the conditions of Theorem 61 realize all oriented diffeomorphism
types of homotopy spheres in every dimension.

Example 71 (S-E Structures on Rational Homology Spheres). Our final ex-
amples of Brieskorn-Pham links is that of L(m,m,... ,m,k) with ged(k,m) = 1.
By Brieskorn Graph Theorem this is a rational homology sphere in every dimension.
The conditions of Theorem 61 are satisfied as long as kK > m(m — 1). The homol-
ogy of L(m,m,...,m,k) contains torsion in H,,_,(L,Z). It's order can be easily
computed and it is kb=-1, where b,,_; is the (m — 1)** Betti number of the null link
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L(m,...,m) which is a regular circle bundle over Fermat hypersurface of degree m in
P™-1. For example, with the appropriate restriction on k we have |H3(3,3,3, k)| = k?
and |H3(4,4,4,4,k)| = k%, and so on. In particular, we get [BG03a]

Proposition 72. In each odd dimension greater than 8 there are infinitely many
smooth, compact, simply-connected rational homology spheres admitting Sasakian-FEin-
stein structures.

Torsion groups of each of the links L(m,m,... ,m,k) can also be computed using
an algorithm conjectured by Orlik [Or72] and proved by Randell in some special cases
[Ran75). In particular, Orlik’s conjecture is true for all-Brieskorn-Pham links and can
be used to compute torsion of various examples discussed here [BG04]. Let us consider
the 5-dimensional case in more detail. Using Theorem 61 and Orlik’s algorithm we
get the following list [OW75, Or72]

L(a) Torsion
103,3,3,k), ged(k,3) = Lk > 5 | Zy © Zs
L(2,4,4,k), gcd(k,2) =1, k > 10 | Zx @ Zy
I(2,3,6,), ged(k,6) = 1, £ > 12 | Zy ® Zs

The three series above satisfy 3°;_, 2 = 0. In the case when 37y 2 < 0 one can
easily see that there are 16 more rational homology 5-spheres which satisfy inequalities
of Theorem 61. An example of such a link is L(3,4,4,4) whose 2-torsion equals
Z3®Z;®Z3DZL3DZL3DZL3. Hence, L(3,4,4,4) is diffeomorphic to Ma# M3# M;. For
the torsion computation as well as the full list we refer interested readers to [BG04].

In particular, we get the following

Theorem 73. The Barden manifold My admits Sasakian-Einstein structure for each
k > 5 prime to 3 and for each k > 10 prime to 2.

Example 74. Finally, note that the links in the last table have companions with
non-trivial second Betti number and by Theorem 61 they too admit Sasakian-Einstein
metrics. We list the relevant information in the table below:

l L(a) by(L(a))
L(3,3,3,3n), n > 2
L(2,4,4,2n), ged(n,2) =1,n > 5
L(2,4,4,4n), n > 2
L(2,3,6,2n), gced(n,3) =1, n > 12
L(2,3,6,3n), gcd(n,2) =1, n > 12
L(2,3,6,6n), n >4

QO [ DN | W O

All the above links have 2-torsion equal to Z, @ Z,, which can be verified by Orlik’s
algorithm. In addition, just as in the case of rational homology 5-spheres, one can see
that there are 16 exceptional cases of links which satisfy the inequalities of Theorem 61
and have non-vanishing second Betti number. An example of such a link is L(2, 4, 6, 10)
which has b, = 1. Each line of the previous table gives infinite series of decomposable
Barden manifolds of mixed type (i.e., having both a free part and a torsion in its
second homology). For instance, we can rephrase first line as
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Proposition 75. The manifolds 6 Moo# M, admit families of Sasakian-Einstein struc-
tures for any n > 2.

Question 76. We conclude by asking some questions about Sasakian-Einstein struc-
tures on certain Barden manifolds:
(1) Does every Barden manifold M; admit a Sasakian-Einstein structure? Is it possi-
ble that certain torsion in Hy(M, Z) obstructs the existence of Sasakian-Einstein,
or even positive Sasakian structures on M?
(2) Which Barden manifolds with (M) # 0 and non-vanishing 2-torsion admit
Sasakian-Einstein structures?

Remark 77 (Einstein Metrics on Barden Manifolds). The following table sum-
marizes what we know about existence of Sasakian (S), negative Sasakian (S_), null
Sasakian (S;), positive Sasakian (S,.), regular Sasakian-Einstein (S7) and non-regular
Sasakian-Einstein (S™") structures on some Barden manifolds. The last column (OE)
indicates if an Einstein metric other than Sasakian-Einstein is known. Finally, “some
k” means that we know existence of a given structure for some (possibly infinitely
many) k’s but we do not know if it exists for all k.

[ M [S] S | & [S:] 8¢ SE™ | OE
X ? no no no no no | yes
Xa,n21 ? no no no no no ?
X yes| no no no no no | yes
Xo=S® yes| yes no |yes yes yes | yes
My~ S%x S3[yes| yes no |yes yes yes | yes
M,,n#3k |yes ? ? yes no n>5| ?
M,,n#2k |yes ? ? yes no n>10| ?
6M#M, |yes ? ? yes no n>2| 7?7
kMy,1 <k |yes|somek |somek|yes|2#k<9]| yes ?

The non Sasakian-Einstein metric on Barden manifolds are the following: X_; is a
symmetric space and the metric is Einstein. S% x S3 is well known to have infin-
itely many inequivalent homogeneous Einstein metrics discovered by Wang and Ziller
[WZ90]. S® and S? x S3 have infinitely many inequivalent Einstein metrics of coho-
mogeneity one discovered by Bhm [B6h98]. Finally X, has infinitely many Einstein
metrics recently constructed by several physicists [HSY04, LPP04].
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